## Powertrain Blockset ${ }^{\text {m }}$ <br> Reference

## MATLAB®\&SIMULINK ${ }^{\circ}$

## How to Contact MathWorks



Latest news:
www.mathworks.com
Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral
Technical support: www.mathworks.com/support/contact_us
Phone:
508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

## Powertrain Blockset ${ }^{\text {TM }}$ Reference

© COPYRIGHT 2016-2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

## Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

## Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

## Revision History

October 2016 Online only
March 2017 Online only
September 2017 Online only
March 2018
September 2018
March 2019 Online only
September 2019 Online only

New for Version 1.0 (Release 2016b+)
Revised for Version 1.1 (Release 2017a)
Revised for Version 1.2 (Release 2017b)
Revised for Version 1.3 (Release 2018a)
Revised for Version 1.4 (Release 2018b)
Revised for Version 1.5 (Release 2019a)
Revised for Version 1.6 (Release 2019b)

## 1

Vehicle Dynamics Blocks - Alphabetical List
2

Energy Storage Blocks - Alphabetical List
3

Propulsion Blocks - Alphabetical List
4

Electric Motor, Converters, Inverter Blocks -
Alphabetical List
5

Scenario Creation Blocks - Alphabetical List
6

Transmission Blocks - Alphabetical List
7

Functions
8

## Drivetrain Blocks - Alphabetical List

## Rotational Inertia

Ideal mechanical rotational inertia


## Description

The Rotational Inertia block implements an ideal mechanical rotational inertia.

## Power Accounting

For the power accounting, the block implements these equations.

| Bus Signal |  | Description | Variable | Equations |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| PwrInf <br> o | PwrTrnsfrd - <br> Power transferred <br> between blocks | PwrR | Mechanical <br> power from <br> base shaft | $P_{T R}$ | $P_{T R}=T_{R} \omega$ |
| Positive signals <br> indicate flow into <br> block <br> -Negative signals <br> indicate flow out <br> of block | PwrC | Mechanical <br> power from <br> follower shaft | $P_{T C}$ | $P_{T C}=T_{C} \omega$ |  |


| Bus Signal |  |  | Description | Variable | Equations |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | PwrNotTrnsfrd Power crossing the block boundary, but not transferred <br> - Positive signals indicate an input <br> - Negative signals indicate a loss | PwrDampLoss | Power loss due to damping | $P_{d}$ | $\begin{aligned} & P_{d}= \\ & -b\|\omega\|^{2} \end{aligned}$ |
|  | PwrStored Stored energy rate of change <br> - Positive signals indicate an increase <br> - Negative signals indicate a decrease | PwrStoredShf $\mathrm{t}$ | Rate change of stored internal torsional energy | $P_{s}$ | $P_{S}=\omega \dot{\omega} J$ |

The equations use these variables.

| $T_{R}$ | Input torque |
| :--- | :--- |
| $T_{C}$ | Output torque |
| $\omega$ | Driveshaft angular velocity |
| $J$ | Rotational inertia |
| $b$ | Rotational viscous damping |
| $P_{d}$ | Power loss due to damping |
| $P_{s}$ | Rate change of stored internal torsional energy |

## Ports

## Input

## RTrq - Input torque

## scalar

Applied input driveshaft torque, $T_{R}$, in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To create this port, for Port Configuration, select Simulink.

## CTrq - Output torque <br> scalar

Load driveshaft torque, $T_{C}$, in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To create this port, for Port Configuration, select Simulink.

## $R$ - Angular velocity and torque

two-way connector port
Angular velocity in rad/s. Torque is in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To create this port, for Port Configuration, select Two-way connection.

## Inertia - Input

scalar
Rotational inertia, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.

## Dependencies

To create the Inertia port, select External inertia input.

## Output

## Info - Bus signal <br> bus

Bus signal containing these block calculations.

| Signal |  | R | Description | Variable | Units |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Trq | C | Applied input <br> driveshaft torque | $T_{R}$ | $\mathrm{~N} \cdot \mathrm{~m}$ |  |
|  | Damp | Output driveshaft <br> torque | $T_{C}$ | $\mathrm{~N} \cdot \mathrm{~m}$ |  |
|  | Damping torque | $T_{d}=b \omega$ | $\mathrm{~N} \cdot \mathrm{~m}$ |  |  |
| PwrInfo | PwrTrnsfrd | PwrR | Angular <br> driveshaft speed | $\omega$ | $\mathrm{lad} / \mathrm{s}$ |
|  | Mechanical <br> power from base <br> shaft | $P_{T R}$ | W |  |  |
|  | PwrC | Mechanical <br> power from <br> follower shaft | $P_{T C}$ | W |  |
|  | PwrNotTrns <br> frd | PwrDampLo <br> ss | Power loss due to <br> damping | $P_{d}$ | W |
|  | PwrStored | PwrStored <br> Shft | Rate change of <br> stored internal <br> torsional energy | $P_{S}$ | W |

## Dependencies

To create this port, select Output Info bus.

## Spd - Driveshaft speed

## scalar

Angular driveshaft speed, $\omega$, in rad/s.

## Dependencies

To create this port, for Port Configuration, select Simulink.

## C - Angular velocity and torque

two-way connector port
Angular velocity in rad/s. Torque is in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To create this port, for Port Configuration, select Two-way connection.

## Parameters

## Block Options

## Port Configuration - Specify configuration

Simulink (default)|Two-way connection
Specify the port configuration.

## Dependencies

Specifying Simulink creates these ports:

- RTrq
- CTrq
- Spd

Specifying Two-way connection creates these ports:

- R
- C

Output Info bus - Selection off (default) | on

Select to create the Info output port.

## External inertia input - Input rotational inertia

 off (default) | on
## Dependencies

To create the Inertia port, select External inertia input.

## Parameters

Rotational inertia, J - Inertia

## scalar

Rotational inertia, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.

## Dependencies

To enable this parameter, clear Input rotational inertia.
Torsional damping, b-Damping
scalar
Torsional damping, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.
Initial velocity, omega_o - Angular scalar

Initial angular velocity, in rad/s.

## Extended Capabilities

## C/C++ Code Generation

Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

## See Also

Split Torsional Compliance | Torsional Compliance

## Introduced in R2017a

## Split Torsional Compliance

Split torsional coupler
Library: Powertrain Blockset / Drivetrain / Couplings Vehicle Dynamics Blockset / Powertrain / Drivetrain / Couplings


## Description

The Split Torsional Compliance block implements parallel spring-damper coupling between shafts. You can specify the type of coupling by selecting one of the Coupling Configuration parameters:

- Shaft split - Single input shaft coupled to two output shafts
- Shaft merge - Two input shafts coupled to a single output shaft

In fuel economy and emissions studies, you can use the Split Torsional Compliance block to model mechanical rotational compliance between common driveline elements such as motors, planetary gears, and clutches. For example, use the Shaft split configuration to couple a motor and two planetary gear sets. Use the Shaft merge configuration to couple a dual clutch transmission to an output shaft.

## Shaft Split

For the Shaft split configuration, the block implements this schematic and equations.


To account for frequency-dependent damping, both damping terms incorporate a low-pass filter.

The equations use these variables.

| $T_{\text {in }}$ | Resulting applied input reaction torque |
| :--- | :--- |
| $\omega_{\text {in }}$ | Input shaft rotational velocity |
| $T_{1 \text { out }}$ | Resulting applied torque to first output shaft |
| $\omega_{1 \text { out }}$ | First output shaft rotational velocity |
| $T_{2 \text { out }}$ | Resulting applied torque to second output shaft |
| $\omega_{2 \text { out }}$ | Second output shaft rotational velocity |
| $\theta_{1}, \theta_{2}$ | First, second shaft rotation, respectively |
| $b_{1}, b_{2}$ | First, second shaft viscous damping, respectively |

$k_{1}, k_{2} \quad$ First, second shaft torsional stiffness, respectively

## Shaft Merge

For the Shaft merge configuration, the block implements this schematic and equations.


To account for frequency-dependent damping, both damping terms incorporate a low-pass filter.

The equations use these variables.

| $T_{\text {out }}$ | Resulting applied output torque |
| :--- | :--- |
| $\omega_{\text {out }}$ | Output shaft rotational velocity |
| $T_{1 \text { in }}$ | Resulting reaction torque to first input shaft |
| $\omega_{1 \text { in }}$ | First input shaft rotational velocity |


| $T_{2 i n}$ | Resulting reaction torque to second input shaft |
| :--- | :--- |
| $\omega_{2 i n}$ | Second input shaft rotational velocity |
| $\theta_{1}, \theta_{2}$ | First, second shaft rotation, respectively |
| $b_{1}, b_{2}$ | First, second shaft viscous damping, respectively |
| $k_{1}, k_{2}$ | First, second shaft torsional stiffness, respectively |

## Power Accounting

For the power accounting, the block implements these equations.

| Bus Signal |  |  | Description | Variabl | Equations |
| :---: | :---: | :---: | :---: | :---: | :---: |
| PwrInf$0$ | PwrTrnsfrd - <br> Power transferred between blocks <br> - Positive signals indicate flow into block <br> - Negative signals indicate flow out of block | PwrR | For the Shaft split configuration, mechanical power from input shaft | $P_{\text {TR }}$ | $\begin{aligned} & P_{T R}= \\ & -T_{R} \omega_{R} \end{aligned}$ |
|  |  | PwrC1 | For the Shaft split configuration, mechanical power from first output shaft | $P_{T C 1}$ | $\begin{aligned} & P_{T C 1}= \\ & -T_{C 1} \omega_{C 1} \end{aligned}$ |
|  |  | PwrC2 | For the Shaft split configuration, mechanical power from second output shaft | $P_{T C 2}$ | $\begin{aligned} & P_{T C 2}= \\ & -T_{C 2} \omega_{C 2} \end{aligned}$ |


| Bus Signal |  | Description | Variabl | Equations |
| :---: | :---: | :---: | :---: | :---: |
|  | PwrC | For the Shaft merge configuration, mechanical power from output shaft | $P_{\text {TC }}$ | $P_{T C}=T_{C} \omega_{C}$ |
|  | PwrR1 | For the Shaft merge configuration, mechanical power from first input shaft | $P_{\text {TR1 }}$ | $\begin{gathered} P_{T R 1}= \\ T_{R 1} \omega_{R 1} \end{gathered}$ |
|  | PwrR2 | For the Shaft merge configuration, mechanical power from second input shaft | $P_{\text {TR2 }}$ | $\begin{gathered} P_{T R 2}= \\ T_{R 2} \omega_{R 2} \end{gathered}$ |
| PwrNotTrnsfrd Power crossing the block boundary, but not transferred <br> - Positive signals indicate an input <br> - Negative signals indicate a loss | PwrDampLoss | Mechanical damping loss | $P_{d}$ | $\begin{aligned} & P_{d}=- \\ & \left(b_{1}\left\|\dot{\theta}_{1}\right\|^{2}\right. \\ & \left.+b_{2}\left\|\dot{\theta}_{2}\right\|^{2}\right) \end{aligned}$ |


| Bus Signal |  | Description | Variabl <br> e | Equations |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | PwrStored - <br> Stored energy rate of <br> change <br> Positive signals <br> indicate an <br> increase <br> - <br> Negative signals <br> indicate a <br> decrease | PwrstoredShf | Rate change in <br> spring energy | $P_{s}$ | $P_{S}=\left(k_{1} \theta_{1} \dot{\theta}_{1}\right.$ <br> $\left.+k_{2} \theta_{2} \dot{\theta}_{2}\right)$ |

The equations use these variables.

| $T_{R}$ | Shaft R torque |
| :--- | :--- |
| $T_{C}$ | Shaft C torque |
| $\omega_{R}$ | Shaft R angular velocity |
| $\omega_{C}$ | Shaft C angular velocity |
| $\theta$ | Coupled shaft rotation |
| $k$ | Shaft torsional stiffness |
| $b$ | Rotational viscous damping |
| $P_{t}$ | Total mechanical power |
| $P_{d}$ | Power loss due to damping |
| $P_{s}$ | Rate change of stored spring energy |

## Ports

## Input

## RSpd - Input shaft speed

scalar
Input shaft rotational velocity, $\omega_{i n}$, in rad/s.

## Dependencies

To create this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft split


## C1Spd - First output shaft speed

 scalarFirst output shaft rotational velocity, $\omega_{1 o u t}$, in rad/s.

## Dependencies

To create this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft split


## C2Spd - Second output shaft speed scalar

Second output shaft rotational velocity, $\omega_{2 o u t}$, in rad/s.

## Dependencies

To create this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft split

CSpd - Input speed scalar

Output shaft rotational velocity, $\omega_{\text {out }}$, in rad/s.

## Dependencies

To create this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft merge


## R1Spd - First input shaft speed scalar

First input shaft rotational velocity, $\omega_{1 i n}$, in rad/s.

## Dependencies

To create this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft merge


## R2Spd - Second input shaft speed

## scalar

Second input shaft rotational velocity, $\omega_{2 i n}$, in rad/s.

## Dependencies

To create this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft merge


## R - Input shaft angular velocity and torque

two-way connector port
Input shaft angular velocity, $\omega_{i n}$, in rad/s and torque, $T_{i n}$, in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To create this port, select:

- Port Configuration>Two-way connection
- Coupling Configuration>Shaft split


## R1 - First input shaft angular velocity and torque

two-way connector port
First input shaft angular velocity, $\omega_{1 i n}$, in rad/s and torque, $T_{1 i n}$, in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To create this port, select:

- Port Configuration>Two-way connection
- Coupling Configuration>Shaft merge


## R2 - Second input shaft angular velocity and torque

two-way connector port
Second input shaft angular velocity, $\omega_{2 i n}$, in rad/s and torque, $T_{2 i n}$, in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To create this port, select:

- Port Configuration>Two-way connection
- Coupling Configuration>Shaft merge


## Output

## Info - Bus signal <br> bus

If you set Coupling Configuration to Shaft split, the Info bus contains these signals.

| Signal |  |  | Description | Variable | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Trq | R |  | Input shaft torque | $T_{\text {in }}$ | $\mathrm{N} \cdot \mathrm{m}$ |
|  | C1 |  | First output shaft torque | $T_{1 \text { out }}$ | $\mathrm{N} \cdot \mathrm{m}$ |
|  | C2 |  | Second output shaft torque | $T_{2 \text { out }}$ | $\mathrm{N} \cdot \mathrm{m}$ |
|  | Damp | C1 | First output shaft damping torque | $b_{1} \omega_{1 \text { out }}$ | $\mathrm{N} \cdot \mathrm{m}$ |
|  |  | C2 | Second output shaft damping torque | $b_{2} \omega_{2 \text { out }}$ | $\mathrm{N} \cdot \mathrm{m}$ |
|  | Spring | C1 | First output shaft spring torque | $k_{1} \theta_{1}$ | $\mathrm{N} \cdot \mathrm{m}$ |
|  |  | C2 | Second output shaft spring torque | $k_{2} \theta_{2}$ | $\mathrm{N} \cdot \mathrm{m}$ |
| Spd | R |  | Input shaft angular velocity | $\omega_{\text {in }}$ | rad/s |
|  | C1 |  | First output shaft angular velocity | $\omega_{1 \text { out }}$ | rad/s |



If you set Coupling Configuration to Shaft merge, the Info bus contains these signals.

| Signal |  |  | Description | Variable | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Trq | C |  | Output shaft torque | $T_{\text {out }}$ | $\mathrm{N} \cdot \mathrm{m}$ |
|  | R1 |  | First input shaft torque | $T_{1 \text { in }}$ | $\mathrm{N} \cdot \mathrm{m}$ |
|  | R2 |  | Second input shaft torque | $T_{2 i n}$ | $\mathrm{N} \cdot \mathrm{m}$ |
|  | Damp | R1 | First input shaft damping torque | $b_{1} \omega_{1 \text { in }}$ | $\mathrm{N} \cdot \mathrm{m}$ |
|  |  | R2 | Second in shaft damping torque | $b_{2} \omega_{2 i n}$ | $\mathrm{N} \cdot \mathrm{m}$ |
|  | Spring | R1 | First input shaft spring torque | $k_{1} \theta_{1}$ | $\mathrm{N} \cdot \mathrm{m}$ |
|  |  | R2 | Second in shaft spring torque | $k_{2} \theta_{2}$ | $\mathrm{N} \cdot \mathrm{m}$ |


| Signal |  |  | Description | Variable | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Spd | C |  | Output shaft angular velocity | $\omega_{\text {out }}$ | rad/s |
|  | R1 |  | First input shaft angular velocity | $\omega_{1 i n}$ | rad/s |
|  | R2 |  | Second input shaft angular velocity | $\omega_{2 i n}$ | rad/s |
|  | deltadot1 |  | Difference in first input and output shaft angular velocity | $\dot{\theta}_{1}$ | rad/s |
|  | deltadot2 |  | Difference in second input and output shaft angular velocity | $\dot{\theta}_{2}$ | rad/s |
| PwrInfo | PwrTrnsfrd | PwrC | Mechanical power from output shaft | $P_{\text {TC }}$ | W |
|  |  | PwrR1 | Mechanical power from first input shaft | $P_{\text {TR1 }}$ | W |
|  |  | PwrR2 | Mechanical power from second input shaft | $P_{\text {TR2 }}$ | W |
|  | PwrNotTrns frd | PwrDampL oss | Mechanical damping loss | $P_{d}$ | W |
|  | PwrStored | PwrStore dShft | Rate change of stored internal torsional energy | $P_{s}$ | W |

## Dependencies

To create this port, select Output Info bus.

## RTrq - Input shaft torque

scalar
Input shaft torque, $T_{i n}$, in $N \cdot m$.

## Dependencies

To create this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft split

C1Trq - First output shaft torque
scalar
First output shaft torque, $T_{1 \text { out }}$, in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To create this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft split


## C2Trq - Second output shaft torque

scalar
Second output shaft torque, $T_{2 \text { out }}$, in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To create this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft split


## CTrq - Output shaft torque

 scalarOutput shaft torque, $T_{\text {out }}$, in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To create this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft merge


## R1Trq - First input shaft torque

 scalarFirst input shaft torque, $T_{1 i n}$, in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To create this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft merge


## R2Trq - Second input shaft torque scalar

Second input shaft torque, $T_{2 i n}$, in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To create this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft merge


## C1 - First output shaft angular velocity and torque

 two-way connector portFirst output shaft angular velocity, $\omega_{1 \text { out }}$, in rad/s and torque, $T_{1 \text { out }}$, in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To create this port, select:

- Port Configuration>Two-way connection
- Coupling Configuration>Shaft split


## C2 - Second output shaft angular velocity and torque two-way connector port

Second output shaft angular velocity, $\omega_{2 o u t}$, in rad/s and torque, $T_{2 o u t}$, in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To create this port, select:

- Port Configuration>Two-way connection
- Coupling Configuration>Shaft split


## C - Output shaft angular velocity and torque

two-way connector port
Output shaft angular velocity, $\omega_{\text {out }}$, in rad/s and torque, $T_{\text {out }}$, in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To create this port, select:

- Port Configuration>Two-way connection
- Coupling Configuration>Shaft merge


## Parameters

## Block Options

## Port Configuration - Specify configuration

Simulink (default)|Two-way connection
Specify the port configuration.

## Coupling Configuration - Specify configuration Shaft split (default)|Shaft merge

Specify the coupling type.
Output Info bus - Selection
off (default)
Select to create the Info output port.

## Coupling 1

Torsional stiffness, k1 - Stiffness
scalar
Rotational inertia, $k_{1}$, in $\mathrm{N} \cdot \mathrm{m} / \mathrm{rad}$.
Torsional damping, b1 - Damping
scalar
Torsional damping, $b_{1}$, in $N \cdot m \cdot s / r a d$.
Damping cutoff frequency, omegal_c - Frequency scalar
Damping cutoff frequency, in rad/s.

## Coupling 2

Torsional stiffness, k2 - Stiffness
scalar
Rotational inertia, $k_{2}$, in $\mathrm{N} \cdot \mathrm{m} / \mathrm{rad}$.
Torsional damping, b2 - Damping scalar
Torsional damping, $b_{2}$, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.
Damping cutoff frequency, omega2_c - Frequency scalar
Damping cutoff frequency, in rad/s.

## Extended Capabilities

## C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

See Also

Rotational Inertia | Torsional Compliance

Introduced in R2017b

## Torsional Compliance

Parallel spring-damper
Library: Powertrain Blockset / Drivetrain / Couplings Vehicle Dynamics Blockset / Powertrain / Drivetrain / Couplings


## Description

The Torsional Compliance block implements a parallel spring-damper to couple two rotating driveshafts. The block uses the driveshaft angular velocities, torsional stiffness, and torsional damping to determine the torques.
$T_{R}=-\left(\omega_{R}-\omega_{C}\right) b-\theta k$
$T_{C}=\left(\omega_{R}-\omega_{C}\right) b+\theta k$
$\dot{\theta}=\left(\omega_{R}-\omega_{C}\right)$

## Power Accounting

For the power accounting, the block implements these equations.

| Bus Signal |  | Description | Variabl <br> e | Equation <br> s |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| PwrInf <br> o | PwrTrnsfrd - Power <br> transferred between <br> blocks | PwrR | Mechanical <br> power from <br> driveshaft R | $P_{T R}$ | $P_{T R}=$ <br> $T_{R} \omega_{R}$ |
| Positive signals <br> indicate flow into <br> block <br> Negative signals <br> indicate flow out of <br> block | PwrC | Mechanical <br> power from <br> driveshaft C | $P_{T C}$ | $P_{T C}=$ <br> $T_{C} \omega_{C}$ |  |


| Bus Signal |  | Description | VariabI <br> e | Equation <br> s |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | PwrNotTrnsfrd - <br> Power crossing the block <br> boundary, but not <br> transferred <br> -Positive signals <br> indicate an input <br> - Negative signals <br> indicate a loss | PwrDampLoss | Mechanical <br> damping loss | $P_{d}$ | $P_{d}=$ <br> $-b\|\dot{\theta}\|^{2}$ |
| PwrStored - Stored <br> energy rate of change <br> -Positive signals <br> indicate an increase <br> - Negative signals <br> indicate a decrease | PwrStoredSh <br> ft | Rate change in <br> spring energy | $P_{S}$ | $P_{S}=$ <br> $-\theta k \dot{\theta}$ |  |

The equations use these variables.

| $T_{R}$ | Driveshaft R torque |
| :--- | :--- |
| $T_{C}$ | Driveshaft C torque |
| $\omega_{R}$ | Driveshaft R angular velocity |
| $\omega_{C}$ | Driveshaft C angular velocity |
| $\theta$ | Coupled driveshaft rotation |
| $k$ | Driveshaft torsional stiffness |
| $b$ | Rotational viscous damping |
| $P_{d}$ | Power loss due to damping |
| $P_{s}$ | Rate change of stored spring energy |

## Ports

## Input

## RSpd - Driveshaft $\mathbf{R}$ angular velocity <br> scalar

Input driveshaft angular velocity, in rad/s.

## Dependencies

To create this port, for Port Configuration, select Simulink.

## CSpd - Driveshaft C angular velocity scalar

Output driveshaft angular velocity, in rad/s.

## Dependencies

To create this port, for Port Configuration, select Simulink.

## R - Angular velocity and torque

two-way connector port
Angular velocity in rad/s. Torque is in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To create this port, for Port Configuration, select Two-way connection.

## Output

## Info - Bus signal

bus
Bus signal containing these block calculations.

| Signal | Description | Variable | Units |  |
| :--- | :--- | :--- | :--- | :--- |
| $\operatorname{Trq}$ | R | Input driveshaft <br> torque | $T_{R}$ | $\mathrm{~N} \cdot \mathrm{~m}$ |
|  |  |  |  |  |


| Signal |  |  | Description | Variable | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | C |  | Output driveshaft torque | $T_{C}$ | $\mathrm{N} \cdot \mathrm{m}$ |
|  | Damp |  | Damping torque | $T_{S}=b \dot{\theta}$ | $\mathrm{N} \cdot \mathrm{m}$ |
|  | Spring |  | Spring torque | $T_{d}=k \theta$ | $\mathrm{N} \cdot \mathrm{m}$ |
| Spd | R |  | Input driveshaft angular velocity | $\omega_{R}$ | rad/s |
|  | C |  | Output driveshaft angular velocity | $\omega_{C}$ | rad/s |
|  | deltadot |  | Difference in input and output driveshaft angular velocity | $\dot{\theta}$ | rad/s |
| PwrInfo | PwrTrnsfrd | PwrR | Mechanical power from driveshaft R | $P_{T R}$ | W |
|  |  | PwrC | Mechanical power from driveshaft C | $P_{\text {TC }}$ | W |
|  | PwrNotTrns frd | PwrDampLo SS | Power loss due to damping | $P_{d}$ | W |
|  | PwrStored | PwrStored Shft | Rate change of stored internal kinetic energy | $P_{s}$ | W |

## Dependencies

To create this port, select Output Info bus.

## RTrq - Driveshaft R torque

scalar
Input drive shaft torque, in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To create this port, for Port Configuration, select Simulink.

## CTrq - Driveshaft C torque

scalar

Applied output driveshaft torque, in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To create this port, for Port Configuration, select Simulink.

## C - Angular velocity and torque

two-way connector port
Angular velocity in rad/s. Torque is in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To create this port, for Port Configuration, select Two-way connection.

## Parameters

## Block Options

## Port Configuration - Specify configuration

## Simulink (default)|Two-way connection

Specify the port configuration.

## Dependencies

Specifying Simulink creates these ports:

- RSpd
- CSpd
- RTrq
- CTrq

Specifying Two-way connection creates these ports:

- R
- C

Output Info bus - Selection
off (default) | on
Select to create the Info output port.

## Torsional stiffness, k - Inertia <br> scalar

Torsional stiffness, in $\mathrm{N} \cdot \mathrm{m} / \mathrm{rad}$.

## Torsional damping, b - Damping scalar

Torsional damping, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.
Initial deflection, theta_o - Angular scalar

Initial deflection, in rad.
Initial velocity difference, domega_o - Angular scalar

Initial velocity difference, in rad/s.
Damping cut-off frequency, omega_c - Frequency scalar

Damping cut-off frequency, in rad/s.

## Extended Capabilities

## C/C++ Code Generation

Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

## See Also

Rotational Inertia | Split Torsional Compliance

Introduced in R2017a

## Limited Slip Differential

Limited differential as a planetary bevel gear
Library: Powertrain Blockset / Drivetrain / Final Drive Unit Vehicle Dynamics Blockset / Powertrain / Drivetrain / Final Drive Unit


## Description

The Limited Slip Differential block implements a differential as a planetary bevel gear train. The block matches the driveshaft bevel gear to the crown (ring) bevel gear. You can specify:

- Carrier-to-driveshaft ratio
- Crown wheel location
- Viscous and damping coefficients for the axles and carrier
- Type of slip coupling

Use the block in system-level driveline analysis to account for the power transfer from the transmission to the wheels. The block is suitable for use in hardware-in-the-loop (HIL) and optimization workflows. All the parameters are tunable.

In a limited slip differential, to prevent one of the wheels from slipping, the differential splits the torque applied to the left and right axles. With different torque applied to the axles, the wheels can move at different angular velocities, preventing slip. The block implements three methods for coupling the different torques applied to the axes:

- Pre-loaded ideal clutch
- Slip speed-dependent torque data
- Input torque dependent torque data

The block uses a coordinate system that produces positive tire and vehicle motion for standard engine, transmission, and differential configurations. The arrows indicate positive motion.


## Efficiency

To account for the block efficiency, use the Efficiency factors parameter. This table summarizes the block implementation for each setting.

| Setting | Implementation |
| :--- | :--- |
| Constant | Constant efficiency that you can set with the Constant efficiency <br> factor, eta parameter. |


| Setting | Implementation |
| :--- | :--- |
| Driveshaft <br> torque, <br> temperature and <br> speed | Efficiency as a function of base gear input torque, air <br> temperature, and driveshaft speed. Use these parameters to <br> specify the lookup table and breakpoints: |
|  | - Efficiency lookup table, eta_tbl <br> - <br> - Efficiency torque breakpoints, Trq_bpts <br> - Efficiency speed breakpoints, omega_bpts <br> Efficiency temperature breakpoints, Temp_bpts |
|  | For the air temperature, you can either: <br> - Select Input temperature to create an input port. <br> - Set a Ambient temperature, Tamb parameter value. <br> To select the interpolation method, use the Interpolation <br> method parameter. For more information, see "Interpolation <br> Methods" (Simulink). |

## Power Accounting

For the power accounting, the block implements these equations.

| Bus Signal |  | Description | Equations |  |
| :--- | :--- | :--- | :--- | :--- |
| PwrInf <br> o | PwrTrnsfrd - Power <br> transferred between <br> blocks | PwrDriveshf <br> t <br> - Positive signals <br> indicate flow into <br> block <br> -Negative signals <br> indicate flow out of <br> block | Mechanical <br> power from <br> driveshaft | $\eta T_{d} \omega_{d}$ |
|  | PwrAxl1 | Mechanical <br> power from axle <br> 1 | $\eta T_{1} \omega_{1}$ |  |
|  | PwrNotTrnsfrd - <br> Power crossing the | PwrMechLoss | Mechanical <br> power from axle <br> 2 | $\eta T_{2} \omega_{2}$ |


| Bus Signal |  | Description | Equations |
| :---: | :---: | :---: | :---: |
| block boundary, but not transferred | PwrDampLoss | Power loss due to damping | $\begin{aligned} & P_{d}=-\left(b_{1}\left\|\omega_{1}\right\|\right. \\ & \left.+b_{2}\left\|\omega_{2}\right\|+b_{d}\left\|\omega_{d}\right\|\right) \end{aligned}$ |
| - Positive signals indicate an input <br> - Negative signals indicate a loss | PwrCplngLos s | Power loss due to clutch | $P_{C}=T_{C}\|\bar{\omega}\|$ |
| PwrStored - Stored energy rate of change <br> - Positive signals indicate an increase <br> - Negative signals indicate a decrease | PwrStoredSh ft | Rate change of stored internal energy | $\begin{aligned} & P_{S}=-\left(\omega_{1} \dot{\omega}_{1} J_{1}\right. \\ & +\omega_{2} \dot{\omega}_{2} J_{2}+\omega_{d} \dot{\omega}_{d} J_{d} \end{aligned}$ |

## Dynamics

The Limited Slip Differential block implements these differential equations to represent the mechanical dynamic response for the crown gear, left axle, and right axle.

| Mechanical <br> Dynamic <br> Response | Differential Equation |
| :--- | :--- |
| Crown Gear | $\dot{\omega}_{d} J_{d}=\eta T_{d}-\omega_{d} b_{d}-T_{i}$ |
| Left Axle | $\dot{\omega}_{1} J_{1}=\eta T_{1}-\omega_{1} b_{1}-T_{i 1}$ |
| Right Axle | $\dot{\omega}_{2} J_{2}=\eta T_{2}-\omega_{2} b_{2}-T_{i 2}$ |

The block assumes rigid coupling between the crown gear and axles. These constraint equations apply.

$$
\begin{aligned}
& \eta T_{1}=\frac{N}{2} T_{i}-\frac{1}{2} T_{c} \\
& \eta T_{2}=\frac{N}{2} T_{i}+\frac{1}{2} T_{c} \\
& \omega_{d}=\frac{N}{2}\left(\omega_{1}+\omega_{2}\right)
\end{aligned}
$$

The equations use these variables.

| $N$ | Carrier-to-driveshaft gear ratio |
| :--- | :--- |
| $J_{d}$ | Rotational inertia of the crown gear assembly |
| $b_{d}$ | Crown gear linear viscous damping |
| $\omega_{d}$ | Driveshaft angular speed |
| $\omega$ | Slip speed |
| $J_{1}$ | Axle 1 rotational inertia |
| $b_{1}$ | Axle 1 linear viscous damping |
| $\omega_{1}$ | Axle 1 speed |
| $J_{2}$ | Axle 2 rotational inertia |
| $b_{2}$ | Axle 2 linear viscous damping |
| $\omega_{2}$ | Axle 2 angular speed |
| $\eta$ | Efficiency |
| $T_{d}$ | Driveshaft torque |
| $T_{1}$ | Axle 1 torque |
| $T_{2}$ | Axle 2 torque |
| $T_{i}$ | Axle internal resistance torque |
| $T_{i 1}$ | Axle 1 internal resistance torque |
| $T_{i 2}$ | Axle 2 internal resistance torque |
| $\mu$ | Coefficient of friction |
| $R_{e f f}$ | Effective clutch radius |
| $R_{o}$ | Annular disk outer radius |
| $R_{i}$ | Annular disk inner radius |
| $F_{c}$ | Clutch force |
| $T_{c}$ | Clutch torque |
| $\mu$ | Coefficient of friction |

Table blocks in the Limited Slip Differential have these parameter settings:

- Interpolation method - Linear


## - Extrapolation method - Clip

## Ideal Clutch Coupling

The ideal clutch coupling model uses the axle slip speed and friction to calculate the clutch torque. The friction coefficient is a function of the slip speed.

$$
T_{C}=F_{C} N \mu(|\varpi|) R_{e f f} \tanh (4|\varpi|)
$$

The disc radii determine the effective clutch radius over which the clutch force acts.

$$
R_{e f f}=\frac{2\left(R_{O} 3-R_{i} 3\right)}{3\left(R_{0}^{2}-R_{i}^{2}\right)}
$$

The angular velocities of the axles determine the slip speed.

$$
\varpi=\omega_{1}-\omega_{2}
$$

## Slip Speed Coupling

To calculate the clutch torque, the slip speed coupling model uses torque data that is a function of slip speed. The angular velocities of the axles determine the slip speed.

$$
\varpi=\omega_{1}-\omega_{2}
$$

## Input Torque Coupling

To calculate the clutch torque, the input torque coupling model uses torque data that is a function of input torque.

The Open Differential block assumes rigid coupling between the crown gear and axles. These constraint equations apply.

$$
\begin{aligned}
& \eta T_{1}=\eta T_{2}=\frac{N}{2} T_{i} \\
& \omega_{d=}=\frac{N}{2}\left(\omega_{1}+\omega_{2}\right)
\end{aligned}
$$

## Ports

## Inputs

## DriveshftTrq - Torque <br> scalar

Applied input torque, typically from the engine crankshaft, in $\mathrm{N} \cdot \mathrm{m}$.
Axl1Trq - Torque
scalar
Axle 1 torque, $T_{1}$, in $\mathrm{N} \cdot \mathrm{m}$.

## Axl2Trq - Torque

## scalar

Axle 2 torque, $T_{2}$, in $\mathrm{N} \cdot \mathrm{m}$.

## Temp - Temperature

scalar
Temperature, in K.

## Dependencies

To create this port:

- Set Efficiency factors to Driveshaft torque, speed and temperature.
- Select Input temperature.


## Output

## Info - Bus signal

bus
Bus signal containing these block calculations.

| Signal |  | Description | Units |
| :--- | :--- | :--- | :--- |
| Driveshft | DriveshftTrq | Driveshaft torque | $\mathrm{N} \cdot \mathrm{m}$ |


| Signal |  |  | Description | Units |
| :---: | :---: | :---: | :---: | :---: |
|  | DriveshftSpd |  | Driveshaft speed | rad/s |
| Axl1 | Axl1Trq |  | Axle 1 torque | $\mathrm{N} \cdot \mathrm{m}$ |
|  | Axl1Spd |  | Axle 1 speed | $\mathrm{rad} / \mathrm{s}$ |
| Axl2 | Axl2Trq |  | Axle 2 torque | $\mathrm{N} \cdot \mathrm{m}$ |
|  | Axl2Spd |  | Axle 2 speed | rad/s |
| Cplng | CplngTrq |  | Torque coupling | $\mathrm{N} \cdot \mathrm{m}$ |
|  | CplngSlipSpd |  | Slip speed | rad/s |
| PwrInfo | PwrTrnsf rd | PwrDrive shft | Mechanical power from driveshaft | W |
|  |  | PwrAxl1 | Mechanical power from axle 1 | W |
|  |  | PwrAxl2 | Mechanical power from axle 2 | W |
|  | PwrNotTr nsfrd | PwrMechL oss | Total power loss | W |
|  |  | PwrDampL OSS | Power loss due to damping | W |
|  |  | PwrCplng Loss | Power loss due to clutch | W |
|  | PwrStore dShft | PwrStore dShft | Rate change of stored internal energy | W |

## DriveshftSpd - Angular speed

scalar
Driveshaft angular speed, $\omega_{d}$, in rad/s.

## Axl1Spd - Angular speed

scalar
Axle 1 angular speed, $\omega_{1}$, in rad/s.

## Axl2Spd - Angular speed

scalar
Axle 2 angular speed, $\omega_{2}$, in rad/s.

## Parameters

## Block Options

Efficiency factors - Specify configuration
Constant (default)|Driveshaft torque, speed and temperature
To account for the block efficiency, use the Efficiency factors parameter. This table summarizes the block implementation for each setting.

| Setting | Implementation |
| :--- | :--- |
| Constant | Constant efficiency that you can set with the Constant efficiency <br> factor, eta parameter. |
| Driveshaft <br> torque, <br> temperature and <br> speed | Efficiency as a function of base gear input torque, air <br> temperature, and driveshaft speed. Use these parameters to <br> specify the lookup table and breakpoints: <br> - $\quad$ Efficiency lookup table, eta_tbl <br> - $\quad$ Efficiency torque breakpoints, Trq_bpts <br> - $\quad$ Efficiency speed breakpoints, omega_bpts <br> - Efficiency temperature breakpoints, Temp_bpts <br> For the air temperature, you can either: |
|  | - Select Input temperature to create an input port. <br> - Set a Ambient temperature, Tamb parameter value. <br> To select the interpolation method, use the Interpolation <br> method parameter. For more information, see "Interpolation <br> Methods" (Simulink). |

## Interpolation method - Method

Flat (default)|Nearest|Linear point-slope| Linear Lagrange|Cubic spline

For more information, see "Interpolation Methods" (Simulink).

## Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

## Input temperature - Create input port

 off (default) | onSelect to create input port Temp for the temperature.

## Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

## Open Differential

## Crown wheel (ring gear) located - Specify crown wheel connection

 To the left of center-line (default)|To the right of center-lineSpecify the crown wheel connection to the driveshaft.

## Carrier to drive shaft ratio, NC/ND - Ratio scalar

Carrier-to-driveshaft gear ratio, $N$.

## Carrier inertia, Jd - Inertia

scalar
Rotational inertia of the crown gear assembly, $J_{d}$, in $\mathrm{kg} \cdot \mathrm{m} \wedge 2$. You can include the driveshaft inertia.

Carrier damping, bd - Damping
scalar
Crown gear linear viscous damping, $b_{d}$, in $N \cdot m \cdot s / r a d$.
Axle 1 inertia, Jw1 - Inertia scalar

Axle 1 rotational inertia, $J_{1}$, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.

## Axle 1 damping, bw1 - Damping

## scalar

Axle 1 linear viscous damping, $b_{1}$, in $N \cdot m \cdot s / r a d$.

## Axle 2 inertia, Jw2 - Inertia scalar

Axle 2 rotational inertia, $J_{2}$, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.

## Axle 2 damping, bw2 - Damping

 scalarAxle 2 linear viscous damping, $b_{2}$, in $N \cdot \mathrm{~m} \cdot \mathrm{~s} / \mathrm{rad}$.

## Axle 1 initial velocity, omegaw1o - Angular velocity scalar

Axle 1 initial velocity, $\omega_{o 1}$, in rad/s.

## Axle 2 initial velocity, omegaw2o - Angular velocity scalar

Axle 2 initial velocity, $\omega_{o 2}$, in rad/s.

## Constant efficiency factor, eta - Efficiency 1 (default)

Constant efficiency, $\eta$.

## Dependencies

To enable this parameter, set Efficiency factors to Constant.

## Efficiency lookup table, eta_tbl - Lookup table

## M-by-N-by-L array

Dimensionless array of values for efficiency as a function of:

- Minput torques
- N input speed
- L air temperatures

Each value specifies the efficiency for a specific combination of torque, speed, and temperature. The array size must match the dimensions defined by the torque, speed, and temperature breakpoint vectors.

## Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Efficiency torque breakpoints, Trq_bpts - Torque breakpoints 1-by-M vector

Vector of input torque, breakpoints for efficiency, in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Efficiency speed breakpoints, omega_bpts - Speed breakpoints 1-by-N vector

Vector of speed, breakpoints for efficiency, in rad/s.

## Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Efficiency temperature breakpoints, Temp_bpts - Temperature breakpoints
1-by-L vector
Vector of ambient temperature breakpoints for efficiency, in K.

## Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Ambient temperature, Tamb - Ambient temperature scalar

Ambient air temperature, $T_{\text {air }}$, in K .

## Dependencies

To enable this parameter:

- Set Efficiency factors to Driveshaft torque, speed and temperature.
- Clear Input temperature.


## Slip Coupling

## Coupling type - Torque coupling

## Pre-loaded ideal clutch (default)|Slip speed dependent torque data|

 Input torque dependent torque dataSpecify the type of torque coupling.

## Number of disks, Ndisks - Torque coupling scalar

Number of disks.

## Dependencies

To enable the ideal clutch parameters, select Pre-loaded ideal clutch for the Coupling type parameter.

## Effective radius, Reff - Radius <br> scalar

The effective radius, $R_{\text {eff }}$, used with the applied clutch friction force to determine the friction force. The effective radius is defined as:

$$
R_{e f f}=\frac{2\left(R_{O}{ }^{3}-R_{i}{ }^{3}\right)}{3\left(R_{O}^{2}-R_{i}^{2}\right)}
$$

The equation uses these variables.
$R_{0} \quad$ Annular disk outer radius
$R_{i} \quad$ Annular disk inner radius

## Dependencies

To enable the clutch parameters, select Pre-loaded ideal clutch for the Coupling type parameter.

## Nominal preload force, Fc - Force <br> scalar

Nominal preload force, in N.

## Dependencies

To enable the clutch parameters, select Pre-loaded ideal clutch for the Coupling type parameter.

## Friction coefficient vector, mu - Friction

## vector

Friction coefficient vector.

## Dependencies

To enable the clutch parameters, select Pre-loaded ideal clutch for the Coupling type parameter.

## Slip speed vector, dw - Angular velocity

 vectorSlip speed vector, in rad/s.

## Dependencies

To enable the clutch parameters, select Pre-loaded ideal clutch for the Coupling type parameter.

```
Torque - slip speed vector, Tdw - Torque
vector
```

Torque vector, in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To enable the slip speed parameters, select Slip speed dependent torque data for the Coupling type parameter.

```
Slip speed vector, dwT - Angular velocity
vector
```

Slip speed vector, in rad/s.

## Dependencies

To enable the slip speed parameters, select Slip speed dependent torque data for the Coupling type parameter.

```
Torque - input torque vector, TTin - Torque
vector
```

Torque vector, in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To enable the input torque parameters, select Input torque dependent torque data for the Coupling type parameter.

## Input torque vector, Tin - Torque

vector
Torque vector, in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To enable the input torque parameters, select Input torque dependent torque data for the Coupling type parameter.

Coupling time constant, tauC - Constant
scalar
Coupling time constant, in s.

## References

[1] Deur, J., Ivanović, V., Hancock, M., and Assadian, F. "Modeling of Active Differential Dynamics." In ASME proceedings. Transportation Systems. Vol. 17, pp: 427-436.

## Extended Capabilities

## C/C++ Code Generation

Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

## See Also

Open Differential

## Introduced in R2017a

## Open Differential

Differential as a planetary bevel gear

Library: $\quad$| Powertrain Blockset / Drivetrain / Final Drive Unit |  |
| :--- | :--- |
|  | Vehicle Dynamics Blockset / Powertrain / Drivetrain / |
|  | Final Drive Unit |



## Description

The Open Differential block implements a differential as a planetary bevel gear train. The block matches the driveshaft bevel gear to the crown (ring) bevel gear. You can specify:

- Carrier-to-driveshaft ratio
- Crown wheel location
- Viscous and damping coefficients for the axles and carrier

Use the Open Differential block to:

- Dynamically couple the post-transmission driveshaft to the wheel axles or universal joints
- Model simplified or older drivetrains when optimal traction control does not require passive or active torque vectoring
- Model mechanical power splitting in generic gearbox and drive line scenarios

The block is suitable for use in hardware-in-the-loop (HIL) and optimization workflows. All the parameters are tunable.

The block uses a coordinate system that produces positive tire and vehicle motion for standard engine, transmission, and differential configurations. The arrows indicate positive motion.


## Efficiency

To account for the block efficiency, use the Efficiency factors parameter. This table summarizes the block implementation for each setting.

| Setting | Implementation |
| :--- | :--- |
| Constant | Constant efficiency that you can set with the Constant efficiency <br> factor, eta parameter. |


| Setting | Implementation |
| :---: | :---: |
| Driveshaft torque, temperature and speed | Efficiency as a function of base gear input torque, air temperature, and driveshaft speed. Use these parameters to specify the lookup table and breakpoints: <br> - Efficiency lookup table, eta_tbl <br> - Efficiency torque breakpoints, Trq_bpts <br> - Efficiency speed breakpoints, omega_bpts <br> - Efficiency temperature breakpoints, Temp_bpts <br> For the air temperature, you can either: <br> - Select Input temperature to create an input port. <br> - Set a Ambient temperature, Tamb parameter value. <br> To select the interpolation method, use the Interpolation method parameter. For more information, see "Interpolation Methods" (Simulink). |

## Power Accounting

For the power accounting, the block implements these equations.

| Bus Signal |  | Descriptio <br> $\mathbf{n}$ | Equations |  |
| :--- | :--- | :--- | :--- | :--- |
| PwrInf <br> o | PwrTrnsfrd - Power <br> transferred between blocks | PwrDriveshft | Mechanical <br> power from <br> driveshaft | $\eta T_{d} \omega_{d}$ |
|  | Positive signals indicate <br> flow into block <br> -Negative signals <br> indicate flow out of <br> block | PwrAxl1 | Mechanical <br> power from <br> axle 1 | $\eta T_{1} \omega_{1}$ |
|  |  | PwrAxl2 | Mechanical <br> power from <br> axle 2 | $\eta T_{2} \omega_{2}$ |


| Bus Signal |  |  | Descriptio | Equations |
| :---: | :---: | :---: | :---: | :---: |
|  | PwrNotTrnsfrd - Power crossing the block boundary, but not transferred <br> - Positive signals indicate an input <br> - Negative signals indicate a loss | PwrMechLoss | Total power loss | $\begin{aligned} & \dot{W}_{\text {loss }}=-\left(P_{t}+P_{d}\right) \\ & P_{t}=\eta T_{d} \omega_{d}+\eta T_{1} \omega_{1}+ \end{aligned}$ |
|  |  | PwrDampLoss | Power loss due to damping | $\begin{aligned} & P_{d}=-\left(b_{1}\left\|\omega_{1}\right\|\right. \\ & \left.+b_{2}\left\|\omega_{2}\right\|+b_{d}\left\|\omega_{d}\right\|\right) \end{aligned}$ |
|  | PwrStored - Stored energy rate of change <br> - Positive signals indicate an increase <br> - Negative signals indicate a decrease | PwrStoredShf t | Rate change of stored internal energy | $\begin{aligned} & P_{s}=-\left(\omega_{1} \dot{\omega}_{1} J_{1}\right. \\ & \left.+\omega_{2} \dot{\omega}_{2} J_{2}+\omega_{d} \dot{\omega}_{d} J_{d}\right) \end{aligned}$ |

## Dynamics

The Open Differential block implements these differential equations to represent the mechanical dynamic response for the crown gear, left axle, and right axle.

| Mechanical <br> Dynamic <br> Response | Differential Equation |
| :--- | :--- |
| Crown Gear | $\dot{\omega}_{d} J_{d}=\eta T_{d}-\omega_{d} b_{d}-T_{i}$ |
| Left Axle | $\dot{\omega}_{1} J_{1}=\eta T_{1}-\omega_{1} b_{1}-T_{i 1}$ |
| Right Axle | $\dot{\omega}_{2} J_{2}=\eta T_{2}-\omega_{2} b_{2}-T_{i 2}$ |

The Open Differential block assumes rigid coupling between the crown gear and axles. These constraint equations apply.

$$
\eta T_{1}=\quad \eta T_{2}=\frac{N}{2} T_{i}
$$

$$
\omega_{d=}=\frac{N}{2}\left(\omega_{1}+\omega_{2}\right)
$$

The equations use these variables.

| $N$ | Carrier-to-driveshaft gear ratio |
| :--- | :--- |
| $J_{d}$ | Rotational inertia of the crown gear assembly |
| $b_{d}$ | Crown gear linear viscous damping |
| $\omega_{d}$ | Driveshaft angular speed |
| $\eta$ | Differential efficiency |
| $J_{1}$ | Axle 1 rotational inertia |
| $b_{1}$ | Axle 1 linear viscous damping |
| $\omega_{1}$ | Axle 1 speed |
| $J_{2}$ | Axle 2 rotational inertia |
| $b_{2}$ | Axle 2 linear viscous damping |
| $\omega_{2}$ | Axle 2 angular speed |
| $T_{d}$ | Driveshaft torque |
| $T_{1}$ | Axle 1 torque |
| $T_{2}$ | Axle 2 torque |
| $T_{i}$ | Driveshaft internal resistance torque |
| $T_{i 1}$ | Axle 1 internal resistance torque |
| $T_{i 2}$ | Axle 2 internal resistance torque |

## Ports

## Inputs

## DriveshftTrq - Torque

scalar
Applied input torque, typically from the engine crankshaft, in $\mathrm{N} \cdot \mathrm{m}$.
Axl1Trq - Torque
scalar

Axle 1 torque, $T_{1}$, in $\mathrm{N} \cdot \mathrm{m}$.
Axl2Trq - Torque
scalar
Axle 2 torque, $T_{2}$, in $\mathrm{N} \cdot \mathrm{m}$.

## Temp - Temperature

scalar
Temperature, in K.

## Dependencies

To create this port:

- Set Efficiency factors to Driveshaft torque, speed and temperature.
- Select Input temperature.


## Output

## Info - Bus signal <br> bus

Bus signal containing these block calculations.

| Signal |  | Description | Units |
| :--- | :--- | :--- | :--- |
| Driveshft | DriveshftTrq | Driveshaft torque | $\mathrm{N} \cdot \mathrm{m}$ |
|  | DriveshftSpd | Driveshaft speed | $\mathrm{rad} / \mathrm{s}$ |
| Axl1 | Axl1Trq | Axle 1 torque | $\mathrm{N} \cdot \mathrm{m}$ |
|  | Axl1Spd | Axle 1 speed | $\mathrm{rad} / \mathrm{s}$ |
| PwrInfo | Axl2Trq | Axle 2 torque | $\mathrm{N} \cdot \mathrm{m}$ |
|  | Axl2Spd | Axle 2 speed | $\mathrm{rad} / \mathrm{s}$ |


| Signal |  |  | PwrAxl2 | Description |
| :--- | :--- | :--- | :--- | :--- | Units |  | Mechanical power <br> from axle 2 | W |
| :--- | :--- | :--- |
|  | PwrTrnsfrd | PwrMechLoss |
|  | PwrDampLoss | Total power loss <br> Power loss due to <br> damping |
|  | PwrStoredShft | W |
|  | Rate change of <br> stored internal <br> energy | W |

## DriveshftSpd - Angular speed

scalar
Driveshaft angular speed, $\omega_{d}$, in rad/s.

## Axl1Spd - Angular speed <br> scalar

Axle 1 angular speed, $\omega_{1}$, in rad/s.

## Axl2Spd - Angular speed

## scalar

Axle 2 angular speed, $\omega_{2}$, in rad/s.

## Parameters

## Block Options

## Efficiency factors - Specify configuration

Constant (default)|Driveshaft torque, speed and temperature
To account for the block efficiency, use the Efficiency factors parameter. This table summarizes the block implementation for each setting.

| Setting | Implementation |
| :--- | :--- |
| Constant | Constant efficiency that you can set with the Constant efficiency <br> factor, eta parameter. |


| Setting | Implementation |
| :---: | :---: |
| Driveshaft torque, temperature and speed | Efficiency as a function of base gear input torque, air temperature, and driveshaft speed. Use these parameters to specify the lookup table and breakpoints: <br> - Efficiency lookup table, eta_tbl <br> - Efficiency torque breakpoints, Trq_bpts <br> - Efficiency speed breakpoints, omega_bpts <br> - Efficiency temperature breakpoints, Temp_bpts <br> For the air temperature, you can either: <br> - Select Input temperature to create an input port. <br> - Set a Ambient temperature, Tamb parameter value. <br> To select the interpolation method, use the Interpolation method parameter. For more information, see "Interpolation Methods" (Simulink). |

## Interpolation method - Method

Flat (default)| Nearest|Linear point-slope|Linear Lagrange| Cubic spline

For more information, see "Interpolation Methods" (Simulink).

## Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

## Input temperature - Create input port

off (default) | on
Select to create input port Temp for the temperature.

## Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Crown wheel (ring gear) located - Specify crown wheel connection To the left of center-line (default)|To the right of center-line

Specify the crown wheel connection to the driveshaft.

## Carrier to drive shaft ratio, Ndiff - Ratio scalar

Carrier-to-driveshaft gear ratio, $N$, dimensionless.

## Carrier inertia, Jd - Inertia scalar

Rotational inertia of the crown gear assembly, $J_{d}$, in $\mathrm{kg} \cdot \mathrm{m} \wedge 2$. You can include the driveshaft inertia.

## Carrier damping, bd - Damping

scalar
Crown gear linear viscous damping, $b_{d}$, in $\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}$.
Axle 1 inertia, Jw1 - Inertia scalar

Axle 1 rotational inertia, $J_{1}$, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.
Axle 1 damping, bw1 - Damping scalar

Axle 1 linear viscous damping, $b_{1}$, in $N \cdot m \cdot s / r a d$.
Axle 2 inertia, Jw2 - Inertia scalar

Axle 2 rotational inertia, $J_{2}$, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.
Axle 2 damping, bw2 - Damping scalar

Axle 2 linear viscous damping, $b_{2}$, in $N \cdot m \cdot s / r a d$.
Axle 1 initial velocity, omegawlo - Angular velocity scalar

Axle 1 initial velocity, $\omega_{o 1}$, in rad/s.

## Axle 2 initial velocity, omegaw2o - Angular velocity scalar

Axle 2 initial velocity, $\omega_{o 2}$, in rad/s.

## Efficiency

```
Constant efficiency factor, eta - Efficiency
1 (default)
```

Constant efficiency, $\eta$.

## Dependencies

To enable this parameter, set Efficiency factors to Constant.

## Efficiency lookup table, eta_tbl - Lookup table

M-by-N-by-L array
Dimensionless array of values for efficiency as a function of:

- Minput torques
- $N$ input speed
- L air temperatures

Each value specifies the efficiency for a specific combination of torque, speed, and temperature. The array size must match the dimensions defined by the torque, speed, and temperature breakpoint vectors.

## Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Efficiency torque breakpoints, Trq_bpts - Torque breakpoints 1-by-M vector

Vector of input torque, breakpoints for efficiency, in $\mathrm{N} \cdot \mathrm{m}$.

## Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Efficiency speed breakpoints, omega_bpts - Speed breakpoints 1-by-N vector

Vector of speed, breakpoints for efficiency, in rad/s.

## Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Efficiency temperature breakpoints, Temp_bpts - Temperature breakpoints
1-by-L vector
Vector of ambient temperature breakpoints for efficiency, in K.

## Dependencies

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

## Ambient temperature, Tamb - Ambient temperature scalar

Ambient air temperature, $T_{\text {air }}$, in K .

## Dependencies

To enable this parameter:

- Set Efficiency factors to Driveshaft torque, speed and temperature.
- Clear Input temperature.


## Extended Capabilities

## C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

## See Also

Limited Slip Differential

Introduced in R2017a

## Longitudinal Wheel

Longitudinal wheel with disc, drum, or mapped brake
Library:
Powertrain Blockset / Drivetrain / Wheels Vehicle Dynamics Blockset / Wheels and Tires


## Description

The Longitudinal Wheel block implements the longitudinal behavior of an ideal wheel. You can specify the longitudinal force and rolling resistance calculation method, and brake type. Use the block in driveline and longitudinal vehicle simulations where low frequency tire-road and braking forces are required to determine vehicle acceleration, braking, and wheel-rolling resistance. For example, you can use the block to determine the torque and power requirements for a specified drive cycle or braking event. The block is not suitable for applications that require combined lateral slip.

There are four types of Longitudinal Wheel blocks. Each block implements a different brake type.

| Block Name | Brake Type Setting | Brake Implementation |
| :--- | :--- | :--- |
| Longitudinal Wheel - No <br> Brake | None | None |
| Longitudinal Wheel - Disc <br> Brake | Disc | Brake that converts the brake <br> cylinder pressure into a braking <br> force. |
| Longitudinal Wheel - <br> Drum Brake | Drum | Simplex drum brake that converts <br> the applied force and brake <br> geometry into a net braking torque. |


| Block Name | Brake Type Setting | Brake Implementation |
| :--- | :--- | :--- |
| Longitudinal Wheel - <br> Mapped Brake | Mapped | Lookup table that is a function of the <br> wheel speed and applied brake <br> pressure. |

The block models longitudinal force as a function of wheel slip relative to the road surface. To calculate the longitudinal force, specify one of these Longitudinal Force parameters.

| Setting | Block Implementation |
| :--- | :--- |
| Magic Formula constant <br> value | Magic Formula with constant coefficient for stiffness, <br> shape, peak, and curvature. |
| Magic Formula pure <br> longitudinal slip | Magic Formula with load-dependent coefficients that <br> implement equations 4.E9 through 4.E18 in Tire and <br> Vehicle Dynamics. |
| Mapped force | Lookup table that is a function of the normal force and <br> wheel slip ratio. |

To calculate the rolling resistance torque, specify one of these Rolling Resistance parameters.

| Setting | Block Implementation |
| :--- | :--- |
| None | None |
| Pressure and velocity | Method in Stepwise Coastdown Methodology for <br> Measuring Tire Rolling Resistance. The rolling <br> resistance is a function of tire pressure, normal force, <br> and velocity. |
| IS0 28580 | Method specified in ISO 28580:2018, Passenger car, <br> truck and bus tyre rolling resistance measurement <br> method - Single point test and correlation of <br> measurement results. |
| Magic Formula | Magic formula equations from 4.E70 in Tire and <br> Vehicle Dynamics. The magic formula is an empirical <br> equation based on fitting coefficients. |
| Mapped torque | Lookup table that is a function of the normal force and <br> spin axis longitudinal velocity. |

To calculate vertical motion, specify one of these Vertical Motion parameters.

| Setting | Block Implementation |
| :--- | :--- |
| None | Block passes the applied chassis forces directly <br> through to the rolling resistance and longitudinal force <br> calculations. |
| Mapped stiffness and <br> damping | Vertical motion depends on wheel stiffness and <br> damping. Stiffness is a function of tire sidewall <br> displacement and pressure. Damping is a function of <br> tire sidewall velocity and pressure. |

## Rotational Wheel Dynamics

The block calculates the inertial response of the wheel subject to:

- Axle losses
- Brake and drive torque
- Tire rolling resistance
- Ground contact through the tire-road interface

The input torque is the summation of the applied axle torque, braking torque, and moment arising from the combined tire torque.

$$
T_{i}=T_{a}-T_{b}+T_{d}
$$

For the moment arising from the combined tire torque, the block implements tractive wheel forces and rolling resistance with first order dynamics. The rolling resistance has a time constant parameterized in terms of a relaxation length.

$$
T_{d}(s)=\frac{1}{\frac{|\omega| R_{e}}{L_{e}} s+1}\left(F_{\chi} R_{e}+M_{y}\right)
$$

To calculate the rolling resistance torque, you can specify one of these Rolling Resistance parameters.

| Setting | Block Implementation |
| :--- | :--- |
| None | Block sets rolling resistance, $M_{y}$, to zero. |

\(\left.\left.$$
\begin{array}{|l|l|}\hline \text { Setting } & \text { Block Implementation } \\
\hline \begin{array}{l}\text { Pressure and } \\
\text { velocity }\end{array} & \begin{array}{l}\text { Block uses the method in SAE Stepwise Coastdown Methodology for } \\
\text { Measuring Tire Rolling Resistance. The rolling resistance is a function } \\
\text { of tire pressure, normal force, and velocity. Specifically, }\end{array} \\
\quad M_{y}=R_{e}\left\{a+b\left|V_{x}\right|+c V_{\chi}{ }^{2}\right\}\left\{F_{z} \beta p_{i} \alpha\right\} \tanh \left(4 V_{\chi}\right)\end{array}
$$ \right\rvert\, \begin{array}{l}Block uses the method specified in ISO 28580:2018, Passenger car, <br>
IS0 28580 <br>
point test and correlation of measurement results. The method <br>
accounts for normal load, parasitic loss, and thermal corrections from <br>

test conditions. Specifically,\end{array}\right\}\)| $F_{z} C_{r}$ |
| :--- |

If the brakes are enabled, the block determines the braking locked or unlocked condition based on an idealized dry clutch friction model. Based on the lock-up condition, the block implements these friction and dynamic models.

| If | Lock-Up Condition | Friction Model | Dynamic Model |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \omega \neq 0 \\ & \text { or } \\ & T_{S}<\left\|T_{i}+T_{f}-\omega\right\| \end{aligned}$ | Unlocked | $T_{f}=T_{k}$ <br> where, $\begin{aligned} & T_{k}=F_{c} R_{e f f} \mu_{k} \tanh \left[4\left(-\omega_{d}\right)\right] \\ & T_{s}=F_{c} R_{e f f} \mu_{s} \\ & R_{e f f}=\frac{2\left(R_{0}{ }^{3}-R_{i}^{3}\right)}{3\left(R_{o}^{2}-R_{i}^{2}\right)} \end{aligned}$ | $\dot{\omega} J=-\omega b+T_{i}+T_{o}$ |
|  | Locked | $T_{f}=T_{s}$ | $\omega=0$ |

The equations use these variables.

| $\omega$ | Wheel angular velocity |
| :--- | :--- |
| $a$ | Velocity-independent force component |
| $b$ | Linear velocity force component |
| $c$ | Quadratic velocity force component |
| $L_{e}$ | Tire relaxation length |
| $J$ | Moment of inertia |
| $M_{y}$ | Rolling resistance torque |
| $T_{a}$ | Applied axle torque |
| $T_{b}$ | Braking torque |
| $T_{d}$ | Combined tire torque |
| $T_{f}$ | Frictional torque |
| $T_{i}$ | Net input torque |
| $T_{k}$ | Kinetic frictional torque |
| $T_{o}$ | Net output torque |
| $T_{s}$ | Static frictional torque |
| $F_{c}$ | Applied clutch force |
| $F_{x}$ | Longitudinal force developed by the tire road interface due to slip |
| $R_{e f f}$ | Effective clutch radius |
| $R_{o}$ | Annular disk outer radius |
| $R_{i}$ | Annular disk inner radius |
| $R_{e}$ | Effective tire radius while under load and for a given pressure |
| $V_{x}$ | Longitudinal axle velocity |
| $F_{z}$ | Vehicle normal force |
| $C_{r}$ | Rolling resistance constant |
| $T_{a m b}$ | Ambient temperature |
| $T_{m e a s}$ | Measured temperature for rolling resistance constant |
| $F_{p l}$ | Parasitic force loss |
| $K_{t}$ | Thermal correction factor |


| $\alpha$ | Tire pressure exponent |
| :--- | :--- |
| $\beta$ | Normal force exponent |
| $p_{i}$ | Tire pressure |
| $\mu_{s}$ | Coefficient of static friction |
| $\mu_{k}$ | Coefficient of kinetic friction |

## Brakes

## Disc

If you specify the Brake Type parameter Disc, the block implements a disc brake. This figure shows the side and front views of a disc brake.


A disc brake converts brake cylinder pressure from the brake cylinder into force. The disc brake applies the force at the brake pad mean radius.

The block uses these equations to calculate brake torque for the disc brake.

$$
\begin{aligned}
& T= \begin{cases}\frac{\mu P_{\pi} B_{a} 2 R_{m} N_{\text {pads }}}{4} & \text { when } N \neq 0 \\
\frac{\mu_{\text {static } P \text { PIB }}^{a} 2 R_{m} N_{\text {pads }}}{4} & \text { when } N=0\end{cases} \\
& R m=\frac{R o+R i}{2}
\end{aligned}
$$

The equations use these variables.

| $T$ | Brake torque |
| :--- | :--- |
| $P$ | Applied brake pressure |
| $N$ | Wheel speed |
| $N_{\text {pads }}$ | Number of brake pads in disc brake assembly |
| $\mu_{\text {static }}$ | Disc pad-rotor coefficient of static friction |
| $\mu$ | Disc pad-rotor coefficient of kinetic friction |
| $B_{a}$ | Brake actuator bore diameter |
| $R_{m}$ | Mean radius of brake pad force application on brake rotor |
| $R_{o}$ | Outer radius of brake pad |
| $R_{i}$ | Inner radius of brake pad |

## Drum

If you specify the Brake Type parameter Drum, the block implements a static (steadystate) simplex drum brake. A simplex drum brake consists of a single two-sided hydraulic actuator and two brake shoes. The brake shoes do not share a common hinge pin.

The simplex drum brake model uses the applied force and brake geometry to calculate a net torque for each brake shoe. The drum model assumes that the actuators and shoe geometry are symmetrical for both sides, allowing a single set of geometry and friction parameters to be used for both shoes.

The block implements equations that are derived from these equations in Fundamentals of Machine Elements.

$$
\begin{aligned}
& T_{\text {rshoe }}=\left(\frac{\Pi \mu c r\left(\cos \theta_{2}-\cos \theta_{1}\right) B_{a}{ }^{2}}{2 \mu\left(2 r\left(\cos \theta_{2}-\cos \theta_{1}\right)+a\left(\cos ^{2} \theta_{2}-\cos ^{2} \theta_{1}\right)\right)+\operatorname{ar}\left(2 \theta_{1}-2 \theta_{2}+\sin 2 \theta_{2}-\sin 2 \theta_{1}\right)}\right) P \\
& T_{\text {lshoe }}=\left(\frac{\Pi \mu c r\left(\cos \theta_{2}-\cos \theta_{1}\right) B_{a}{ }^{2}}{-2 \mu\left(2 r\left(\cos \theta_{2}-\cos \theta_{1}\right)+a\left(\cos ^{2} \theta_{2}-\cos ^{2} \theta_{1}\right)\right)+\operatorname{ar}\left(2 \theta_{1}-2 \theta_{2}+\sin 2 \theta_{2}-\sin 2 \theta_{1}\right)}\right) P \\
& T=\left\{\begin{array}{lc}
T_{\text {rshoe }}+T_{\text {lshoe }} & \text { when } N \neq 0 \\
\left(T_{\text {rshoe }}+T_{\text {lshoe }}\right) \frac{\mu_{\text {static }}}{\mu} & \text { when } N=0
\end{array}\right.
\end{aligned}
$$



The equations use these variables.

| $T$ | Brake torque |
| :--- | :--- |
| $P$ | Applied brake pressure |
| $N$ | Wheel speed |
| $\mu_{\text {static }}$ | Disc pad-rotor coefficient of static friction |
| $\mu$ | Disc pad-rotor coefficient of kinetic friction |


| $T_{\text {rshoe }}$ | Right shoe brake torque |
| :--- | :--- |
| $T_{\text {lshoe }}$ | Left shoe brake torque |
| $a$ | Distance from drum center to shoe hinge pin center <br> $c$ |
| $r$ | Distance from shoe hinge pin center to brake actuator connection on brake <br> shoe |
| $B_{a}$ | Drum internal radius |
| $\Theta_{1}$ | Brake actuator bore diameter |
| $\Theta_{2}$ | Angle from shoe hinge pin center to start of brake pad material on shoe |
| Angle from shoe hinge pin center to end of brake pad material on shoe |  |

## Mapped

If you specify the Brake Type parameter Mapped, the block uses a lookup table to determine the brake torque.

$$
T=\left\{\begin{array}{lr}
f_{\text {brake }}(P, N) & \text { when } N \neq 0 \\
\left(\frac{\mu_{\text {static }}}{\mu}\right) f_{\text {brake }}(P, N) & \text { when } N=0
\end{array}\right.
$$

The equations use these variables.

| $T$ | Brake torque |
| :--- | :--- |
| $f_{\text {brake }}(P, N)$ | Brake torque lookup table |
| $P$ | Applied brake pressure |
| $N$ | Wheel speed |
| $\mu_{\text {static }}$ | Friction coefficient of drum pad-face interface under static <br> conditions |
| $\mu$ | Friction coefficient of disc pad-rotor interface |

The lookup table for the brake torque, $f_{\text {brake }}(P, N)$, is a function of applied brake pressure and wheel speed, where:

- $\quad T$ is brake torque, in $\mathrm{N} \cdot \mathrm{m}$.
- $P$ is applied brake pressure, in bar.
- $N$ is wheel speed, in rpm.



## Longitudinal Force

To model the Longitudinal Wheel block longitudinal forces, you can use the Magic Formula. The model provides a steady-state tire characteristic function $F_{x}=f\left(\kappa, F_{z}\right)$, the longitudinal force $F_{\mathrm{x}}$ on the tire, based on:

- Vertical load $F_{z}$
- Wheel slip $\kappa$


The Magic Formula model uses these variables.

| $\Omega$ | Wheel angular velocity |
| :--- | :--- |
| $r_{\mathrm{w}}$ | Wheel radius |
| $V_{\mathrm{x}}$ | Wheel hub longitudinal velocity |
| $r_{\mathrm{w}} \Omega$ | Tire tread longitudinal velocity |
| $V_{\mathrm{sx}}=r_{\mathrm{w}} \Omega-V_{\mathrm{x}}$ | Wheel slip velocity |
| $K=V_{\mathrm{sx}} /\left\|V_{\mathrm{x}}\right\|$ | Wheel slip |
| $F_{\mathrm{z}}, F_{\mathrm{z} 0}$ | Vertical load and nominal vertical load on tire |
| $F_{\mathrm{x}}=f\left(K, F_{\mathrm{z}}\right)$ | Longitudinal force exerted on the tire at the contact point. Also a <br> characteristic function $f$ of the tire. |

## Magic Formula Constant Value

If you set Longitudinal Force to Magic Formula constant value, the block implements the Magic Formula as a specific form of the tire characteristic function, characterized by four dimensionless coefficients $(B, C, D, E)$, or stiffness, shape, peak, and curvature:

$$
F_{\mathrm{x}}=f\left(K, F_{\mathrm{z}}\right)=F_{\mathrm{z}} D \sin \left(C \tan ^{-1}\left[\left\{B K-E\left[B K-\tan ^{-1}(B K)\right]\right\}\right]\right)
$$

The slope of $f$ at $\kappa=0$ is $B C D \cdot F_{z}$.
The coefficients are based on empirical tire data. These values are typical sets of constant Magic Formula coefficients for common road conditions.

| Surface | B | C | D | E |
| :--- | :--- | :--- | :--- | :--- |
| Dry tarmac | 10 | 1.9 | 1 | 0.97 |
| Wet tarmac | 12 | 2.3 | 0.82 | 1 |
| Snow | 5 | 2 | 0.3 | 1 |
| Ice | 4 | 2 | 0.1 | 1 |

## Magic Formula Pure Longitudinal Slip

If you set Longitudinal Force to Magic Formula pure longitudinal slip, the block implements a more general Magic Formula using dimensionless coefficients that
are functions of the tire load. The block implements the longitudinal force equations in Chapter 4 of Tire and Vehicle Dynamics, including 4.E9 through 4.E18:

$$
F_{\mathrm{x} 0}=D_{\mathrm{x}} \sin \left(C_{\mathrm{x}} \tan ^{-1}\left[\left\{B_{\mathrm{x}} K_{\mathrm{x}}-E_{\mathrm{x}}\left[B_{\mathrm{x}} K_{\mathrm{x}}-\tan ^{-1}\left(B_{\mathrm{x}} K_{\mathrm{x}}\right)\right]\right\}\right]\right)+S_{\mathrm{Vx}}
$$

where:

$$
\begin{aligned}
& K_{\mathrm{X}}=\kappa+S_{H x} \\
& C_{\mathrm{x}}=p_{C \times 1} \lambda_{C x} \\
& D_{\mathrm{x}}=\mu_{\mathrm{x}} F_{\mathrm{z}} S_{1} \\
& \mu_{\mathrm{x}}=\left(p_{D \times 1}+p_{D \times 2} d f_{\mathrm{z}}\right)\left(1+p_{p \times 3} d p_{i}+p_{p x 4} d p_{i} 2\right)\left(1-p_{D \times 3} \gamma^{2}\right) \lambda^{*}{ }_{\mu x} \\
& E_{\mathrm{x}}=\left(p_{E x 1}+p_{E x 2} d f_{\mathrm{z}}+p_{E x 3} d f_{\mathrm{z}} 2\right)\left[1-p_{E x 4} \operatorname{sgn}\left(K_{\mathrm{x}}\right)\right] \lambda_{E x} \\
& K_{\mathrm{xK}}=F_{\mathrm{z}}\left(p_{K \times 1}+p_{K \times 2} d f_{\mathrm{z}}\right) \exp \left(\mathrm{p}_{\mathrm{Kx} 3} d f_{\mathrm{z}}\right)\left(1+p_{p \times 1} d p_{i}+p_{p \times 2} d p_{i} 2\right) \\
& B_{\mathrm{x}}=K_{\mathrm{xK}} /\left(C_{\mathrm{x}} D_{\mathrm{x}}+\varepsilon_{\mathrm{x}}\right) \\
& S_{H x}=p_{H \times 1}+p_{H \times 2} d f_{\mathrm{z}} \\
& S_{V x}=F_{\mathrm{z}} \cdot\left(p_{V \times 1}+p_{V \times 2} d f_{\mathrm{z}}\right) \lambda_{V x} \lambda_{\mu x}^{\prime} \varsigma_{1}
\end{aligned}
$$

$S_{H x}$ and $S_{V x}$ represent offsets to the slip and longitudinal force in the force-slip function, or horizontal and vertical offsets if the function is plotted as a curve. $\mu_{x}$ is the longitudinal load-dependent friction coefficient. $\varepsilon_{\chi}$ is a small number inserted to prevent division by zero as $F_{z}$ approaches zero.

## Vertical Dynamics

If you select no vertical degrees-of-freedom by setting Vertical Motion to None, the block passes the applied chassis forces directly through to the rolling resistance and longitudinal force calculations.

If you set Vertical Motion to Mapped stiffness and damping, the vertical motion depends on wheel stiffness and damping. Stiffness is a function of tire sidewall displacement and pressure. Damping is a function of tire sidewall velocity and pressure.

$$
\operatorname{Fztire}\left(z, \dot{z}, P_{\text {tire }}\right)=F_{z k}\left(z, P_{\text {tire }}\right)+F_{z b}\left(\dot{z}, P_{\text {tire }}\right)
$$

The block determines the vertical response using this differential equation.

$$
\ddot{z} m=F z t i r e-F_{z}-m g
$$

When you disable the vertical degree-of-freedom, the input normal force from the vehicle passes directly to the longitudinal and rolling force calculations.

$$
\begin{aligned}
& \ddot{z}=\dot{z}=m=0 \\
& \text { Fztire }=m g
\end{aligned}
$$

The block uses the wheel-fixed frame to resolve the vertical forces.


The equations use these variables.
Fztire $\quad$ Tire normal force along the wheel-fixed $z$-axis

| $m$ | Axle mass |
| :--- | :--- |
| $F_{z k}$ | Tire normal force due to wheel stiffness along the wheel-fixed $z$-axis |
| $F_{z b}$ | Tire normal force due to wheel damping along the wheel-fixed $z$-axis |
| $F_{z}$ | Suspension or vehicle normal force along the wheel-fixed $z$-axis |
| $P_{\text {Tire }}$ | Tire pressure |

$z, \dot{z}, \ddot{z} \quad$ Tire displacement, velocity, and acceleration, respectively, along the wheel-fixed $z$-axis

## Power Accounting

For the power accounting, the block implements these equations.

| Bus Signal |  |  | Description | Equations |
| :---: | :---: | :---: | :---: | :---: |
| PwrIn fo | PwrTrnsfrd Power transferred between blocks <br> - Positive signals indicate flow into block <br> - Negative signals indicate flow out of block | PwrRoad | Tractive power applied from the axle | $P_{\text {road }}=F_{\chi} V_{\chi}$ |
|  |  | PwrAxlTrq | External torque applied by the axle to the wheel | $P_{T}=T \omega$ |
|  |  | PwrFz | Vertical force applied to the wheel by the vehicle or suspension | $P_{F z}=F_{z} \dot{z}$ |
|  | PwrNotTrnsfrd <br> - Power crossing the block boundary, but not transferred <br> - Positive signals indicate an input <br> - Negative signals indicate a loss | PwrSlip | Tractive power loss | $\begin{aligned} & P_{K}=F_{x} V_{x}+( \\ & \left.-F_{c p} R_{e}+M_{y}\right) \omega \end{aligned}$ |
|  |  | PwrMyRoll | Rolling resistance power | $P_{M y}=M_{y} \omega$ |
|  |  | PwrMyBrk | Braking power | $P_{b r k}=M_{b r k}$ |
|  |  | PwrMyb | Rolling viscous damping loss | $P_{b}=-b \omega^{2}$ |
|  |  | PwrFzDamp | Vertical damping power | $P_{F z b}=F_{z b} \dot{z}$ |
|  | PwrStored Stored energy rate of change | PwrStoredzdot | Rate of change of vertical kinetic energy | $P_{\dot{z}}=m \ddot{z} \dot{z}$ |


| Bus Signal |  | Description | Equations |
| :---: | :---: | :---: | :---: |
| - Positive signals | PwrStoredq | Rate of change of rotational kinetic energy | $P_{\omega}=I_{y y} \dot{\omega} \omega$ |
| increase | PwrStoredFsFz Sprng | Rate of change of stored sidewall potential energy | $P_{F z k}=F_{z k} \dot{z}_{\chi}$ |
| signals indicate a decrease | PwrStoredGrvt y | Rate of change of gravitational potential energy | $P_{g}=-m g \dot{Z}$ |

The equations use these variables.

| $\omega$ | Wheel angular velocity |
| :--- | :--- |
| $b$ | Linear velocity force component |
| $F_{x}$ | Longitudinal force developed by the tire road interface due to slip |
| $F_{c p}$ | Tire slip force at contact patch |
| $F_{z}$ | Vehicle normal force |
| $F_{z b}$ | Tire normal force due to wheel damping |
| $F_{z k}$ | Tire normal force due to wheel stiffness |
| $I_{y y}$ | Wheel rotational inertia |
| $M_{b r k}$ | Braking moment |
| $M_{y}$ | Rolling resistance torque |
| $R_{e}$ | Effective tire radius while under load and for a given pressure |
| $T$ | Axle torque applied on wheel |
| $V_{x}$ | Longitudinal axle velocity |
| $z, \dot{z}, \ddot{z}$ | Tire displacement, velocity, and acceleration, respectively |
| $\omega$ | Wheel angular velocity |
| $\dot{Z}$ | Vehicle vertical velocity along vehicle-fixed $z$-axis |

## Ports

## Input

## BrkPrs - Brake pressure

scalar
Brake pressure, in Pa.

## Dependencies

To create this port, for the Brake Type parameter, specify one of these types:

- Disc
- Drum
- Mapped

AxlTrq - Axle torque
scalar
Axle torque, $T_{a}$, about wheel spin axis, in $\mathrm{N} \cdot \mathrm{m}$.

## Vx - Velocity

scalar
Axle longitudinal velocity along vehicle(body)-fixed $x$-axis, in $\mathrm{m} / \mathrm{s}$.

## Fz - Normal force

## scalar

Absolute value of suspension or vehicle normal force along body-fixed $z$-axis, in N .

## Gnd - Ground displacement

scalar
Ground displacement, Grndz, along negative wheel-fixed $z$-axis, in m .


## Dependencies

To create Gnd:

- Set Vertical Motion to Mapped stiffness and damping.
- On the Vertical pane, select Input ground displacement.
lam_mux - Friction scaling factor
scalar
Longitudinal friction scaling factor, dimensionless.


## Dependencies

To create this port, select Input friction scale factor.

## TirePrs - Tire pressure <br> scalar

Tire pressure, in Pa.

## Dependencies

## To create this port:

- Set one of these parameters:
- Longitudinal Force to Magic Formula pure longitudinal slip.
- Rolling Resistance to Pressure and velocity or Magic Formula.
- Vertical Motion to Mapped stiffness and damping.
- On the Wheel Dynamics pane, select Input tire pressure.


## Tamb - Ambient temperature scalar

Ambient temperature, $T_{a m b}$, in K .

## Dependencies

To create this port:
1 Set Rolling Resistance to ISO 28580.
2 On the Rolling Resistance pane, select to Input ambient temperature.

## Output

## Info - Bus signal

bus
Bus signal containing these block calculations.

| Signal | Description | Units |
| :--- | :--- | :--- |
| AxlTrq | Axle torque about body- <br> fixed $y$-axis | $\mathrm{N} \cdot \mathrm{m}$ |
| 0mega | Wheel angular velocity <br> about body-fixed $y$-axis | $\mathrm{rad} / \mathrm{s}$ |
| Omegadot | Wheel angular <br> acceleration about body- <br> fixed $y$-axis | $\mathrm{rad} / \mathrm{s}^{\wedge} 2$ |


| Signal | Description | Units |
| :--- | :--- | :--- |
| Fx | Longitudinal vehicle force <br> along body-fixed $x$-axis | N |
| Fz | Vertical vehicle force <br> along body-fixed $z$-axis | N |
| Fzb | Tire normal force due to <br> wheel damping along the <br> wheel-fixed $z$-axis | N |
| Fzk | Tire normal force due to <br> wheel stiffness along the <br> wheel-fixed $z$-axis | N |
| My | Rolling resistance torque <br> about body-fixed $y$-axis | $\mathrm{N} \cdot \mathrm{m}$ |
| Myb | Rolling resistance torque <br> due to damping about <br> body-fixed $y$-axis | $\mathrm{N} \cdot \mathrm{m}$ |
| Kappa | Slip ratio | NA |
| Vx | Vehicle longitudinal <br> velocity along body-fixed <br> x-axis | $\mathrm{m} / \mathrm{s}$ |
| Re | Wheel effective radius <br> along wheel-fixed $z$-axis | m |
| BrkTrq | Brake torque about body- <br> fixed $y$-axis | $\mathrm{N} \cdot \mathrm{m}$ |
| BrkPrs | Brake pressure | Pa |
| z | Wheel vertical deflection <br> along wheel-fixed $z$-axis | m |
| zdot | Wheel vertical velocity <br> along wheel-fixed $z$-axis | $\mathrm{m} / \mathrm{s}$ |
| zddot | Wheel vertical <br> acceleration along wheel- <br> fixed $z$-axis | $\mathrm{m} / \mathrm{s} \wedge 2$ |


| Signal |  |  | Description | Units |
| :---: | :---: | :---: | :---: | :---: |
| Gndz |  |  | Ground displacement along negative of wheelfixed $z$-axis (positive input produces wheel lift) | m |
| GndFz |  |  | Vertical wheel force on ground along negative of wheel-fixed $z$-axis | N |
| TirePrs |  |  | Tire pressure | Pa |
| Fpatch |  |  | Tractive power applied from the axle |  |
| PwrInf <br> 0 | PwrTrnsfrd | PwrRoad | External torque applied by the axle to the wheel | W |
|  |  | PwrAxlTrq | Vertical force applied to the wheel by the vehicle or suspension | W |
|  |  | PwrFz | Tractive power loss | W |
|  | PwrNotTrnsfr d | PwrSlip | Rolling resistance power | W |
|  |  | PwrMyRoll | Braking power | W |
|  |  | PwrMyBrk | Rolling viscous damping loss | W |
|  |  | PwrMyb | Vertical damping power | W |
|  |  | PwrFzDamp | Rate of change of vertical kinetic energy | W |
|  | PwrStored | PwrStoredzdot | Rate of change of rotational kinetic energy | W |
|  |  | PwrStoredq | Rate of change of stored sidewall potential energy | W |
|  |  | PwrStoredFsFzSprn g | Rate of change of gravitational potential energy | W |
|  |  | PwrStoredGrvty | Tractive power applied from the axle | W |

## Fx - Longitudinal axle force

## scalar

Longitudinal force acting on axle, along body-fixed $x$-axis, in N. Positive force acts to move the vehicle forward.

## Omega - Wheel angular velocity <br> scalar

Wheel angular velocity, about body-fixed $y$-axis, in rad/s.

## z - Wheel vertical deflection

scalar
Wheel vertical deflection along wheel-fixed $z$-axis, in m .

## Dependencies

To create this port, set Vertical Motion to Mapped stiffness and damping.

## zdot - Wheel vertical velocity <br> scalar

Wheel vertical velocity along wheel-fixed $z$-axis, in $\mathrm{m} / \mathrm{s}$.

## Dependencies

To create this port, set Vertical Motion to Mapped stiffness and damping.

## Parameters

## Block Options

Longitudinal Force - Select type
Magic Formula constant value (default)|Magic Formula pure longitudinal slip|Mapped force

The block models longitudinal force as a function of wheel slip relative to the road surface. To calculate the longitudinal force, specify one of these Longitudinal Force parameters.

| Setting | Block Implementation |
| :--- | :--- |
| Magic Formula constant <br> value | Magic Formula with constant coefficient for stiffness, <br> shape, peak, and curvature. |
| Magic Formula pure <br> longitudinal slip | Magic Formula with load-dependent coefficients that <br> implement equations 4.E9 through 4.E18 in Tire and <br> Vehicle Dynamics. |
| Mapped force | Lookup table that is a function of the normal force and <br> wheel slip ratio. |

## Dependencies

| Selecting | Enables These Parameters |
| :--- | :--- |
| Magic Formula constant | Pure longitudinal peak factor, Dx |
| value | Pure longitudinal shape factor, Cx |
|  | Pure longitudinal stiffness factor, Bx |
|  | Pure longitudinal curvature factor, Ex |


| Selecting | Enables These Parameters |
| :---: | :---: |
| Magic Formula pure longitudinal slip | Cfx shape factor, PCX1 <br> Longitudinal friction at nominal normal load, PDX1 <br> Frictional variation with load, PDX2 <br> Frictional variation with camber, PDX3 <br> Longitudinal curvature at nominal normal load, PEX1 <br> Variation of curvature factor with load, PEX2 <br> Variation of curvature factor with square of load, PEX3 <br> Longitudinal curvature factor with slip, PEX4 <br> Longitudinal slip stiffness at nominal normal load, PKX1 <br> Variation of slip stiffness with load, PKX2 <br> Slip stiffness exponent factor, PKX3 <br> Horizontal shift in slip ratio at nominal normal load, PHX1 <br> Variation of horizontal slip ratio with load, PHX2 <br> Vertical shift in load at nominal normal load, PVX1 <br> Variation of vertical shift with load, PVX2 <br> Linear variation of longitudinal slip stiffness with tire pressure, PPX1 <br> Quadratic variation of longitudinal slip stiffness with tire pressure, PPX2 |


| Selecting | Enables These Parameters |
| :--- | :--- |
|  | Linear variation of peak longitudinal friction with <br> tire pressure, PPX3 <br> Quadratic variation of peak longitudinal friction <br> with tire pressure, PPX4 <br> Linear variation of longitudinal slip stiffness with <br> tire pressure, PPX1 <br> Slip speed decay function scaling factor, <br> lam_muV <br> Brake slip stiffness scaling factor, lam_Kxkappa <br> Longitudinal shape scaling factor, lam_Cx <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br> Longitudinal curvature scaling factor, lam_Ex <br> Longitudinal horizontal shift scaling factor, <br> lam_Hx <br> Longitudinal vertical shift scaling factor, lam_Vx |
| Sormal force breakpoints, FzFx |  |
|  | Longitudinal force map, FxMap |

## Rolling Resistance - Select type

None (default) | Pressure and velocity | IS0 28580|Magic Formula|Mapped torque

To calculate the rolling resistance torque, specify one of these Rolling Resistance parameters.

| Setting | Block Implementation |
| :--- | :--- |
| None | None |


| Setting | Block Implementation |
| :--- | :--- |
| Pressure and velocity | Method in Stepwise Coastdown Methodology for <br> Measuring Tire Rolling Resistance. The rolling <br> resistance is a function of tire pressure, normal force, <br> and velocity. |
| IS0 28580 | Method specified in ISO 28580:2018, Passenger car, <br> truck and bus tyre rolling resistance measurement <br> method - Single point test and correlation of <br> measurement results. |
| Magic Formula | Magic formula equations from 4.E70 in Tire and <br> Vehicle Dynamics. The magic formula is an empirical <br> equation based on fitting coefficients. |
| Mapped torque | Lookup table that is a function of the normal force and <br> spin axis longitudinal velocity. |

Dependencies

| Selecting | Parameters |
| :--- | :--- |
| Pressure and velocity | Velocity independent force coefficient, aMy |
|  | Linear velocity force component, bMy |
|  | Quadratic velocity force component, cMy |
|  | Tire pressure exponent, alphaMy |
|  | Normal force exponent, betaMy |
| ISO 28580 | Parasitic losses force, Fpl |
|  | Rolling resistance constant, Cr |
|  | Thermal correction factor, Kt |
|  | Measured temperature, Tmeas |
|  | Parasitic losses force, Fpl |
|  | Ambient temperature, Tamb |


| Selecting | Parameters |
| :--- | :--- |
| Magic Formula | Rolling resistance torque coefficient, QSY |
|  | Longitudinal force rolling resistance coefficient, <br> QSY2 <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br> coefficient, QSY3 <br> Quartic rotational speed rolling resistance <br> coefficient, QSY4 <br> Camber squared rolling resistance torque, QSY5 <br> Load based camber squared rolling resistance <br> torque, QSY6 <br> Normal load rolling resistance coefficient, QSY7 <br> Pressure load rolling resistance coefficient, QSY8 <br> Rolling resistance scaling factor, lam_My <br> Mapped torqueSpin axis velocity breakpoints, VxMy <br> Normal force breakpoints, FzMy <br> Rolling resistance torque map, MyMap |

## Brake Type - Select type

None | Disc | Drum | Mapped
There are four types of Longitudinal Wheel blocks. Each block implements a different brake type.

| Block Name | Brake Type Setting | Brake Implementation |
| :--- | :--- | :--- |
| Longitudinal Wheel - No <br> Brake | None | None |
| Longitudinal Wheel - Disc <br> Brake | Disc | Brake that converts the brake <br> cylinder pressure into a braking <br> force. |


| Block Name | Brake Type Setting | Brake Implementation |
| :--- | :--- | :--- |
| Longitudinal Wheel - <br> Drum Brake | Drum | Simplex drum brake that converts <br> the applied force and brake <br> geometry into a net braking torque. |
| Longitudinal Wheel - <br> Mapped Brake | Mapped | Lookup table that is a function of the <br> wheel speed and applied brake <br> pressure. |

## Vertical Motion - Select type <br> None (default)|Mapped stiffness and damping

To calculate vertical motion, specify one of these Vertical Motion parameters.

| Setting | Block Implementation |
| :--- | :--- |
| None | Block passes the applied chassis forces directly <br> through to the rolling resistance and longitudinal force <br> calculations. |
| Mapped stiffness and <br> damping | Vertical motion depends on wheel stiffness and <br> damping. Stiffness is a function of tire sidewall <br> displacement and pressure. Damping is a function of <br> tire sidewall velocity and pressure. |


| Selecting | Enables These Parameters | Creates These Output <br> Ports |
| :--- | :--- | :--- |
| Mapped stiffness <br> and damping | Wheel and unsprung mass, m <br> Initial deflection, zo <br> Initial velocity, zdoto <br> Gravitational acceleration, $\mathbf{g}$ <br> Vertical deflection breakpoints, <br> zFz <br> Pressure breakpoints, pFz <br> Force due to deflection, Fzz <br> Vertical velocity breakpoints, <br> zdotFz <br> Force due to velocity, Fzzdot <br> Ground displacement, Gndz |  |
|  | Input ground displacement |  |

## Longitudinal scaling factor, lam_x - Friction scaling factor 1 (default)

Longitudinal friction scaling factor, dimensionless.

## Dependencies

To enable this parameter, clear Input friction scale factor.

## Input friction scale factor-Selection 0ff (default)

Create input port for longitudinal friction scaling factor.

## Dependencies

Selecting this parameter:

- Creates input port lam_mux.
- Disables parameter Longitudinal scaling factor, lam_x.


## Wheel Dynamics

Axle viscous damping coefficient, br - Damping scalar

Axle viscous damping coefficient, $b r$, in $N \cdot m \cdot s / r a d$.
Wheel inertia, Iyy - Inertia

## scalar

Wheel inertia, in $\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2$.
Wheel initial angular velocity, omegao - Wheel speed scalar

Initial angular velocity of wheel, along body-fixed $y$-axis, in rad/s.
Relaxation length, Lrel - Relaxation length scalar

Wheel relaxation length, in m.
Loaded radius, Re - Loaded radius scalar

Loaded wheel radius, Re , in m .


Unloaded radius, UNLOADED_RADIUS - Unloaded radius
scalar
Unloaded wheel radius, in $m$.

## Dependencies

To create this parameter, set Rolling Resistance to Pressure and velocity or Magic Formula.

Nominal longitudinal speed, LONGVL - Speed scalar

Nominal longitudinal speed along body-fixed $x$-axis, in $\mathrm{m} / \mathrm{s}$.

## Dependencies

To enable this parameter, set Longitudinal Force to Magic Formula pure longitudinal slip.

## Nominal camber angle, gamma - Camber scalar

Nominal camber angle, in rad.

## Dependencies

To enable this parameter, set either:

- Longitudinal Force to Magic Formula pure longitudinal slip.
- Rolling Resistance to Magic Formula.

Nominal pressure, NOMPRES - Pressure
scalar
Nominal pressure, in Pa.

## Dependencies

To enable this parameter, set either:

- Longitudinal Force to Magic Formula pure longitudinal slip.
- Rolling Resistance to Magic Formula.

Pressure, press - Pressure
scalar
Pressure, in Pa.

## Dependencies

To enable this parameter:

- Set one of these:
- Longitudinal Force to Magic Formula pure longitudinal slip.
- Rolling Resistance to Pressure and velocity or Magic Formula.
- Vertical Motion to Mapped stiffness and damping.
- On the Wheel Dynamics pane, clear Input tire pressure.


## Longitudinal

## Magic Formula Constant Value

## Pure longitudinal peak factor, Dx - Factor

 scalarPure longitudinal peak factor, dimensionless.
The coefficients are based on empirical tire data. These values are typical sets of constant Magic Formula coefficients for common road conditions.

| Surface | B | C | D | E |
| :--- | :--- | :--- | :--- | :--- |
| Dry tarmac | 10 | 1.9 | 1 | 0.97 |
| Wet tarmac | 12 | 2.3 | 0.82 | 1 |
| Snow | 5 | 2 | 0.3 | 1 |
| Ice | 4 | 2 | 0.1 | 1 |

## Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula constant value.

## Pure longitudinal shape factor, Cx - Factor

 scalarPure longitudinal shape factor, dimensionless.
The coefficients are based on empirical tire data. These values are typical sets of constant Magic Formula coefficients for common road conditions.

| Surface | B | C | D | E |
| :--- | :--- | :--- | :--- | :--- |
| Dry tarmac | 10 | 1.9 | 1 | 0.97 |
| Wet tarmac | 12 | 2.3 | 0.82 | 1 |
| Snow | 5 | 2 | 0.3 | 1 |
| Ice | 4 | 2 | 0.1 | 1 |

## Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula constant value.

## Pure longitudinal stiffness factor, Bx - Factor

## scalar

Pure longitudinal stiffness factor, dimensionless.
The coefficients are based on empirical tire data. These values are typical sets of constant Magic Formula coefficients for common road conditions.

| Surface | B | C | D | E |
| :--- | :--- | :--- | :--- | :--- |
| Dry tarmac | 10 | 1.9 | 1 | 0.97 |
| Wet tarmac | 12 | 2.3 | 0.82 | 1 |
| Snow | 5 | 2 | 0.3 | 1 |
| Ice | 4 | 2 | 0.1 | 1 |

## Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula constant value.

## Pure longitudinal curvature factor, Ex - Factor

## scalar

Pure longitudinal curvature factor, dimensionless.
The coefficients are based on empirical tire data. These values are typical sets of constant Magic Formula coefficients for common road conditions.

| Surface | B | C | D | E |
| :--- | :--- | :--- | :--- | :--- |
| Dry tarmac | 10 | 1.9 | 1 | 0.97 |
| Wet tarmac | 12 | 2.3 | 0.82 | 1 |
| Snow | 5 | 2 | 0.3 | 1 |
| Ice | 4 | 2 | 0.1 | 1 |

## Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula constant value.

Magic Formula Pure Longitudinal Slip

## Cfx shape factor, PCX1 - Factor

scalar
Cfx shape factor, PCX1, dimensionless.

## Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

## Longitudinal friction at nominal normal load, PDX1 - Factor

 scalarLongitudinal friction at nominal normal load, PDX1, dimensionless.

## Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Frictional variation with load, PDX2 - Factor scalar

Frictional variation with load, PDX2, dimensionless.

## Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Frictional variation with camber, PDX3 - Factor scalar

Frictional variation with camber, $\mathrm{PDX} 3,1 / \mathrm{rad}^{\wedge} 2$.

## Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Longitudinal curvature at nominal normal load, PEX1 - Factor scalar

Longitudinal curvature at nominal normal load, PEX1, dimensionless.

## Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Variation of curvature factor with load, PEX2 - Factor scalar

Variation of curvature factor with load, PEX2, dimensionless.

## Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Variation of curvature factor with square of load, PEX3 - Factor scalar

Variation of curvature factor with square of load, PEX3, dimensionless.

## Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

```
Longitudinal curvature factor with slip, PEX4 - Factor
```

scalar

Longitudinal curvature factor with slip, PEX4, dimensionless.

## Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

## Longitudinal slip stiffness at nominal normal load, PKX1 - Factor scalar

Longitudinal slip stiffness at nominal normal load, PKX1, dimensionless.

## Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Variation of slip stiffness with load, PKX2 - Factor scalar

Variation of slip stiffness with load, PKX2, dimensionless.

## Dependencies

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

```
Slip stiffness exponent factor, PKX3 - Factor
``` scalar

Slip stiffness exponent factor, PKX3, dimensionless.

\section*{Dependencies}

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Horizontal shift in slip ratio at nominal normal load, PHX1 - Factor scalar

Horizontal shift in slip ratio at nominal normal load, PHX1, dimensionless.

\section*{Dependencies}

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Variation of horizontal slip ratio with load, PHX2 - Factor scalar

Variation of horizontal slip ratio with load, PHX2, dimensionless.

\section*{Dependencies}

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.
```

Vertical shift in load at nominal normal load, PVX1 - Factor
scalar

```

Vertical shift in load at nominal normal load, PVX1, dimensionless.

\section*{Dependencies}

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Variation of vertical shift with load, PVX2 - Factor scalar

Variation of vertical shift with load, PVX2, dimensionless.

\section*{Dependencies}

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Linear variation of longitudinal slip stiffness with tire pressure, PPX1 - Factor
scalar
Linear variation of longitudinal slip stiffness with tire pressure, PPX1, dimensionless.

\section*{Dependencies}

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Quadratic variation of longitudinal slip stiffness with tire pressure, PPX2 - Factor
scalar
Quadratic variation of longitudinal slip stiffness with tire pressure, PPX2, dimensionless.

\section*{Dependencies}

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.
```

Linear variation of peak longitudinal friction with tire pressure,
PPX3 - Factor
scalar

```

Linear variation of peak longitudinal friction with tire pressure, PPX3, dimensionless.

\section*{Dependencies}

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Quadratic variation of peak longitudinal friction with tire pressure, PPX4 - Factor
scalar
Quadratic variation of peak longitudinal friction with tire pressure, PPX4, dimensionless.

\section*{Dependencies}

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Slip speed decay function scaling factor, lam_muV - Factor scalar

Slip speed decay function scaling factor, lam_muV, dimensionless.

\section*{Dependencies}

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Brake slip stiffness scaling factor, lam_Kxkappa - Factor scalar

Brake slip stiffness scaling factor, lam_Kxkappa, dimensionless.

\section*{Dependencies}

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Longitudinal shape scaling factor, lam_Cx - Factor scalar

Longitudinal shape scaling factor, lam_Cx, dimensionless.

\section*{Dependencies}

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

\section*{Longitudinal curvature scaling factor, lam_Ex - Factor scalar}

Longitudinal curvature scaling factor, lam_Ex, dimensionless.

\section*{Dependencies}

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

Longitudinal horizontal shift scaling factor, lam_Hx - Factor scalar

Longitudinal horizontal shift scaling factor, lam_Hx, dimensionless.

\section*{Dependencies}

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.
```

Longitudinal vertical shift scaling factor, lam_Vx - Factor

```
scalar

Longitudinal vertical shift scaling factor, lam_Vx, dimensionless.

\section*{Dependencies}

To create this parameter, select the Longitudinal Force parameter Magic Formula pure longitudinal slip.

\section*{Mapped Force}

\section*{Slip ratio breakpoints, kappaFx - Breakpoints vector}

Slip ratio breakpoints, dimensionless.

\section*{Dependencies}

To create this parameter, select the Longitudinal Force parameter Mapped force.
Normal force breakpoints, FzFx - Breakpoints
vector
Normal force breakpoints, N.
Dependencies
To create this parameter, select the Longitudinal Force parameter Mapped force.
Longitudinal force map, FxMap - Lookup table array

Longitudinal force versus slip ratio and normal force, N .

\section*{Dependencies}

To create this parameter, select the Longitudinal Force parameter Mapped force.

\section*{Rolling Resistance}

Pressure and Velocity
Velocity independent force coefficient, aMy - Force coefficient scalar

Velocity-independent force coefficient, \(a\), in \(\mathrm{s} / \mathrm{m}\).

\section*{Dependencies}

To create this parameter, select the Rolling Resistance parameter Pressure and velocity.

Linear velocity force component, bMy - Force component scalar

Linear velocity force component, \(b\), in \(\mathrm{s} / \mathrm{m}\).

\section*{Dependencies}

To create this parameter, select the Rolling Resistance parameter Pressure and velocity.

Quadratic velocity force component, cMy - Force component scalar

Quadratic velocity force component, \(c\), in \(\mathrm{s}^{\wedge} 2 / \mathrm{m}^{\wedge} 2\).

\section*{Dependencies}

To create this parameter, select the Rolling Resistance parameter Pressure and velocity.

\section*{Tire pressure exponent, alphaMy - Pressure exponent scalar}

Tire pressure exponent, \(\alpha\), dimensionless.

\section*{Dependencies}

To create this parameter, select the Rolling Resistance parameter Pressure and velocity.

Normal force exponent, betaMy - Force exponent scalar

Normal force exponent, \(\beta\), dimensionless.

\section*{Dependencies}

To create this parameter, select the Rolling Resistance parameter Pressure and velocity.

ISO 28580
Parasitic losses force, Fpl - Force loss
scalar
Parasitic force loss, \(F_{p l}\), in N.

\section*{Dependencies}

To create this parameter, select the Rolling Resistance parameter ISO 28580.

\section*{Rolling resistance constant, Cr - Constant scalar}

Rolling resistance constant, \(C_{r}\), in N/kN. ISO 28580 specifies the rolling resistance unit as one newton of tractive resistance for every kilonewtons of normal load.

\section*{Dependencies}

To create this parameter, select the Rolling Resistance parameter ISO 28580.

\section*{Thermal correction factor, Kt - Correction factor scalar}

Thermal correction factor, \(K_{t}\), in \(1 /\) degC.

\section*{Dependencies}

To create this parameter, select the Rolling Resistance parameter ISO 28580.

\section*{Measured temperature, Tmeas - Temperature}
scalar
Measured temperature, \(T_{\text {meas }}\), in K.

\section*{Dependencies}

To create this parameter, select the Rolling Resistance parameter ISO 28580.

\section*{Ambient temperature, Tamb - Temperature scalar}

Measured temperature, \(T_{a m b}\), in K .

\section*{Dependencies}

To create this parameter, select the Rolling Resistance parameter ISO 28580.

\section*{Input ambient temperature - Selection scalar}

Select to create input port Tamb.

\section*{Dependencies}

To create this parameter, select the Rolling Resistance parameter ISO 28580.

\section*{Magic Formula}

Rolling resistance torque coefficient, QSY1 - Torque coefficient scalar

Rolling resistance torque coefficient, dimensionless.

\section*{Dependencies}

To create this parameter, select the Rolling Resistance parameter Magic Formula.

\section*{Longitudinal force rolling resistance coefficient, QSY2 - Force resistance coefficient \\ scalar}

Longitudinal force rolling resistance coefficient, dimensionless.

\section*{Dependencies}

To create this parameter, select the Rolling Resistance parameter Magic Formula.
Linear rotational speed rolling resistance coefficient, QSY3 - Linear speed coefficient

\section*{scalar}

Linear rotational speed rolling resistance coefficient, dimensionless.

\section*{Dependencies}

To create this parameter, select the Rolling Resistance parameter Magic Formula.
Quartic rotational speed rolling resistance coefficient, QSY4 Quartic speed coefficient
scalar
Quartic rotational speed rolling resistance coefficient, dimensionless.

\section*{Dependencies}

To create this parameter, select the Rolling Resistance parameter Magic Formula.

\section*{Camber squared rolling resistance torque, QSY5 - Camber resistance torque \\ scalar}

Camber squared rolling resistance torque, in \(1 / \mathrm{rad}^{\wedge} 2\).

\section*{Dependencies}

To create this parameter, select the Rolling Resistance parameter Magic Formula.
Load based camber squared rolling resistance torque, QSY6 - Load resistance torque
scalar
Load based camber squared rolling resistance torque, in \(1 / \mathrm{rad}^{\wedge} 2\).

\section*{Dependencies}

To create this parameter, select the Rolling Resistance parameter Magic Formula.

\section*{Normal load rolling resistance coefficient, QSY7 - Normal resistance} coefficient
scalar
Normal load rolling resistance coefficient, dimensionless.

\section*{Dependencies}

To create this parameter, select the Rolling Resistance parameter Magic Formula.
Pressure load rolling resistance coefficient, QSY8 - Pressure resistance coefficient
scalar
Pressure load rolling resistance coefficient, dimensionless.

\section*{Dependencies}

To create this parameter, select the Rolling Resistance parameter Magic Formula.
Rolling resistance scaling factor, lam_My - Scale scalar

Rolling resistance scaling factor, dimensionless.

\section*{Dependencies}

To create this parameter, select the Rolling Resistance parameter Magic Formula.

\section*{Mapped}

\section*{Spin axis velocity breakpoints, VxMy - Breakpoints} vector

Spin axis velocity breakpoints, in m/s.

\section*{Dependencies}

To create this parameter, select the Rolling Resistance parameter Mapped torque.

\section*{Normal force breakpoints, FzMy - Breakpoints \\ vector}

Normal force breakpoints, in N.

\section*{Dependencies}

To create this parameter, select the Rolling Resistance parameter Mapped torque.
Rolling resistance torque map, MyMap - Lookup table scalar

Rolling resistance torque versus axle speed and normal force, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To create this parameter, select the Rolling Resistance parameter Mapped torque.

\section*{Brake}

Static friction coefficient, mu_static - Static friction scalar

Static friction coefficient, dimensionless.

\section*{Dependencies}

To enable this parameter, for the Brake Type parameter, specify one of these types:
- Disc
- Drum
- Mapped

\section*{Kinetic friction coefficient, mu_kinetic - Kinetic friction scalar}

Kinematic friction coefficient, dimensionless.

\section*{Dependencies}

To enable this parameter, for the Brake Type parameter, specify one of these types:
- Disc
- Drum
- Mapped

\section*{Disc}

Disc brake actuator bore, disc_abore - Bore distance scalar

Disc brake actuator bore, in \(m\).

\section*{Dependencies}

To enable the disc brake parameters, select Disc for the Brake Type parameter.
Brake pad mean radius, Rm - Radius
scalar
Brake pad mean radius, in m.

\section*{Dependencies}

To enable the disc brake parameters, select Disc for the Brake Type parameter.
Number of brake pads, num_pads - Count scalar

Number of brake pads.

\section*{Dependencies}

To enable the disc brake parameters, select Disc for the Brake Type parameter.

\section*{Drum}

Drum brake actuator bore, disc_abore - Bore distance scalar

Drum brake actuator bore, in \(m\).

\section*{Dependencies}

To enable the drum brake parameters, select Drum for the Brake Type parameter.

\section*{Shoe pin to drum center distance, drum_a - Distance scalar}

Shoe pin to drum center distance, in m.

\section*{Dependencies}

To enable the drum brake parameters, select Drum for the Brake Type parameter.
Shoe pin center to force application point distance, drum_c Distance
scalar
Shoe pin center to force application point distance, in m.

\section*{Dependencies}

To enable the drum brake parameters, select Drum for the Brake Type parameter.
Drum internal radius, drum_r - Radius scalar

Drum internal radius, in m.

\section*{Dependencies}

To enable the drum brake parameters, select Drum for the Brake Type parameter.
```

Shoe pin to pad start angle, drum_theta1 - Angle
scalar

```

Shoe pin to pad start angle, in deg.

\section*{Dependencies}

To enable the drum brake parameters, select Drum for the Brake Type parameter.
Shoe pin to pad end angle, drum_theta2 - Angle scalar

Shoe pin to pad end angle, in deg.

\section*{Dependencies}

To enable the drum brake parameters, select Drum for the Brake Type parameter.

\section*{Mapped}

Brake actuator pressure breakpoints, brake_p_bpt - Breakpoints vector

Brake actuator pressure breakpoints, in bar.

\section*{Dependencies}

To enable the mapped brake parameters, select Mapped for the Brake Type parameter.

\section*{Wheel speed breakpoints, brake_n_bpt - Breakpoints}

\section*{vector}

Wheel speed breakpoints, in rpm.

\section*{Dependencies}

To enable the mapped brake parameters, select Mapped for the Brake Type parameter.
Brake torque map, f_brake_t - Lookup table array

The lookup table for the brake torque, \(f_{\text {brake }}(P, N)\), is a function of applied brake pressure and wheel speed, where:
- \(T\) is brake torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(P\) is applied brake pressure, in bar.
- \(N\) is wheel speed, in rpm.


\section*{Dependencies}

To enable the mapped brake parameters, select Mapped for the Brake Type parameter.

\section*{Vertical}

Nominal normal force, FNOMIN - Force scalar

Nominal rated wheel load along wheel-fixed \(z\)-axis, in N .

\section*{Dependencies}

To enable this parameter, set either:
- Longitudinal Force to Magic Formula pure longitudinal slip.
- Rolling Resistance to Magic Formula.

Nominal rated load scaling factor, lam_Fzo - Factor scalar

Nominal rated load scaling factor, dimensionless. Used to scale the normal for specific applications and load conditions.

\section*{Dependencies}

To enable this parameter, set Longitudinal Force to Magic Formula pure longitudinal slip.

\section*{Wheel and unsprung mass, \(m\) - Mass}
scalar
Wheel and unsprung mass, in kg. Used in the vertical motion calculations.

\section*{Dependencies}

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.
```

Initial deflection, zo - Deflection
scalar

```

Initial axle displacement along wheel-fixed \(z\)-axis, in m .

\section*{Dependencies}

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

\section*{Initial velocity, zdoto - Velocity} scalar

Initial axle velocity along wheel-fixed \(z\)-axis, in m .

\section*{Dependencies}

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.
Gravitational acceleration, g - Gravity
scalar
Gravitational acceleration, in \(\mathrm{m} / \mathrm{s}^{\wedge} 2\).

\section*{Dependencies}

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.
Ground displacement, Gndz - Displacement scalar

Ground displacement, Grndz, along negative wheel-fixed \(z\)-axis, in m .


\section*{Dependencies}

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

\section*{Mapped Stiffness and Damping}

\section*{Vertical deflection breakpoints, zFz - Breakpoints vector}

Vector of sidewall deflection breakpoints corresponding to the force table, in m.

\section*{Dependencies}

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

\section*{Pressure breakpoints, pFz - Breakpoints}
vector
Vector of pressure data points corresponding to the force table, in Pa.

\section*{Dependencies}

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.
Force due to deflection, Fzz - Force
vector
Force due to sidewall deflection and pressure along wheel-fixed \(z\)-axis, in N .

\section*{Dependencies}

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

\section*{Vertical velocity breakpoints, zdotFz - Breakpoints scalar}

Vector of sidewall velocity breakpoints corresponding to the force due to velocity table, in m.

\section*{Dependencies}

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

\section*{Force due to velocity, Fzzdot - Force}

\section*{scalar}

Force due to sidewall velocity and pressure along wheel-fixed \(z\)-axis, in N .

\section*{Dependencies}

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

\section*{Simulation Setup}

Minimum normal force, FZMIN - Force
scalar
Minimum normal force, in N . Used with all vertical force calculations.
Maximum normal force, FZMAX - Force scalar

Maximum normal force, in N. Used with all vertical force calculations.

\section*{Max allowable slip ratio (absolute), kappamax - Ratio scalar}

Maximum allowable absolute slip ratio, dimensionless.
```

Velocity tolerance used to handle low velocity situations, VXLOW -
Tolerance
scalar

```

Velocity tolerance used to handle low-velocity situations, in m/s.

\section*{Minimum ambient temperature, TMIN - Tmin scalar}

Minimum ambient temperature, \(T_{\text {MIN }}\), in K .

\section*{Dependencies}

To create this parameter, select the Rolling Resistance parameter ISO 28580.

\section*{Maximum ambient temperature, TMAX - Tmax}
scalar
Maximum ambient temperature, \(T_{M A X}\), in K .

\section*{Dependencies}

To create this parameter, select the Rolling Resistance parameter ISO 28580.

\section*{References}
[1] Highway Tire Committee. Stepwise Coastdown Methodology for Measuring Tire Rolling Resistance. Standard J2452_199906. Warrendale, PA: SAE International, June 1999.
[2] Pacejka, H. B. Tire and Vehicle Dynamics. 3rd ed. Oxford, United Kingdom: SAE and Butterworth-Heinemann, 2012.
[3] Schmid, Steven R., Bernard J. Hamrock, and Bo O. Jacobson. "Chapter 18: Brakes and Clutches." Fundamentals of Machine Elements, SI Version. 3rd ed. Boca Raton, FL: CRC Press, 2014.
[4] Shigley, Joseph E., and Larry Mitchel. Mechanical Engineering Design. 4th ed. New York, NY: McGraw Hill, 1983.
[5] ISO 28580:2018. Passenger car, truck and bus tyre rolling resistance measurement method -- Single point test and correlation of measurement results. ISO (International Organization for Standardization), 2018.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\author{
See Also \\ Drive Cycle Source | Longitudinal Driver \\ Introduced in R2017a
}

\section*{Planetary Gear}

Ideal planetary gear with sun, ring, and carrier
Library: Powertrain Blockset / Drivetrain / Couplings


\section*{Description}

The Planetary Gear block implements an ideal planetary gear coupling consisting of a rigidly coupled sun, ring, and carrier gears. The block calculates the dynamic response to the sun, carrier, and ring input torques.


In fuel economy and powertrain studies, you can use the Planetary Gear block as a powersplit device by coupling it to common driveline elements such as transmissions, engines, clutches, and differentials.

These equations of motion represent the dynamic response of the planetary gear.
\[
\begin{aligned}
& \dot{\omega}_{s} J_{s}=\dot{\omega}_{s} b_{s}+T_{s}+T_{p s} \\
& \dot{\omega}_{c} J_{c}=\dot{\omega}_{c} b_{c}+T_{c}+T_{p c} \\
& \dot{\omega}_{s} J_{r}=\dot{\omega}_{r} b_{r}+T_{r}+T_{p r} \\
& \dot{\omega}_{p} J_{p}=\omega_{p} b_{p}+T_{r p}+T_{s p}+T_{c p}
\end{aligned}
\]

To reduce the equations of motion, the block uses these kinematic and geometric constraints.
\[
\begin{aligned}
& \omega_{C} r_{C}=r_{s} \omega_{s}+r_{p} \omega_{p} \\
& \omega_{r} r_{r}=r_{C} \omega_{c}+r_{p} \omega_{p} \\
& r_{C}=r_{s}+r_{p} \\
& r_{r}=r_{c}+r_{p}
\end{aligned}
\]

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Equations \\
\hline \multirow[t]{3}{*}{PwrIn fo} & \multirow[t]{3}{*}{\begin{tabular}{l}
PwrTrnsfrd - Power transferred between blocks \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block
\end{tabular}} & PwrSun & Sun gear applied power & \(\omega_{s} T_{s}\) \\
\hline & & PwrCarr & Carrier gear applied power & \(\omega_{C} T_{C}\) \\
\hline & & PwrRing & Ring gear applied power & \(\omega_{r} T_{r}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Bus Signal} & Description & Equations \\
\hline \begin{tabular}{l}
PwrNotTrns frd - Power crossing the block boundary, but not transferred \\
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular} & PwrDampLoss & Mechanical damping loss & \[
\begin{aligned}
& -\left(b_{s} \omega_{s}^{2}+b_{c} \omega_{c}^{2}+b_{r} \omega_{r}^{2}\right. \\
& \left.+b_{p} \omega_{p}^{2}\right)
\end{aligned}
\] \\
\hline \begin{tabular}{l}
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular} & PwrStoredPlnt ry & Rate change in rotational kinetic energy & \[
\begin{aligned}
& \dot{\omega_{s}} \omega_{s} J_{s}+\dot{\omega}_{c} \omega_{c} J_{c}+\dot{\omega}_{r} \omega_{r} J_{r} \\
& +\dot{\omega}_{p} \omega_{p} J_{p}
\end{aligned}
\] \\
\hline
\end{tabular}

The equations use these variables.
\(\omega_{c}, \omega_{p}, \omega_{r}, \omega_{s}\) Carrier, planet, ring, and sun gear angular speed
\(r_{c}, r_{p}, r_{r}, r_{s} \quad\) Carrier, planet, ring, and sun gear angular radius
\(J_{c}, J_{p}, J_{r}, J_{s} \quad\) Carrier, planet, ring, and sun gear inertia
\(b_{c}, b_{p}, b_{r}, b_{s}\) Darrier, planet, ring, and sun gear damping
\(T_{c}, T_{p}, T_{r}, T_{s}\) Applied carrier, planet, ring, and sun gear torque
\(T_{p s} \quad\) Torque applied from planet gear on sun gear
\(T_{p c} \quad\) Torque applied from planet gear on carrier gear
\(T_{p r} \quad\) Torque applied from planet gear on ring gear
\(T_{r p} \quad\) Torque applied from ring gear on planet gear
\(T_{s p} \quad\) Torque applied from sun gear on planet gear
\(T_{c p} \quad\) Torque applied from carrier gear on planet gear

\section*{Ports}

\section*{Input}

\section*{SunTrq - Sun gear applied torque \\ scalar}

Sun gear input torque, \(T_{s}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To create this port, for Port Configuration, select Simulink.

\section*{CarrTrq - Carrier gear applied torque}
scalar
Carrier gear input torque, \(T_{c}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To create this port, for Port Configuration, select Simulink.

\section*{RingTrq - Ring gear applied torque}
scalar
Ring gear applied torque, \(T_{r}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To create this port, for Port Configuration, select Simulink.

\section*{C - Carrier gear angular speed and torque}
two-way connector port
Carrier gear angular speed, \(\omega_{c}\), in rad/s. Carrier gear applied torque, \(T_{c}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To create this port, for Port Configuration, select Two-way connection.

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|l|}{ Signal } & Description & Units \\
\hline \multirow{3}{*}{ Sun } & SunTrq & Sun gear applied torque & \(\mathrm{N} \cdot \mathrm{m}\) \\
\cline { 2 - 5 } & SunSpd & Sun gear angular speed & \(\mathrm{rad} / \mathrm{s}\) \\
\hline \multirow{3}{*}{ Carr } & CarrTrq & Carrier gear applied torque & \(\mathrm{N} \cdot \mathrm{m}\) \\
\cline { 2 - 5 } & CarrSpd & Carrier gear angular speed & \(\mathrm{rad} / \mathrm{s}\) \\
\hline Ring & RingTrq & Ring gear applied torque & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline PwrInfo & \begin{tabular}{l} 
PwrTrnsf \\
rd
\end{tabular} & PwrSun & Sun gear applied power
\end{tabular} W.

\section*{SunSpd - Sun gear angular speed \\ scalar}

Sun gear angular speed, \(\omega_{s}\), in rad/s.

\section*{Dependencies}

To create this port, for Port Configuration, select Simulink.

\section*{CarrSpd - Carrier gear angular speed scalar}

Carrier gear angular speed, \(\omega_{c}\), in rad/s.

\section*{Dependencies}

To create this port, for Port Configuration, select Simulink.

\section*{RingSpd - Ring gear angular speed scalar}

Ring gear angular speed, \(\omega_{r}\), in rad/s.

\section*{Dependencies}

To create this port, for Port Configuration, select Simulink.

\section*{S - Sun gear angular speed and torque}
two-way connector port
Sun gear angular speed, \(\omega_{s}\), in rad/s. Sun gear applied torque, \(T_{s}\), in \(N \cdot m\).

\section*{Dependencies}

To create this port, for Port Configuration, select Two-way connection.

\section*{R - Ring gear angular speed and torque \\ two-way connector port}

Ring gear angular speed, \(\omega_{r}\), in rad/s. Ring gear applied torque, \(T_{r}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To create this port, for Port Configuration, select Two-way connection.

\section*{Parameters}

\section*{Block Options}

Port Configuration - Specify configuration
Simulink (default)|Two-way connection
Specify the port configuration.

\section*{Dependencies}

Specifying Simulink creates these ports:
- SunTrq
- CarrTra
- RingTrq
- SunSpd
- CarrSpd
- RingSpd

Specifying Two-way connection creates these ports:
- C
- S
- R

\section*{Sun to planet ratio, Nsp - Ratio scalar}

Sun-to-planet gear ratio, dimensionless.

\section*{Sun to ring ratio, Nsr - Ratio scalar}

Sun-to-ring gear ratio, dimensionless.

\section*{Sun inertia, Js - Inertia} scalar

Sun gear inertia, \(J_{s^{\prime}}\), in \(\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2\).
Planet inertia, Jp - Inertia

\section*{scalar}

Planet gear inertia, \(J_{p}\), in \(\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2\).
Ring inertia, Jr - Inertia scalar

Ring gear inertia, \(J_{r}\), in \(\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2\).

\section*{Carrier inertia, Jc - Inertia scalar}

Carrier gear inertia, \(J_{c}\), in \(\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2\).
Sun viscous damping, bs - Damping scalar

Sun gear viscous damping, \(b_{s}, \mathrm{~N} \cdot \mathrm{~m} \cdot \mathrm{~s} / \mathrm{rad}\).
Ring viscous damping, br - Damping scalar

Ring gear viscous damping, \(b_{r}, N \cdot m \cdot s / r a d\).
Planet viscous damping, bp - Damping scalar

Planet gear viscous damping, \(b_{p}, \mathrm{~N} \cdot \mathrm{~m} \cdot \mathrm{~s} / \mathrm{rad}\).
Carrier viscous damping, bc - Damping scalar

Carrier gear viscous damping, \(b_{c}, \mathrm{~N} \cdot \mathrm{~m} \cdot \mathrm{~s} / \mathrm{rad}\).
Initial sun velocity, ws_o - Angular speed scalar

Initial sun gear angular speed, in rad/s.
Initial carrier velocity, wc_o - Angular speed scalar

Initial carrier gear angular speed, in rad/s.

\section*{Extended Capabilities}

C/C++ Code Generation
Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).

\author{
See Also \\ Disc Clutch | Gearbox | Rotational Inertia | Torque Converter | Torsional Compliance Introduced in R2017a
}

\section*{Gearbox}

\section*{Ideal rotational gearbox}

Library: Powertrain Blockset / Drivetrain / Couplings


\section*{Description}

The Gearbox block implements an ideal rotational gearbox. The block uses the gear inertias and damping to calculate the velocity response to the base and follower gear pair input torques.

In fuel economy and powertrain efficiency studies, you can use the Gearbox block to model ideal gear coupling and the power transfer between common driveline elements such as transmissions, engines, clutches, and differentials.

The Gearbox block uses these equations to approximate the transmission dynamics.
\[
\begin{aligned}
& \dot{\omega}_{B} J_{B}=\omega_{B} b_{B}+\eta N T_{F} \\
& \dot{\omega}_{F} J_{F}=\omega_{F} b_{F}+\eta T_{F}
\end{aligned}
\]

This constraint equation reduces the system to a one DOF system.
\[
\omega_{B}=N \omega_{F}
\]

To express the ideal torque transfer, the block uses this relationship.
\[
\eta N T_{B}+T_{F}=0
\]

\section*{Efficiency}

To account for the block efficiency, use the Efficiency factors parameter. This table summarizes the block implementation for each setting.
\begin{tabular}{|c|c|}
\hline Setting & Implementation \\
\hline Constant & Constant efficiency that you can set with the Constant efficiency factor, eta parameter. \\
\hline Driveshaft torque, temperature and speed & \begin{tabular}{l}
Efficiency as a function of base gear input torque, air temperature, and driveshaft speed. Use these parameters to specify the lookup table and breakpoints: \\
- Efficiency lookup table, eta_tbl \\
- Efficiency torque breakpoints, Trq_bpts \\
- Efficiency speed breakpoints, omega_bpts \\
- Efficiency temperature breakpoints, Temp_bpts \\
For the air temperature, you can either: \\
- Select Input temperature to create an input port. \\
- Set a Ambient temperature, Tamb parameter value. \\
To select the interpolation method, use the Interpolation method parameter. For more information, see "Interpolation Methods" (Simulink).
\end{tabular} \\
\hline
\end{tabular}

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|l|l|l|l|l|l|}
\hline \multicolumn{2}{|l|}{ Bus Signal } & \begin{tabular}{l} 
Descriptio \\
\(\mathbf{n}\)
\end{tabular} & \begin{tabular}{l} 
Variabl \\
e
\end{tabular} & \begin{tabular}{l} 
Equati \\
ons
\end{tabular} \\
\hline \begin{tabular}{l} 
PwrIn \\
fo
\end{tabular} & \begin{tabular}{l} 
PwrTrnsfrd - Power transferred \\
between blocks \\
- \begin{tabular}{l} 
Positive signals indicate flow \\
into block
\end{tabular}
\end{tabular} & PwrBase & \begin{tabular}{l} 
Mechanical \\
power from \\
base shaft
\end{tabular} & \(P_{\text {Base }}\) & \begin{tabular}{l}
\(P_{\text {Base }}\) \\
\(=\) \\
\(\eta T_{B} \omega_{B}\)
\end{tabular} \\
\\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Descriptio & Variabl & Equati \\
\hline \multirow[t]{4}{*}{} & - Negative signals indicate flow out of block & PwrFlwr & Mechanical power from follower shaft & \(P_{\text {Flwr }}\) & \[
\begin{aligned}
& P_{\text {Flwr }} \\
& = \\
& \quad \eta T_{F} \omega_{F}
\end{aligned}
\] \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
PwrNotTrnsfrd - Power crossing the block boundary, but not transferred \\
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular}} & PwrMechLos S & Total power loss & \(P_{n g}\) & \[
\begin{aligned}
& P_{n g}= \\
& P_{t}=\eta T_{B}
\end{aligned}
\] \\
\hline & & PwrDampLos S & Power loss due to damping & \(P_{d}\) & \[
\begin{aligned}
& P_{d}= \\
& - \\
& \left(b_{F}\left|\omega_{F}\right|^{2}\right. \\
& +b_{B}\left|\omega_{B}\right|^{2} \\
& )
\end{aligned}
\] \\
\hline & \begin{tabular}{l}
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular} & PwrStoredS hft & Rate change of stored internal kinetic energy & \(P_{s}\) & \[
\begin{aligned}
& P_{S}= \\
& \left(\omega_{B} \dot{\omega}_{B} J_{B}\right. \\
& +\omega_{F} \dot{\omega}_{F J} J_{F} \\
& )
\end{aligned}
\] \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(T_{B}\) & Base gear input torque \\
\(T_{F}\) & Follower gear output torque \\
\(\omega_{B}\) & Base gear angular velocity \\
\(\omega_{F}\) & Follower gear angular velocity \\
\(J_{B}\) & Base gear rotational inertia \\
\(J_{F}\) & Follower gear rotational inertia \\
\(b_{B}\) & Base gear rotational viscous damping \\
\(b_{F}\) & Follower gear rotational viscous damping \\
\(N\) & Torque transmission gear ratio
\end{tabular}
\begin{tabular}{ll}
\(\eta\) & Gear efficiency \\
\(P_{t}\) & Total power \\
\(P_{d}\) & Power loss due to damping \\
\(P_{s}\) & Rate change of stored internal kinetic energy
\end{tabular}

\section*{Ports}

\section*{Input}

\section*{BTrq - Base gear input torque}
scalar
Base gear input torque, \(T_{B}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To create this port, for Port Configuration, select Simulink.

\section*{FTrq - Follower gear output torque}
scalar
Follower gear output torque, \(T_{F}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To create this port, for Port Configuration, select Simulink.

\section*{\(B\) - Base gear angular velocity and torque}
two-way connector port
Base gear angular velocity, \(\omega_{B}\), in rad/s. Base gear torque, \(T_{B}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To create this port, for Port Configuration, select Two-way connection.

\section*{AirTemp - Ambient air temperature scalar}

Ambient air temperature, \(T_{\text {air }}\), in K .

\section*{Dependencies}

To create this port:
- Set Efficiency factors to Driveshaft torque, speed and temperature.
- Select Input ambient temperature.

\section*{Output}

\section*{Info - Bus signal \\ bus}

Bus signal containing these block calculations.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Signal} & Description & Variable & Units \\
\hline \multirow[t]{2}{*}{Base} & \multicolumn{2}{|l|}{BaseTrq} & Base gear input torque & \(T_{B}\) & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline & \multicolumn{2}{|l|}{BaseSpd} & Base gear angular velocity & \(\omega_{B}\) & rad/s \\
\hline \multirow[t]{2}{*}{Flwr} & \multicolumn{2}{|l|}{FlwrTrq} & Follower gear torque & \(T_{F}\) & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline & \multicolumn{2}{|l|}{FlwrSpd} & Follower gear angular velocity & \(\omega_{F}\) & rad/s \\
\hline \multirow[t]{5}{*}{PwrInfo} & \multirow[t]{2}{*}{PwrTrnsfrd} & PwrBase & Mechanical power from base shaft & \(P_{\text {Base }}\) & W \\
\hline & & PwrFlwr & Mechanical power from follower shaft & \(P_{\text {Flwr }}\) & W \\
\hline & \multirow[t]{2}{*}{PwrNotTrns frd} & PwrMechLo SS & Total gear power loss & \(P_{\text {ng }}\) & W \\
\hline & & PwrDampLo SS & Power loss due to damping & \(P_{d}\) & W \\
\hline & PwrStored & PwrStored Shft & Rate change of stored internal kinetic energy & \(P_{s}\) & W \\
\hline
\end{tabular}

\section*{BSpd - Input gear angular velocity scalar}

Base gear angular velocity, \(\omega_{B}\), in rad/s.

\section*{Dependencies}

To create this port, for Port Configuration, select Simulink.

\section*{FSpd - Output gear angular velocity} scalar

Follower gear angular velocity, \(\omega_{F}\), in rad/s.

\section*{Dependencies}

To create this port, for Port Configuration, select Simulink.

\section*{F - Output gear angular velocity and torque}
two-way connector port
Follower gear angular velocity, \(\omega_{F}\), in rad/s. Follower gear torque, \(T_{F}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To create this port, for Port Configuration, select Two-way connection.

\section*{Parameters}

\section*{Block Options}

\section*{Port Configuration - Specify configuration}

Simulink (default)|Two-way connection
Specify the port configuration.

\section*{Dependencies}

Specifying Simulink creates these ports:
- BSpd
- FSpd
- BTrq
- FTrq

Specifying Two-way connection creates these ports:
- B
- F

\section*{Efficiency factors - Specify configuration}

\section*{Constant (default)|Driveshaft torque, speed and temperature}

To account for the block efficiency, use the Efficiency factors parameter. This table summarizes the block implementation for each setting.
\begin{tabular}{|l|l|}
\hline Setting & Implementation \\
\hline Constant & \begin{tabular}{l} 
Constant efficiency that you can set with the Constant efficiency \\
factor, eta parameter.
\end{tabular} \\
\hline \begin{tabular}{l} 
Driveshaft \\
torque, \\
temperature and \\
speed
\end{tabular} & \begin{tabular}{l} 
Efficiency as a function of base gear input torque, air \\
temperature, and driveshaft speed. Use these parameters to \\
specify the lookup table and breakpoints: \\
- \(\quad\) Efficiency lookup table, eta_tbl \\
- \(\quad\) Efficiency torque breakpoints, Trq_bpts \\
- \(\quad\) Efficiency speed breakpoints, omega_bpts \\
- \(\quad\) Efficiency temperature breakpoints, Temp_bpts \\
For the air temperature, you can either:
\end{tabular} \\
\hline & \begin{tabular}{l} 
Select Input temperature to create an input port. \\
- \(\quad\) Set a Ambient temperature, Tamb parameter value. \\
To select the interpolation method, use the Interpolation \\
method parameter. For more information, see "Interpolation \\
Methods" (Simulink).
\end{tabular} \\
\hline
\end{tabular}

\section*{Interpolation method - Method}

Flat (default)|Nearest|Linear point-slope| Linear Lagrange|Cubic spline

For more information, see "Interpolation Methods" (Simulink).

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Output shaft rotates in same direction as input - Rotation off (default) | on

Select to specify that the output shaft rotates in the same direction as the input.

\section*{Input ambient temperature - Create input port off (default) | on}

Select to create input port AirTemp for the ambient air temperature.

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Input to output gear ratio, \(N\) - Ratio scalar

Base-to-follower gear ratio, dimensionless.

\section*{Input shaft inertia, J1 - Inertia scalar}

Base shaft inertia, in \(\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2\).
Output shaft inertia, J2 - Inertia scalar

Follower shaft inertia, in \(\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2\).
Input shaft damping, b1 - Damping scalar

Base viscous shaft damping, in \(\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}\).
Output shaft damping, b2 - Damping scalar

Follower viscous shaft damping, in \(\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}\).

\section*{Input shaft initial velocity, w1_0 - Initial velocity scalar}

Base shaft initial velocity, in rad/s.

\section*{Efficiency}
```

Constant efficiency factor, eta - Efficiency
1 (default)

```

Constant efficiency, \(\eta\).

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Constant.

\section*{Efficiency lookup table, eta_tbl - Lookup table}

M-by-N-by-L array
Dimensionless array of values for efficiency as a function of:
- Minput torques
- \(N\) input speed
- L air temperatures

Each value specifies the efficiency for a specific combination of torque, speed, and temperature. The array size must match the dimensions defined by the torque, speed, and temperature breakpoint vectors.

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Efficiency torque breakpoints, Trq_bpts - Torque breakpoints 1-by-M vector

Vector of input torque, breakpoints for efficiency, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Efficiency speed breakpoints, omega_bpts - Speed breakpoints 1-by-N vector

Vector of speed, breakpoints for efficiency, in rad/s.

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

Efficiency temperature breakpoints, Temp_bpts - Temperature breakpoints
1-by-L vector
Vector of ambient temperature breakpoints for efficiency, in K.

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Driveshaft torque, speed and temperature.

\section*{Air temperature, Tair - Ambient air temperature scalar}

Ambient air temperature, \(T_{\text {air }}\), in K .

\section*{Dependencies}

To enable this parameter:
- Set Efficiency factors to Driveshaft torque, speed and temperature.
- Clear Input ambient temperature.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\author{
See Also \\ Disc Clutch | Planetary Gear | Rotational Inertia | Torque Converter | Torsional Compliance \\ Introduced in R2017a
}

\section*{Disc Clutch}

Idealized disc clutch coupler
Library: Powertrain Blockset / Drivetrain / Couplings


\section*{Description}

The Disc Clutch block implements an idealized disc clutch coupler. The block couples the rotary input and output shafts through an idealized friction model. To determine the output torque, the block uses friction parameters, relative slip velocity, and applied input pressure.

In fuel economy and powertrain efficiency studies, you can use the Disc Clutch block to model the mechanical power transfer between common driveline elements such as transmissions, engines, and differentials.

To approximate the torque response, the Disc Clutch block implements friction and dynamic models that depend on the clutch lockup condition. The block determines the locked or unlocked condition based on an idealized dry clutch friction model. This table summarizes the logic the block uses to determine the clutch condition.
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Clutch \\
Condition
\end{tabular} & When \\
\hline Unlocked & \begin{tabular}{l} 
or \\
or
\end{tabular} \\
& \(T_{f \max }<\left|\frac{J_{o} T_{i}-\left(J_{o} b_{i}-J_{i} b_{o}\right) \omega_{i / o}}{J_{o}+J_{i}}\right|\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Clutch \\
Condition
\end{tabular} & When \\
\hline Locked & \begin{tabular}{l}
\(\omega_{i}=\omega_{o}\) \\
and \\
\\
\\
\(T_{f \max }<\left|T_{i}-\frac{J_{i}\left(b_{i}+b_{o}\right) \omega_{i}}{J_{o}+J_{i}}+b_{o} \omega_{i}\right|\) \\
\hline
\end{tabular}\({ }^{2}\) \\
\hline
\end{tabular}

This table summarizes the friction and dynamic models that the block uses for locked or unlocked clutch conditions.
\begin{tabular}{|c|c|c|}
\hline Clutch Condition & Friction Model & Dynamic Model \\
\hline Unlocked & \begin{tabular}{l}
\[
T_{f \max }=T_{k}
\] \\
where,
\[
\begin{aligned}
& T_{k}=N_{\text {disc }} P_{C} A_{e f f} R_{e f f} \mu_{k} \tan \\
& R_{e f f}=\frac{2\left(R_{0}{ }^{3}-R_{i}^{3} 3\right.}{3\left(R_{0}{ }^{2}-R_{i}{ }^{2}\right)} \\
& \operatorname{and} P_{C}=\max \left(P_{C}-P_{e n g}, 0\right)
\end{aligned}
\]
\end{tabular} & \[
\begin{aligned}
& \dot{\omega}_{i} J_{i}=T_{i}-T_{f}-\omega_{i} b_{i} \\
& \dot{\omega}_{o} J_{o}=T_{f}+T_{o}-\omega_{o} b_{o} \\
& \left.\left.{ }_{o}\right)\right]
\end{aligned}
\] \\
\hline Locked & \begin{tabular}{l}
\[
T_{\text {fmax }}=T_{S}
\] \\
where,
\[
\begin{aligned}
& T_{S}=N_{d i s c} P_{c} A_{e f f} R_{e f f} \mu_{s} \\
& R_{e f f}=\frac{2\left(R_{0} 3-R_{i} 3\right)}{3\left(R_{0}^{2}-R_{i}^{2}\right)}
\end{aligned}
\]
\end{tabular} & \[
\begin{aligned}
& \dot{\omega}_{i}\left(J_{o}+J_{i}\right)=T_{o}-\omega_{i}\left(b_{i}+b_{o}\right)+T_{i} \\
& \omega_{i}=\omega_{o}
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{2}{|l|}{ Bus Signal } & Description & Equations \\
\hline \begin{tabular}{l} 
PwrI \\
nfo
\end{tabular} & \begin{tabular}{l} 
PwrTrnsfrd - Power \\
transferred between blocks \\
• \begin{tabular}{l} 
Positive signals indicate \\
flow into block
\end{tabular}
\end{tabular} & PwrBase & \begin{tabular}{l} 
Applied base \\
power
\end{tabular} & \(\omega_{i} T_{i}\) \\
\cline { 2 - 5 }
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Bus Signal} & Description & Equations \\
\hline - Negative signals indicate flow out of block & PwrFlwr & Applied follower output power & \(\omega_{o} T_{o}\) \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
PwrNotTrnsfrd - Power crossing the block boundary, but not transferred \\
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular}} & PwrDampLos S & Damping power loss & \(-b_{o} \omega_{0}^{2}-b_{i} \omega_{i}^{2}\) \\
\hline & PwrCltchSl ipLoss & Clutch slip power loss & \(-T_{k}\left(\omega_{i}-\right.\) \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular}} & PwrStoredB ase & Rate change in base rotational kinetic energy & \(\dot{\omega}_{i} \omega_{i} J_{i}\) \\
\hline & PwrStoredF lwr & Rate change in follower rotational kinetic energy & \(\dot{\omega}_{0} \omega_{0} J_{0}\) \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(\omega_{i}\) & Input shaft angular speed \\
\(\omega_{o}\) & Output shaft angular speed \\
\(b_{i}\) & Input shaft viscous damping \\
\(b_{o}\) & Output shaft viscous damping \\
\(J_{i}\) & Input shaft moment of inertia \\
\(J_{o}\) & Output shaft moment of inertia \\
\(T_{f}\) & Frictional torque \\
\(T_{i}\) & Net input torque \\
\(T_{k}\) & Kinetic frictional torque \\
\(T_{o}\) & Net output torque \\
\(T_{s}\) & Static frictional torque \\
\(T_{f m a x}\) & Maximum frictional torque before slipping \\
\(P_{c}\) & Applied clutch pressure
\end{tabular}
\begin{tabular}{ll}
\(P_{\text {eng }}\) & Engagement pressure \\
\(A_{e f f}\) & Effective area \\
\(N_{\text {disc }}\) & Number of frictional discs \\
\(R_{e f f}\) & Effective clutch radius \\
\(R_{o}\) & Annular disk outer radius \\
\(R_{i}\) & Annular disk inner radius \\
\(R_{e}\) & Effective tire radius while under load and for a given pressure \\
\(\mu_{s}\) & Coefficient of static friction \\
\(\mu_{k}\) & Coefficient of kinetic friction
\end{tabular}

\section*{Ports}

\section*{Input}

\section*{Press - Applied clutch pressure}
scalar
Base gear input torque, \(P_{c}\), in \(\mathrm{N} \cdot \mathrm{m}^{\wedge} 2\).

\section*{BTrq - Applied input torque}
scalar
Applied input torque, \(T_{i}\), typically from the engine crankshaft or dual mass flywheel damper, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To create this port, for Port Configuration, select Simulink.

\section*{FTrq - Applied load torque}
scalar
Applied load torque, \(T_{o}\), typically from the differential or drive shaft, in \(\mathrm{N} \cdot \mathrm{m}\).
Dependencies
To create this port, for Port Configuration, select Simulink.

\section*{B - Applied drive shaft angular speed and torque}
two-way connector port
Applied drive shaft angular speed, \(\omega_{i}\), in rad/s. Applied drive shaft torque, \(T_{i}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To create this port, for Port Configuration, select Two-way connection.

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Signal} & Description & Units \\
\hline \multirow[t]{2}{*}{Base} & \multicolumn{2}{|l|}{BTrq} & Applied input torque, typically from the engine crankshaft or dual mass flywheel damper & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline & \multicolumn{2}{|l|}{BSpd} & Applied drive shaft angular speed input & rad/s \\
\hline \multirow[t]{2}{*}{Flwr} & \multicolumn{2}{|l|}{FTrq} & Applied load torque, typically from the differential & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline & \multicolumn{2}{|l|}{FSpd} & Drive shaft angular speed output & rad/s \\
\hline \multirow[t]{4}{*}{Cltch} & \multicolumn{2}{|l|}{CltchForce} & Applied clutch force & N \\
\hline & \multicolumn{2}{|l|}{CltchLocked} & Clutch lock status & NA \\
\hline & \multicolumn{2}{|l|}{CltchSpdRatio} & Clutch speed ratio & NA \\
\hline & \multicolumn{2}{|l|}{CltchEta} & Clutch power transmission efficiency & NA \\
\hline \multirow[t]{2}{*}{PwrInfo} & \multirow[t]{2}{*}{PwrTrnsfrd} & PwrBa se & Applied base power & W \\
\hline & & PwrFl wr & Applied follower output power & W \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ Signal } & Description & Units \\
\hline & PwrNotTrnsfrd & \begin{tabular}{l} 
PwrDa \\
mpLos \\
s
\end{tabular} & Damping power loss & W \\
\cline { 3 - 6 } & \begin{tabular}{l} 
PwrCl \\
tchSl \\
ipLos \\
s
\end{tabular} & Clutch slip power loss & W \\
\cline { 3 - 6 } & PwrStored & \begin{tabular}{l} 
PwrSt \\
oredB \\
ase
\end{tabular} & \begin{tabular}{l} 
Rate change in base \\
rotational kinetic energy
\end{tabular} & W \\
\hline & \begin{tabular}{l} 
PwrSt \\
oredF \\
lwr
\end{tabular} & \begin{tabular}{l} 
Rate change in follower \\
rotational kinetic energy
\end{tabular} & W \\
\hline
\end{tabular}

\section*{BSpd - Angular speed}

\section*{scalar}

Applied drive shaft angular speed input, \(\omega_{i}\), in rad/s.

\section*{Dependencies}

To create this port, for Port Configuration, select Simulink.

\section*{FSpd - Angular speed}
scalar
Drive shaft angular speed output, \(\omega_{0}\), in rad/s.

\section*{Dependencies}

To create this port, for Port Configuration, select Simulink.

\section*{F - Output velocity and torque}
two-way connector port
Output drive shaft angular speed, \(\omega_{o i}\), in rad/s. Output drive shaft torque, \(T_{o}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To create this port, for Port Configuration, select Two-way connection.

\section*{Parameters}

\section*{Block Options}

\section*{Port Configuration - Specify configuration}

Simulink (default)|Two-way connection
Specify the port configuration.

\section*{Dependencies}

Specifying Simulink creates these ports:
- BSpd
- FSpd
- BTrq
- FTrq

Specifying Two-way connection creates these ports:
- B
- F

Clutch force equivalent net radius, Reff - Radius scalar

Clutch force equivalent net radius, in \(m\).
Number of disks, Ndisk - Ratio
scalar
Number of disks, dimensionless.
Effective applied pressure area, Aeff - Pressure area scalar

Effective applied pressure area, in \(\mathrm{m}^{\wedge} 2\).
Engagement pressure threshold, Peng - Pressure threshold scalar

Pressure to engage clutch, in Pa.

\section*{Input shaft inertia, Jin - Inertia} scalar

Input shaft inertia, in \(\mathrm{kg} \cdot \mathrm{m} \wedge 2\).
Output shaft inertia, Jout - Inertia
scalar
Output shaft inertia, in \(\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2\).
Kinetic friction coefficient, muk - Coefficient scalar

Kinetic friction coefficient, dimensionless.
Static friction coefficient, mus - Coefficient scalar

Static friction coefficient, dimensionless.

\section*{Input shaft viscous damping, bin - Damping} scalar

Input shaft viscous damping, in \(\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}\).
Output shaft viscous damping, bout - Damping scalar

Output shaft viscous damping, in \(\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}\).
Initial input shaft velocity, win_o - Initial velocity scalar

Input shaft initial velocity, in rad/s.

\section*{Initial output shaft velocity, wout_o - Initial velocity scalar}

Input shaft initial velocity, in rad/s.
Clutch actuation time constant, tauC - Constant scalar

Clutch actuation time constant, in s.

\section*{Clutch initially locked - Select to initially lock clutch off (default)}

Select to lock clutch initially.

\section*{Extended Capabilities}

\author{
C/C++ Code Generation \\ Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).
}

\author{
See Also \\ Planetary Gear | Rotational Inertia | Torque Converter | Torsional Compliance \\ Introduced in R2017a
}

\section*{Vehicle Dynamics Blocks Alphabetical List}

\section*{Vehicle Body 1DOF Longitudinal}

\author{
Two-axle vehicle in forward and reverse motion \\ Library: \(\quad\) Powertrain Blockset / Vehicle Dynamics \\ Vehicle Dynamics Blockset / Vehicle Body
}


\section*{Description}

The Vehicle Body 1DOF Longitudinal block implements a one degree-of-freedom (1DOF) rigid vehicle body with constant mass undergoing longitudinal (that is, forward and reverse) motion. Use the block:
- In powertrain and fuel economy studies to represent the vehicle inertial and drag loads when weight transfer from vertical and pitch motions are negligible.
- To determine the engine torque and power required for the vehicle to follow a specified drive cycle.

You can select block options to create input ports for external forces, moments, air temperature, and wind speed.
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
Block Option \\
Setting
\end{tabular} & \begin{tabular}{l} 
External \\
Input Ports
\end{tabular} & Description \\
\hline \begin{tabular}{l} 
External \\
forces
\end{tabular} & FExt & \begin{tabular}{l} 
External force applied to vehicle CG in vehicle-fixed \\
frame.
\end{tabular} \\
\hline \begin{tabular}{l} 
External \\
moments
\end{tabular} & MExt & \begin{tabular}{l} 
External moment about vehicle CG in vehicle-fixed \\
frame.
\end{tabular} \\
\hline \begin{tabular}{l} 
Air \\
temperature
\end{tabular} & AirTemp & \begin{tabular}{l} 
Ambient air temperature. Consider this option if you \\
want to vary the temperature during run-time.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
Block Option \\
Setting
\end{tabular} & \begin{tabular}{l} 
External \\
Input Ports
\end{tabular} & Description \\
\hline Wind X,Y,Z & WindXYZ & Wind speed along earth-fixed \(X\)-, \(Y\)-, and \(Z\)-axes. \\
& \begin{tabular}{l} 
If you do not select this option, the block implements \\
input port WindX - Longitudinal wind speed along the \\
earth-fixed \(X\)-axis.
\end{tabular} \\
\hline
\end{tabular}

\section*{Vehicle Body Model}

The vehicle axles are parallel and form a plane. The longitudinal direction lies in this plane and is perpendicular to the axles. If the vehicle is traveling on an inclined slope, the normal direction is not parallel to gravity but is always perpendicular to the axlelongitudinal plane.

The block uses the net effect of all the forces and torques acting on it to determine the vehicle motion. The longitudinal tire forces push the vehicle forward or backward. The weight of the vehicle acts through its center of gravity (CG). The grade angle changes the direction of the resolved gravitational force acting on the vehicle CG. Similarly, the block resolves the resistive aerodynamic drag force on the vehicle CG.


The Vehicle Body 1DOF Longitudinal block implements these equations.
\[
\begin{aligned}
& F_{b}=m \ddot{x} \\
& F_{b}=F_{x F}+F_{x R}-F_{d, x}+F_{e x t, x}-m g \sin \gamma
\end{aligned}
\]

Zero normal acceleration and zero pitch torque determine the normal force on each front and rear axles.
\[
\begin{aligned}
& F_{z F}=\frac{-M_{e x t, y}-M_{d, y}+b\left(F_{d, z}+F_{e x t, z}+m g \cos \gamma\right)-h\left(-F_{e x t, x}+F_{d, x}+m g \sin \gamma+m \ddot{x}\right)}{N_{F}(a+b)} \\
& F_{z R}=\frac{M_{e x t, y}+M_{d, y}+a\left(F_{d, z}+F_{e x t, z}+m g \cos \gamma\right)+h\left(-F_{e x t, x}+F_{d, x}+m g \sin \gamma+m \ddot{x}\right)}{N_{R}(a+b)}
\end{aligned}
\]

The wheel normal forces satisfy this equation.
\[
N_{F} F_{z F}+N_{R} F_{z R}-F_{e x t, z}=m g \cos \gamma
\]

\section*{Wind and Drag Forces}

The block subtracts the wind speeds from the vehicle velocity components to obtain a net relative airspeed. To calculate the drag force and moments acting on the vehicle, the block uses the net relative airspeed.
\[
\begin{aligned}
& F_{d, x}=\frac{1}{2 T R} C_{d} A_{f} P_{a b s}\left(^{\dot{x}}\right. \\
& F_{d, z}=\frac{1}{2 T R} C_{l} A_{f} P_{a b s}{ }^{\dot{x}} \\
& M_{d, y}=\frac{1}{2 T R} C_{p m} A_{f} P_{a b s} \dot{x}^{\dot{x}}(a+b)
\end{aligned}
\]

By default, to calculate the wind speed along vehicle-fixed \(x\)-axis, the block uses the longitudinal wind speed along the earth-fixed \(X\)-axis. If you select WindX,Y,Z, the block uses the wind speed along the earth-fixed \(X\)-, \(Y\)-, \(Z\)-axes.

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{2}{|l|}{ Bus Signal } & Description & Equations \\
\hline \begin{tabular}{l} 
PwrIn \\
fo
\end{tabular} & \begin{tabular}{l} 
PwrTrnsfrd \\
Power \\
transferred \\
between blocks \\
- \\
Positive \\
signals \\
indicate flow \\
into block \\
- \\
Negative \\
signals \\
indicate flow \\
out of block
\end{tabular} & PwrFxExt & \begin{tabular}{l} 
Externally applied \\
force power
\end{tabular} & \(P_{F x E x t}=F_{x E x t} \dot{x}\) \\
\cline { 3 - 5 } & & \begin{tabular}{l} 
Longitudinal force \\
power applied at \\
the front axle
\end{tabular} & \(P_{F w F x}=F_{w F} \dot{X}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Bus Signal} & Description & Equations \\
\hline \begin{tabular}{l}
PwrNotTrnsfrd \\
- Power crossing the block boundary, but not transferred \\
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular} & PwrFxDrag & Drag force power & \[
\left\{\begin{array}{l}
P_{d}= \\
-\frac{0.5 C_{d} A_{f} P_{a b s}\left(\dot{x}^{2}-w_{x}\right)^{2}}{287.058 T} \dot{x}
\end{array}\right.
\] \\
\hline PwrStored Stored energy rate of change & wrStoredGrvt y & Rate change in gravitational potential energy & \(P_{g}=-m g \dot{Z}\) \\
\hline \begin{tabular}{l}
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular} & PwrStoredxdo t & Rate in change of longitudinal kinetic energy & \(P_{\dot{\chi}}=m \ddot{\chi} \dot{\chi}\) \\
\hline
\end{tabular}

The equations use these variables.
\(F_{x f}, F_{x r} \quad\) Longitudinal forces on each wheel at the front and rear ground contact points, respectively
\(F_{z f}, F_{z r} \quad\) Normal load forces on each wheel at the front and rear ground contact points, respectively
\(F_{w F}, F_{w R} \quad\) Longitudinal force on front and rear axles along vehicle-fixed \(x\)-axis
\(F_{x E x t}, F_{w R} \quad\) External force along vehicle-fixed \(x\)-axis
\(F_{d, x}, F_{d, z} \quad\) Longitudinal and normal drag force on vehicle CG
\(M_{d, y} \quad\) Torque due to drag on vehicle about vehicle-fixed \(y\)-axis
\begin{tabular}{|c|c|}
\hline \(F_{d}\) & Aerodynamic drag force \\
\hline \(V_{x}\) & Velocity of the vehicle. When \(V_{x}>0\), the vehicle moves forward. When \(V_{x}\) \(<0\), the vehicle moves backward. \\
\hline \(N_{f}, N_{r}\) & Number of wheels on front and rear axle, respectively \\
\hline \(\gamma\) & Angle of road grade \\
\hline \(m\) & Vehicle body mass \\
\hline \(a, b\) & Distance of front and rear axles, respectively, from the normal projection point of vehicle CG onto the common axle plane \\
\hline \(h\) & Height of vehicle CG above the axle plane \\
\hline \(C_{d}\) & Frontal air drag coefficient \\
\hline \(A_{f}\) & Frontal area \\
\hline \(P_{a b s}\) & Absolute pressure \\
\hline \(\rho\) & Mass density of air \\
\hline \(x, \dot{x}, \ddot{x}\) & Vehicle longitudinal position, velocity, and acceleration along vehiclefixed \(x\)-axis \\
\hline \(w_{x}\) & Wind speed along vehicle-fixed \(x\)-axis \\
\hline \(\dot{Z}\) & Vehicle vertical velocity along vehicle-fixed \(z\)-axis \\
\hline
\end{tabular}

\section*{Limitations}

The Vehicle Body 1DOF Longitudinal block lets you model only longitudinal dynamics, parallel to the ground and oriented along the direction of motion. The vehicle is assumed to be in pitch and normal equilibrium. The block does not model pitch or vertical movement. To model a vehicle with three degrees-of-freedom (DOF), use the Vehicle Body 3DOF Longitudinal.

\section*{Ports}

\section*{Input}

\section*{FExt - External force on vehicle CG}
array

External forces applied to vehicle CG, \(F_{x e x t}, F_{y e x t}, F_{z e x t}\), in vehicle-fixed frame, in N. Signal vector dimensions are [1×3] or [3x1].

\section*{Dependencies}

To create this port, select External forces.

\section*{MExt - External moment about vehicle CG array}

External moment about vehicle CG, \(M_{x}, M_{y}, M_{z}\), in vehicle-fixed frame, in \(N \cdot m\). Signal vector dimensions are [ \(1 \times 3\) ] or [3x1].

\section*{Dependencies}

To create this port, select External moments.

\section*{FwF - Total longitudinal force on front axle scalar}

Longitudinal force on the front axle, \(F_{x f}\), along vehicle-fixed x-axis, in \(N\).

\section*{FwR - Total longitudinal force on rear axle scalar}

Longitudinal force on the rear axle, \(F w_{R}\), along vehicle-fixed \(x\)-axis, in \(N\).

\section*{Grade - Road grade angle scalar}

Road grade angle, \(\gamma\), in deg.

\section*{WindX - Longitudinal wind speed}
scalar
Longitudinal wind speed, \(W_{w}\), along earth-fixed X-axis, in m/s.

\section*{Dependencies}

To create this port, clear Wind \(\mathbf{X}, \mathbf{Y}, \mathbf{Z}\) components.
```

WindXYZ - Wind speed
array

```

Wind speed, \(W_{w}, W_{w Y}, W_{w Z}\) along inertial \(X\)-, \(Y\)-, and \(Z\)-axes, in \(\mathrm{m} / \mathrm{s}\). Signal vector dimensions are [1x3] or [3x1].

\section*{Dependencies}

To create this port, select Wind \(\mathbf{X}, \mathbf{Y}, \mathbf{Z}\) components.

\section*{AirTemp - Ambient air temperature}
scalar
Ambient air temperature, \(T_{\text {air }}\), in K . Considering this option if you want to vary the temperature during run-time.

\section*{Dependencies}

To create this port, select Air temperature.

\section*{Output}

\section*{Info - Bus signal \\ bus}

Bus signal containing these block values.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Signal} & Description & Value & Units \\
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
InertFr \\
m
\end{tabular}} & \multirow[t]{5}{*}{Cg} & \multirow[t]{3}{*}{Disp} & X & Vehicle CG displacement along earth-fixed X-axis & Compute d & m \\
\hline & & & Y & Vehicle CG displacement along earth-fixed \(Y\)-axis & 0 & m \\
\hline & & & Z & Vehicle CG displacement along earth-fixed Z-axis & Compute d & m \\
\hline & & \multirow[t]{2}{*}{Vel} & Xdot & Vehicle CG velocity along earth-fixed X-axis & Compute d & m/s \\
\hline & & & Ydot & Vehicle CG velocity along earth-fixed Y -axis & 0 & m/s \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Signal} & Description & Value & Units \\
\hline & & Zdot & Vehicle CG velocity along earth-fixed Z-axis & \begin{tabular}{l}
Compute \\
d
\end{tabular} & \(\mathrm{m} / \mathrm{s}\) \\
\hline & Ang & phi & Rotation of vehicle-fixed frame about earth-fixed X-axis (roll) & 0 & rad \\
\hline & & theta & Rotation of vehicle-fixed frame about earth-fixed Y -axis (pitch) & Compute d (input grade angle) & rad \\
\hline & & psi & Rotation of vehicle-fixed frame about earth-fixed Z-axis (yaw) & 0 & rad \\
\hline FrntAx
l & Disp & X & Front axle displacement along the earth-fixed Xaxis & Compute d & m \\
\hline & & Y & Front axle displacement along the earth-fixed \(Y\) axis & 0 & m \\
\hline & & Z & Front axle displacement along the earth-fixed Zaxis & Compute d & m \\
\hline & Vel & Xdot & Front axle velocity along the earth-fixed X -axis & Compute d & m/s \\
\hline & & Ydot & Front axle velocity along the earth-fixed Y -axis & 0 & m/s \\
\hline & & Zdot & Front axle velocity along the earth-fixed Z-axis & Compute d & \(\mathrm{m} / \mathrm{s}\) \\
\hline RearAx
l & Disp & X & Rear axle displacement along the earth-fixed Xaxis & Compute d & m \\
\hline & & Y & Rear axle displacement along the earth-fixed \(Y\) axis & 0 & m \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Signal} & \multirow[t]{2}{*}{\begin{tabular}{l}
Description \\
Rear axle displacement along the earth-fixed Zaxis
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Value \\
Compute d
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{array}{|l}
\hline \text { Units } \\
\hline \mathrm{m}
\end{array}
\]} \\
\hline & & & Z & & & \\
\hline & & Vel & Xdot & Rear axle velocity along the earth-fixed X -axis & \begin{tabular}{l}
Compute \\
d
\end{tabular} & \(\mathrm{m} / \mathrm{s}\) \\
\hline & & & Ydot & Rear axle velocity along the earth-fixed Y -axis & 0 & m/s \\
\hline & & & Zdot & Rear axle velocity along the earth-fixed Z-axis & \begin{tabular}{l}
Compute \\
d
\end{tabular} & m/s \\
\hline \multirow[t]{8}{*}{BdyFrm} & \multirow[t]{8}{*}{Cg} & \multirow[t]{3}{*}{Disp} & X & Vehicle CG displacement along vehicle-fixed x -axis & Compute d & m \\
\hline & & & y & Vehicle CG displacement along vehicle-fixed y-axis & 0 & m \\
\hline & & & Z & Vehicle CG displacement along vehicle-fixed z-axis & 0 & m \\
\hline & & \multirow[t]{3}{*}{Vel} & xdot & Vehicle CG velocity along vehicle-fixed \(x\) axis & \begin{tabular}{l}
Compute \\
d
\end{tabular} & \(\mathrm{m} / \mathrm{s}\) \\
\hline & & & ydot & Vehicle CG velocity along vehicle-fixed \(y\) axis & 0 & m/s \\
\hline & & & zdot & Vehicle CG velocity along vehicle-fixed zaxis & 0 & m/s \\
\hline & & \multirow[t]{2}{*}{AngVel} & \(p\) & Vehicle angular velocity about the vehicle-fixed x-axis (roll rate) & 0 & rad/s \\
\hline & & & q & Vehicle angular velocity about the vehicle-fixed y-axis (pitch rate) & 0 & rad/s \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Signal} & Description & Value & Units \\
\hline \multirow[t]{4}{*}{} & & r & Vehicle angular velocity about the vehicle-fixed z-axis (yaw rate) & 0 & rad/s \\
\hline & \multirow[t]{3}{*}{Accel} & ax & Vehicle CG acceleration along vehicle-fixed \(x\) axis & \begin{tabular}{l}
Compute \\
d
\end{tabular} & gn \\
\hline & & ay & Vehicle CG acceleration along vehicle-fixed yaxis & 0 & gn \\
\hline & & az & Vehicle CG acceleration along vehicle-fixed zaxis & 0 & gn \\
\hline Forces & \multirow[t]{3}{*}{Body} & Fx & Net force on vehicle CG along vehicle-fixed \(x\) axis & 0 & N \\
\hline & & Fy & Net force on vehicle CG along vehicle-fixed yaxis & 0 & N \\
\hline & & Fz & Net force on vehicle CG along vehicle-fixed zaxis & 0 & N \\
\hline & \multirow[t]{3}{*}{Ext} & Fx & External force on vehicle CG along vehicle-fixed x-axis & Compute d & N \\
\hline & & Fy & External force on vehicle CG along vehicle-fixed y-axis & \begin{tabular}{l}
Compute \\
d
\end{tabular} & N \\
\hline & & Fz & External force on vehicle CG along vehicle-fixed z-axis & Compute d & N \\
\hline & FrntAx
|l & FX & Longitudinal force on front axle, along the vehicle-fixed x -axis & 0 & N \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Signal} & Description & Value & Units \\
\hline \multirow[t]{13}{*}{} & \multirow[t]{2}{*}{-} & Fy & & Lateral force on front axle, along the vehiclefixed \(y\)-axis & 0 & N \\
\hline & & Fz & & Normal force on front axle, along the vehiclefixed z -axis & Compute d & N \\
\hline & \multirow[t]{3}{*}{RearAx
l} & Fx & & Longitudinal force on rear axle, along the vehicle-fixed \(x\)-axis & 0 & N \\
\hline & & Fy & & Lateral force on rear axle, along the vehiclefixed \(y\)-axis & 0 & N \\
\hline & & Fz & & Normal force on rear axle, along the vehiclefixed \(z\)-axis & Compute d & N \\
\hline & \multirow[t]{6}{*}{Tires} & \multirow[t]{3}{*}{FrntTi re} & \[
\left\lvert\, \begin{aligned}
& F \\
& x \\
& \hline
\end{aligned}\right.
\] & Front tire force, along vehicle-fixed x -axis & 0 & N \\
\hline & & & \[
\begin{array}{|l}
\hline F \\
y
\end{array}
\] & Front tire force, along vehicle-fixed \(y\)-axis & 0 & N \\
\hline & & & \[
\begin{array}{|l|}
\hline F \\
z
\end{array}
\] & Front tire force, along vehicle-fixed z-axis & Compute d & N \\
\hline & & \multirow[t]{3}{*}{RearTi re} & \[
\begin{aligned}
& \hline F \\
& X \\
& \hline
\end{aligned}
\] & Rear tire force, along vehicle-fixed x -axis & 0 & N \\
\hline & & & \[
\left.\begin{array}{|l|}
\hline F \\
y
\end{array} \right\rvert\,
\] & Rear tire force, along vehicle-fixed y-axis & 0 & N \\
\hline & & & \[
\begin{array}{|l|}
\hline F \\
z
\end{array}
\] & Rear tire force, along vehicle-fixed z-axis & Compute d & N \\
\hline & \multirow[t]{2}{*}{Drag} & \multicolumn{2}{|l|}{FX} & Drag force on vehicle CG along vehicle-fixed x-axis & Compute d & N \\
\hline & & \multicolumn{2}{|l|}{Fy} & Drag force on vehicle CG along vehicle-fixed \(y\)-axis & Compute d & N \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Signal} & Description & Value & Units \\
\hline & & Fz & Drag force on vehicle CG along vehicle-fixed z-axis & \begin{tabular}{l}
Compute \\
d
\end{tabular} & N \\
\hline & \multirow[t]{3}{*}{Grvty} & Fx & Gravity force on vehicle CG along vehicle-fixed x-axis & \begin{tabular}{l}
Compute \\
d
\end{tabular} & N \\
\hline & & Fy & Gravity force on vehicle CG along vehicle-fixed y-axis & 0 & N \\
\hline & & Fz & Gravity force on vehicle CG along vehicle-fixed z-axis & \begin{tabular}{l}
Compute \\
d
\end{tabular} & N \\
\hline Moment s & \multirow[t]{3}{*}{Body} & Mx & Net moment on vehicle CG about vehicle-fixed x-axis & 0 & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline & & My & Net moment on vehicle CG about vehicle-fixed \(y\)-axis & 0 & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline & & Mz & Net moment on vehicle CG about vehicle-fixed z-axis & 0 & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline & \multirow[t]{3}{*}{Drag} & Mx & Drag moment on vehicle CG about vehicle-fixed x-axis & \begin{tabular}{l}
Compute \\
d
\end{tabular} & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline & & My & Drag moment on vehicle CG about vehicle-fixed y-axis & \begin{tabular}{l}
Compute \\
d
\end{tabular} & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline & & Mz & Drag moment on vehicle CG about vehicle-fixed z-axis & Compute d & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline & Ext & Fx & External moment on vehicle CG about vehicle-fixed x-axis & \begin{tabular}{l}
Compute \\
d
\end{tabular} & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Signal} & Description & Value & Units \\
\hline \multirow[t]{12}{*}{} & & Fy & External moment on vehicle CG about vehicle-fixed y-axis & Compute d & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline & & Fz & External moment on vehicle CG about vehicle-fixed z-axis & Compute d & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline & \multirow[t]{3}{*}{Disp} & x & Front axle displacement along the vehicle-fixed x-axis & Compute
\[
\mathrm{d}
\] & m \\
\hline & & y & Front axle displacement along the vehicle-fixed \(y\)-axis & 0 & m \\
\hline & & z & Front axle displacement along the vehicle-fixed z-axis & \begin{tabular}{l}
Compute \\
d
\end{tabular} & m \\
\hline & \multirow[t]{3}{*}{Vel} & \(x d o t\) & Front axle velocity along the vehicle-fixed \(x\)-axis & Compute d & \(\mathrm{m} / \mathrm{s}\) \\
\hline & & ydot & Front axle velocity along the vehicle-fixed y-axis & 0 & m/s \\
\hline & & zdot & Front axle velocity along the vehicle-fixed \(z\)-axis & Compute d & m/s \\
\hline & \multirow[t]{2}{*}{Steer} & WhlangFL & Front left wheel steering angle & Compute d & rad \\
\hline & & WhlangFR & Front right wheel steering angle & \begin{tabular}{l}
Compute \\
d
\end{tabular} & rad \\
\hline & \multirow[t]{2}{*}{Disp} & X & Rear axle displacement along the vehicle-fixed x-axis & Compute d & m \\
\hline & & y & Rear axle displacement along the vehicle-fixed \(y\)-axis & \(\bigcirc\) & m \\
\hline
\end{tabular}

\begin{tabular}{|l|l|l|l|l|l|}
\hline Signal & PwrStoredxdot & Description & Value & Units \\
\hline & \begin{tabular}{l} 
Rate in change of \\
longitudinal kinetic \\
energy
\end{tabular} & \begin{tabular}{l} 
Compute \\
d
\end{tabular} & W \\
\hline
\end{tabular}

\section*{xdot - Vehicle body longitudinal velocity scalar}

Vehicle body longitudinal velocity along the earth-fixed reference frame X -axis, in \(\mathrm{m} / \mathrm{s}\).

\section*{FzF - Front axle normal force}

\section*{scalar}

Normal load force on the front axle, \(F_{z f}\), along vehicle-fixed z-axis, in N.

\section*{FzR - Rear axle normal force}

\section*{scalar}

Normal force on rear axle, \(F_{z r}\), along vehicle-fixed z-axis, in N .

\section*{Parameters}

\section*{Options}

\section*{External forces - FExt input port}
off (default) | on
Specify to create input port FExt.

\section*{External moments - MExt input port}
off (default) | on
Specify to create input port MExt.

\section*{Air temperature - AirTemp input port}
off (default) | on
Specify to create input port AirTemp.
Wind \(X, Y, Z\) components - WindXYZ input port
off (default) | on

Specify to create input port WindXYZ.

\section*{Longitudinal}

Number of wheels on front axle, NF - Front wheel count scalar

Number of wheels on front axle, \(N_{F}\), dimensionless.

\section*{Number of wheels on rear axle, NR - Rear wheel count scalar}

Number of wheels on rear axle, \(N_{R}\), dimensionless.

\section*{Mass, m - Vehicle mass}

\section*{scalar}

Vehicle mass, \(M\), in kg.
Horizontal distance from CG to front axle, a-Front axle distance scalar

Horizontal distance \(a\) from the vehicle CG to the front wheel axle, in \(m\).
Horizontal distance from CG to rear axle, b-Rear axle distance scalar

Horizontal distance \(b\) from the vehicle CG to the rear wheel axle, in \(m\).
CG height above axles, h-Height scalar

Height of vehicle CG above the ground, \(h\), in m.
Drag coefficient, Cd - Drag
scalar
Air drag coefficient, \(C_{d}\).
Frontal area, Af - Area
scalar
Effective vehicle cross-sectional area, \(A\), to calculate the aerodynamic drag force on the vehicle, in \(\mathrm{m}^{\wedge} 2\).

\section*{Initial position, x_o - Position scalar}

Vehicle body longitudinal initial position along the vehicle-fixed \(x\)-axis, \(x_{0}\), in m .

\section*{Initial velocity, xdot_o - Velocity scalar}

Vehicle body longitudinal initial velocity along the vehicle-fixed \(x\)-axis, \(\dot{x}_{0}\), in \(\mathrm{m} / \mathrm{s}\).

\section*{Environment}

Absolute air pressure, Pabs - Pressure scalar

Environmental air absolute pressure, \(P_{a b s}\), in Pa .

\section*{Air temperature, T - Ambient air temperature} scalar

Ambient air temperature, \(T_{\text {air }}\), in K .

\section*{Dependencies}

To enable this parameter, clear Air temperature.
Gravitational acceleration, g-Gravity
scalar
Gravitational acceleration, \(g\), in \(\mathrm{m} / \mathrm{s}^{\wedge}\).

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

Vehicle Body 3DOF Longitudinal | Vehicle Body Total Road Load

\section*{Introduced in R2017a}

\section*{Vehicle Body 3DOF Longitudinal}

3DOF rigid vehicle body to calculate longitudinal, vertical, and pitch motion
Library:
Powertrain Blockset / Vehicle Dynamics Vehicle Dynamics Blockset / Vehicle Body


\section*{Description}

The Vehicle Body 3DOF Longitudinal block implements a three degrees-of-freedom (3DOF) rigid vehicle body model with configurable axle stiffness to calculate longitudinal, vertical, and pitch motion. The block accounts for body mass, aerodynamic drag, road incline, and weight distribution between the axles due to acceleration and the road profile.

You can specify the type of axle attachment to the vehicle:
- Grade angle - Vertical axle displacement from road surface to axles remains constant. The block uses tabular stiffness and damping parameters to model the suspension forces acting between the vehicle body and axles.
- Axle displacement - Axles have input-provided vertical displacement and velocity with respect to the road grade. The block uses tabular stiffness and damping parameters to model the suspension forces acting between the vehicle body and axle.
- External suspension - Axles have externally applied forces for coupling the vehicle body to custom suspension models.

If the weight transfer from vertical and pitch motions are not negligible, consider using this block to represent vehicle motion in powertrain and fuel economy studies. For example, in studies with heavy breaking or acceleration or road profiles that contain larger vertical changes.

The block uses rigid-body vehicle motion, suspension system forces, and wind and drag forces to calculate the normal forces on the front and rear axles. The block resolves the force components and moments on the rigid vehicle body frame:
\[
\begin{aligned}
& F_{x}=F_{w F}+F_{w R}-F_{d, x}-F_{s x, F}-F_{s x, R}+F_{g, x} \\
& F_{z}=F_{d, z}-F_{s z, F}-F_{s z, R}+F_{g, z} \\
& M_{y}=a F_{s z, F}-b F_{s z, R}+h\left(F_{w F}+F_{w R}+F_{s x, F}+F_{s x, R}\right)-M_{d, y}
\end{aligned}
\]


\section*{Rigid-Body Vehicle Motion}

The vehicle axles are parallel and form a plane. The longitudinal direction lies in this plane and is perpendicular to the axles. If the vehicle is traveling on an inclined slope, the normal direction is not parallel to gravity but is always perpendicular to the axlelongitudinal plane.

The block uses the net effect of all the forces and torques acting on it to determine the vehicle motion. The longitudinal tire forces push the vehicle forward or backward. The weight of the vehicle acts through its center of gravity (CG). Depending on the inclined angle, the weight pulls the vehicle to the ground and either forward or backward.

Whether the vehicle travels forward or backward, aerodynamic drag slows it down. For simplicity, the drag is assumed to act through the CG.

The Vehicle Body 3DOF Longitudinal implements these equations.
\[
\begin{aligned}
& \ddot{x}=\frac{F_{x}}{m}-q z \\
& \ddot{z}=\frac{F_{z}}{m}-q x \\
& \dot{q}=\frac{M_{y}}{I_{y y}} \\
& \dot{\theta}=q
\end{aligned}
\]

\section*{Suspension System Forces}

If you configure the block with the Ground interaction type parameter Grade angle or Axle displacement, velocity, the block uses nonlinear stiffness and damping parameters to model the suspension system.

The front and rear axle suspension forces are given by:
\[
\begin{aligned}
& F s_{F}=N_{F}\left[F k_{F}+F b_{F}\right] \\
& F s_{R}=N_{R}\left[F k_{R}+F b_{R}\right]
\end{aligned}
\]

The block uses lookup tables to implement the front and rear suspension stiffness. To account for kinematic and material nonlinearities, including collisions with end-stops, the tables are functions of the stroke.
\[
\begin{aligned}
& F k_{F}=f\left(d Z_{F}\right) \\
& F k_{R}=f\left(d Z_{R}\right)
\end{aligned}
\]

The block uses lookup tables to implement the front and rear suspension damping. To account for nonlinearities, compression, and rebound, the tables are functions of the stroke rate.
\[
\begin{aligned}
& F b_{F}=f\left(d \dot{Z}_{F}\right) \\
& F b_{R}=f\left(d \dot{Z}_{R}\right)
\end{aligned}
\]

The stroke is the difference in the vehicle vertical and axle positions. The stroke rate is the difference in the vertical and axle velocities.
\[
\begin{aligned}
& d Z_{F}=Z_{F}-\bar{Z}_{F} \\
& d Z_{R}=Z_{R}-\bar{Z}_{R} \\
& d \dot{Z}_{F}=\dot{Z}_{F}-\dot{\bar{Z}}_{F} \\
& d \dot{Z}_{R}=\dot{Z}_{R}-\dot{\bar{Z}}_{R}
\end{aligned}
\]

When the Ground interaction type parameter is Grade angle, the axle vertical positions \(\left(\bar{Z}_{F}, \bar{Z}_{R}\right)\) and velocities ( \(\left.\dot{\bar{Z}}_{F}, \dot{\bar{Z}}_{R}\right)\) are set to 0 .

\section*{Wind and Drag Forces}

The block subtracts the wind speeds from the vehicle velocity components to obtain a net relative airspeed. To calculate the drag force and moments acting on the vehicle, the block uses the net relative airspeed:
\[
\begin{aligned}
& F_{d, x}=\left.\frac{1}{2 T R} C_{d} A_{f} P_{a b s}\right|^{\dot{x}} \\
& F_{d, z}=\left.\frac{1}{2 T R} C_{l} A_{f} P_{a b s}\right|^{\dot{X}} \\
& M_{d, y}=\left.\frac{1}{2 T R} C_{p m} A_{f} P_{a b s}\right|^{\dot{x}}(a+b)
\end{aligned}
\]

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|l|}{ Bus Signal } & Description & Equations \\
\hline \begin{tabular}{l} 
PwrIn \\
fo
\end{tabular} & \begin{tabular}{l} 
PwrTrnsfrd \\
Power \\
transferred \\
between blocks \\
Positive \\
signals
\end{tabular} & PwrFxExt & \begin{tabular}{l} 
Externally \\
applied \\
longitudinal \\
force power
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Bus Signal} & Description & Equations \\
\hline \multirow[t]{6}{*}{\begin{tabular}{l}
PwrStored Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular}} & PwrStoredGrvt y & Rate change in gravitational potential energy & \(P_{g}=-m g Z\) \\
\hline & PwrStoredxdot & Rate of change of longitudinal kinetic energy & \(P_{\dot{\chi}}=m \ddot{\chi} \dot{\chi}\) \\
\hline & PwrStoredzdot & Rate of change of longitudinal kinetic energy & \(P_{\dot{z}}=m \ddot{z} \dot{z}\) \\
\hline & PwrStoredq & Rate of change of rotational pitch kinetic energy & \(P_{\dot{\theta}}=I_{y y} \ddot{\theta} \dot{\theta}\) \\
\hline & PwrStoredFsFz Sprng & Stored spring energy from front suspension & \(P_{\text {FskF }}=F_{s k, F} \dot{z}_{F}\) \\
\hline & PwrStoredFsRz Sprng & Stored spring energy from rear suspension & \(P_{F s k F}=F_{s k, R} \dot{z}_{R}\) \\
\hline
\end{tabular}

The equations use these variables.
\(F_{x} \quad\) Longitudinal force on vehicle
\(F_{z} \quad\) Normal force on vehicle
\(M_{y} \quad\) Torque on vehicle about vehicle-fixed \(y\)-axis
\(F_{w F}, F_{w R} \quad\) Longitudinal force on front and rear axles along vehicle-fixed \(x\)-axis
\(F_{d, x}, F_{d, z} \quad\) Longitudinal and normal drag force on vehicle CG
\(F_{s x, F}, F_{s x, R} \quad\) Longitudinal suspension force on front and rear axles
\(F_{s z, F}, F_{s z, R} \quad\) Normal suspension force on front and rear axles
\(F_{g, x}, F_{g, z} \quad\) Longitudinal and normal gravitational force on vehicle along vehiclefixed frame
\begin{tabular}{ll}
\(M_{d, y}\) & Torque due to drag on vehicle about vehicle-fixed \(y\)-axis \\
\(a, b\) & Distance of front and rear axles, respectively, from the normal projection \\
& point of vehicle CG onto the common axle plane \\
\(h\) & Height of vehicle CG above the axle plane along vehicle-fixed \(z\)-axis \\
\(F s_{F}, F_{R}\) & Front and rear axle suspension force along vehicle-fixed \(z\)-axis \\
\(Z_{w F}, Z_{w R}\) & Front and rear vehicle normal position along earth-fixed \(z\)-axis \\
\(\Theta\) & Vehicle pitch angle about vehicle-fixed \(y\)-axis \\
\(m\) & Vehicle body mass \\
\(N_{F}, N_{R}\) & Number of front and rear wheels \\
\(I_{y y}\) & Vehicle body moment of inertia about the vehicle-fixed \(y\)-axis \\
\(x, \dot{x}, \ddot{x}\) & Vehicle longitudinal position, velocity, and acceleration along vehicle- \\
\(z, \dot{z}, \ddot{z}\) & fixed \(x\)-axis \\
\(F_{F}, F k_{R}\) & Vehicle normal position, velocity, and acceleration along vehicle-fixed \(z\) - \\
axis & Front and rear wheel suspension stiffness force along vehicle-fixed \(z\)-axis \\
\(F b_{F}, F b_{R}\) & Front and rear wheel suspension damping force along vehicle-fixed \(z\) - \\
\(Z_{F}, Z_{R}\) & axis \\
\(\dot{Z}_{F}, \dot{Z}_{R}\) & Front and rear vehicle vertical position along earth-fixed \(Z\)-axis \\
\(\bar{Z}_{F}, \bar{Z}_{R}\) & Front and rear vehicle vertical velocity along vehicle-fixed \(z\)-axis \\
\(\dot{\bar{Z}}_{F}, \dot{Z}_{R}\) & Front and rear wheel axle vertical position along vehicle-fixed \(z\)-axis \\
\(d Z_{F}, d Z_{R}\) & Front and rear wheel axle vertical velocity along earth-fixed \(z\)-axis \\
\(d \dot{Z}_{F}, d \dot{Z}_{R}\) & Front and rear axle suspension deflection along vehicle-fixed \(z\)-axis \\
\(C_{d}\) & Front and rear axle suspension deflection rate along vehicle-fixed \(z\)-axis \\
\(C_{l}\) & Frontal air drag coefficient acting along vehicle-fixed \(x\)-axis \\
\(C_{p m}\) & Lateral air drag coefficient acting along vehicle-fixed \(z\)-axis \\
\(A_{f}\) & Air drag pitch moment acting about vehicle-fixed \(y\)-axis \\
\(P_{a b s}\) & Frontal area \\
\(R\) & Environmental absolute pressure \\
\(T\) & Atmospheric specific gas constant \\
Environmental air temperature
\end{tabular}

\section*{\(w_{x} \quad\) Wind speed along vehicle-fixed \(x\)-axis}

\section*{Ports}

\section*{Input}

\section*{FExt - External force on vehicle CG}
array
External forces applied to vehicle CG, \(F_{x e x t}, F_{y e x t}, F_{z e x t}\), in vehicle-fixed frame, in N. Signal vector dimensions are [ \(1 \times 3\) ] or [3×1].

\section*{Dependencies}

To create this port, select External forces.

\section*{MExt - External moment about vehicle CG}
array
External moment about vehicle CG, \(M_{x}, M_{y}, M_{z}\), in vehicle-fixed frame, in \(N \cdot m\). Signal vector dimensions are [1x3] or [3x1].

\section*{Dependencies}

To create this port, select External moments.

\section*{FwF - Total longitudinal force on the front axle}

\section*{scalar}

Longitudinal force on the front axle, \(F w_{F}\), along vehicle-fixed \(x\)-axis, in N .

\section*{FwR - Total longitudinal force on the rear axle scalar}

Longitudinal force on the rear axle, \(F w_{R}\), along vehicle-fixed \(x\)-axis, in N .

\section*{Grade - Road grade angle \\ scalar}

Road grade angle, \(\gamma\), in deg.

\section*{FsF - Suspension force on front axle per wheel}

\section*{vector}

Suspension force on front axle, \(F s_{F}\), along vehicle-fixed \(z\)-axis, in N .

\section*{Dependencies}

To create this port, for the Ground interaction type parameter, select External suspension.

\section*{FsR - Suspension force on rear axle per wheel}
vector
Suspension force on rear axle, \(F s_{R}\), along vehicle-fixed \(z\)-axis, in N .

\section*{Dependencies}

To create this port, for the Ground interaction type parameter, select External suspension.

\section*{WindXYZ - Wind speed \\ array}

Wind speed, \(W_{X}, W_{Y}, W_{Z}\) along earth-fixed \(X\)-, \(Y\)-, and \(Z\)-axes, in m/s. Signal vector dimensions are [1×3] or [3×1].

\section*{AirTemp - Ambient air temperature scalar}

Ambient air temperature, \(T_{\text {air }}\), in K . Considering this option if you want to vary the temperature during run-time.

\section*{Dependencies}

To create this port, select Air temperature.

\section*{zF, R - Forward and rear axle positions}
vector
Forward and rear axle positions along the vehicle-fixed \(z\)-axis, \(\bar{Z}_{F}, \bar{Z}_{R}\), in m.

\section*{Dependencies}

To create this port, for the Ground interaction type parameter, select Axle displacement, velocity.

\section*{zdotF, R - Forward and rear axle velocities \\ vector}

Forward and rear axle velocities along the vehicle-fixed \(z\)-axis, \(\dot{\bar{Z}}_{F}, \dot{\bar{Z}}_{R}\), in \(\mathrm{m} / \mathrm{s}\).

\section*{Dependencies}

To create this port, for the Ground interaction type parameter, select Axle displacement, velocity.

\section*{Output}

\section*{Info - Bus signal \\ bus}

Bus signal containing these block values.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Signal} & Description & Value & Units \\
\hline \multirow[t]{7}{*}{\[
\begin{aligned}
& \text { InertFr } \\
& \mathrm{m}
\end{aligned}
\]} & \multirow[t]{7}{*}{Cg} & \multirow[t]{3}{*}{Disp} & X & Vehicle CG displacement along earth-fixed \(X\)-axis & \begin{tabular}{l}
Compute \\
d
\end{tabular} & m \\
\hline & & & Y & Vehicle CG displacement along earth-fixed \(Y\)-axis & 0 & m \\
\hline & & & Z & Vehicle CG displacement along earth-fixed Z-axis & \begin{tabular}{l}
Compute \\
d
\end{tabular} & m \\
\hline & & \multirow[t]{3}{*}{Vel} & Xdot & Vehicle CG velocity along earth-fixed \(X\)-axis & \begin{tabular}{l}
Compute \\
d
\end{tabular} & \(\mathrm{m} / \mathrm{s}\) \\
\hline & & & Ydot & Vehicle CG velocity along earth-fixed \(Y\)-axis & 0 & m/s \\
\hline & & & Zdot & Vehicle CG velocity along earth-fixed \(Z\)-axis & \begin{tabular}{l}
Compute \\
d
\end{tabular} & \(\mathrm{m} / \mathrm{s}\) \\
\hline & & Ang & phi & Rotation of vehicle-fixed frame about earth-fixed \(X\)-axis (roll) & 0 & rad \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Signal} & Description & Value & Units \\
\hline \multirow[t]{12}{*}{} & & theta & Rotation of vehicle-fixed frame about earth-fixed \(Y\)-axis (pitch) & Compute d & rad \\
\hline & & psi & Rotation of vehicle-fixed frame about earth-fixed \(Z\)-axis (yaw) & 0 & rad \\
\hline & \multirow[t]{3}{*}{Disp} & X & Front axle displacement along the earth-fixed \(X\) axis & Compute
\[
\mathrm{d}
\] & m \\
\hline & & Y & Front axle displacement along the earth-fixed \(Y\) axis & 0 & m \\
\hline & & Z & Front axle displacement along the earth-fixed \(Z\) axis & \begin{tabular}{l}
Compute \\
d
\end{tabular} & m \\
\hline & \multirow[t]{3}{*}{Vel} & Xdot & Front axle velocity along the earth-fixed \(X\)-axis & \begin{tabular}{l}
Compute \\
d
\end{tabular} & \(\mathrm{m} / \mathrm{s}\) \\
\hline & & Ydot & Front axle velocity along the earth-fixed \(Y\)-axis & 0 & m/s \\
\hline & & Zdot & Front axle velocity along the earth-fixed \(Z\)-axis & Compute d & m/s \\
\hline & \multirow[t]{3}{*}{Disp} & X & Rear axle displacement along the earth-fixed \(X\) axis & Compute d & m \\
\hline & & Y & Rear axle displacement along the earth-fixed \(Y\) axis & 0 & m \\
\hline & & Z & Rear axle displacement along the earth-fixed \(Z\) axis & Compute d & m \\
\hline & Vel & Xdot & Rear axle velocity along the earth-fixed \(X\)-axis & Compute d & m/s \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Signal} & Description & Value & Units \\
\hline \multirow{2}{*}{Signal} & & ay & Vehicle CG acceleration along vehicle-fixed \(y\) axis & 0 & gn \\
\hline & & az & Vehicle CG acceleration along vehicle-fixed \(z\) axis & Compute d & gn \\
\hline Forces & \multirow[t]{3}{*}{Body} & Fx & Net force on vehicle CG along vehicle-fixed \(x\) axis & \begin{tabular}{l}
Compute \\
d
\end{tabular} & N \\
\hline & & Fy & Net force on vehicle CG along vehicle-fixed \(y\) axis & 0 & N \\
\hline & & Fz & Net force on vehicle CG along vehicle-fixed \(z\) axis & Compute d & N \\
\hline & \multirow[t]{3}{*}{Ext} & Fx & External force on vehicle CG along vehicle-fixed \(x\)-axis & Compute d & N \\
\hline & & Fy & External force on vehicle CG along vehicle-fixed \(y\)-axis & Compute d & N \\
\hline & & Fz & External force on vehicle CG along vehicle-fixed \(z\)-axis & Compute d & N \\
\hline & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { FrntAx } \\
& \text { l }
\end{aligned}
\]} & Fx & Longitudinal force on front axle, along the vehicle-fixed \(x\)-axis & Compute d & N \\
\hline & & Fy & Lateral force on front axle, along the vehiclefixed \(y\)-axis & 0 & N \\
\hline & & Fz & Normal force on front axle, along the vehiclefixed \(z\)-axis & \begin{tabular}{l}
Compute \\
d
\end{tabular} & N \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Signal} & Description & Value & Units \\
\hline \multirow[t]{13}{*}{} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { RearAx } \\
& \text { l }
\end{aligned}
\]} & \multicolumn{2}{|l|}{Fx} & Longitudinal force on rear axle, along the vehicle-fixed \(x\)-axis & Compute d & N \\
\hline & & \multicolumn{2}{|l|}{Fy} & Lateral force on rear axle, along the vehiclefixed \(y\)-axis & 0 & N \\
\hline & & \multicolumn{2}{|l|}{Fz} & Normal force on rear axle, along the vehiclefixed \(z\)-axis & \begin{tabular}{l}
Compute \\
d
\end{tabular} & N \\
\hline & \multirow[t]{6}{*}{Tires} & \multirow[t]{3}{*}{FrntTi re} & \[
\begin{aligned}
& \hline F \\
& x
\end{aligned}
\] & Front tire force, along vehicle-fixed \(x\)-axis & 0 & N \\
\hline & & & \begin{tabular}{|l|}
\hline\(F\) \\
\hline y \\
\hline
\end{tabular} & Front tire force, along vehicle-fixed \(y\)-axis & 0 & N \\
\hline & & & \[
\begin{aligned}
& \mathrm{F} \\
& \mathrm{Z}
\end{aligned}
\] & Front tire force, along vehicle-fixed \(z\)-axis & \begin{tabular}{l}
Compute \\
d
\end{tabular} & N \\
\hline & & \multirow[t]{3}{*}{RearTi re} & \[
\begin{aligned}
& \mathrm{F} \\
& \mathrm{x}
\end{aligned}
\] & Rear tire force, along vehicle-fixed \(x\)-axis & 0 & N \\
\hline & & & \begin{tabular}{|l|}
\hline\(F\) \\
\hline
\end{tabular} & Rear tire force, along vehicle-fixed \(y\)-axis & 0 & N \\
\hline & & & \[
\begin{aligned}
& \mathrm{F} \\
& \mathrm{z}
\end{aligned}
\] & Rear tire force, along vehicle-fixed \(z\)-axis & Compute d & N \\
\hline & \multirow[t]{3}{*}{Drag} & \multicolumn{2}{|l|}{FX} & Drag force on vehicle CG along vehicle-fixed \(x\)-axis & Compute d & N \\
\hline & & \multicolumn{2}{|l|}{Fy} & Drag force on vehicle CG along vehicle-fixed \(y\)-axis & Compute d & N \\
\hline & & \multicolumn{2}{|l|}{Fz} & Drag force on vehicle CG along vehicle-fixed \(z\) axis & \begin{tabular}{l}
Compute \\
d
\end{tabular} & N \\
\hline & Grvty & Fx & & Gravity force on vehicle CG along vehicle-fixed \(x\)-axis & Compute d & N \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Signal} & Description & Value & Units \\
\hline \multirow[t]{11}{*}{} & & Fy & Gravity force on vehicle CG along vehicle-fixed \(y\)-axis & 0 & N \\
\hline & & Fz & Gravity force on vehicle CG along vehicle-fixed \(z\) axis & \begin{tabular}{l}
Compute \\
d
\end{tabular} & N \\
\hline & \multirow[t]{3}{*}{Body} & Mx & Body moment on vehicle CG about vehicle-fixed \(x\)-axis & 0 & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline & & My & Body moment on vehicle CG about vehicle-fixed \(y\)-axis & \begin{tabular}{l}
Compute \\
d
\end{tabular} & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline & & Mz & Body moment on vehicle CG about vehicle-fixed \(z\)-axis & 0 & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline & \multirow[t]{3}{*}{Drag} & Mx & Drag moment on vehicle CG about vehicle-fixed \(x\)-axis & 0 & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline & & My & Drag moment on vehicle CG about vehicle-fixed \(y\)-axis & Compute d & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline & & Mz & Drag moment on vehicle CG about vehicle-fixed \(z\)-axis & 0 & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline & \multirow[t]{3}{*}{Ext} & Fx & External moment on vehicle CG about vehicle-fixed \(x\)-axis & \begin{tabular}{l}
Compute \\
d
\end{tabular} & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline & & Fy & External moment on vehicle CG about vehicle-fixed \(y\)-axis & Compute d & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline & & Fz & External moment on vehicle CG about vehicle-fixed \(z\)-axis & \begin{tabular}{l}
Compute \\
d
\end{tabular} & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Signal} & Description & Value & Units \\
\hline \multirow[t]{13}{*}{} & \multirow[t]{3}{*}{Disp} & x & Front axle displacement along the vehicle-fixed \(x\)-axis & \begin{tabular}{l}
Compute \\
d
\end{tabular} & m \\
\hline & & y & Front axle displacement along the vehicle-fixed \(y\)-axis & 0 & m \\
\hline & & z & Front axle displacement along the vehicle-fixed \(z\)-axis & \begin{tabular}{l}
Compute \\
d
\end{tabular} & m \\
\hline & Vel & xdot & Front axle velocity along the vehicle-fixed \(x\)-axis & Compute d & m/s \\
\hline & & ydot & Front axle velocity along the vehicle-fixed \(y\)-axis & 0 & m/s \\
\hline & & zdot & Front axle velocity along the vehicle-fixed \(z\)-axis & Compute d & m/s \\
\hline & Steer & WhlAngFL & Front left wheel steering angle & Compute d & rad \\
\hline & & WhlAngFR & Front right wheel steering angle & Compute d & rad \\
\hline & \multirow[t]{3}{*}{Disp} & x & Rear axle displacement along the vehicle-fixed \(x\)-axis & Compute d & m \\
\hline & & y & Rear axle displacement along the vehicle-fixed \(y\)-axis & 0 & m \\
\hline & & z & Rear axle displacement along the vehicle-fixed \(z\)-axis & Compute d & m \\
\hline & \multirow[t]{2}{*}{Vel} & xdot & Rear axle velocity along the vehicle-fixed \(x\)-axis & Compute d & m/s \\
\hline & & ydot & Rear axle velocity along the vehicle-fixed \(y\)-axis & 0 & m/s \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Signal} & Description & Value & Units \\
\hline & & & zdot & Rear axle velocity along the vehicle-fixed \(z\)-axis & Compute d & m/s \\
\hline & & \multirow[t]{2}{*}{Steer} & WhlAngRL & Rear left wheel steering angle & Compute d & rad \\
\hline & & & WhlAngRR & Rear right wheel steering angle & Compute d & rad \\
\hline & \multirow[t]{2}{*}{Pwr} & \multicolumn{2}{|l|}{PwrExt} & Applied external power & Compute d & W \\
\hline & & \multicolumn{2}{|l|}{Drag} & Power loss due to drag & Compute d & W \\
\hline \multirow[t]{9}{*}{PwrInfo} & \multirow[t]{5}{*}{PwrTrn sfrd} & \multicolumn{2}{|l|}{PwrFxExt} & Externally applied longitudinal force power & Compute d & W \\
\hline & & \multicolumn{2}{|l|}{PwrFzExt} & Externally applied longitudinal force power & Compute d & W \\
\hline & & \multicolumn{2}{|l|}{PwrMyExt} & Externally applied pitch moment power & Compute d & W \\
\hline & & \multicolumn{2}{|l|}{PwrFwFx} & Longitudinal force applied at the front axle & Compute d & W \\
\hline & & \multicolumn{2}{|l|}{PwrFwRx} & Longitudinal force applied at the rear axle & Compute d & W \\
\hline & \multirow[t]{4}{*}{PwrNot Trnsfr d} & \multicolumn{2}{|l|}{PwrFsF} & Internal power transferred between suspension and vehicle body at the front axle & Compute d & W \\
\hline & & \multicolumn{2}{|l|}{PwrFsR} & Internal power transferred between suspension and vehicle body at the rear axle & Compute d & W \\
\hline & & \multicolumn{2}{|l|}{PwrFxDrag} & Longitudinal drag force power & Compute d & W \\
\hline & & \multicolumn{2}{|l|}{PwrFzDrag} & Vertical drag force power & Compute d & W \\
\hline
\end{tabular}


\section*{xdot - Vehicle longitudinal velocity}

\section*{scalar}

Vehicle CG velocity along vehicle-fixed \(x\)-axis, in \(\mathrm{m} / \mathrm{s}\).

\section*{FzF - Front axle normal force}

\section*{scalar}

Normal force on front axle, \(F z_{F}\), along vehicle-fixed \(z\)-axis, in N .

\section*{FzR - Rear axle normal force}

\section*{scalar}

Normal force on rear axle, \(F z_{R}\), along vehicle-fixed \(z\)-axis, in N .

\section*{Parameters}

\section*{Options}

\section*{External forces - FExt input port off (default) | on}

Specify to create input port FExt.

\section*{External moments - MExt input port}

\section*{off (default) |on}

Specify to create input port MExt.

\section*{Air temperature - AirTemp input port off (default) | on}

Specify to create input port AirTemp.

\section*{Longitudinal}

\section*{Number of wheels on front axle, NF - Front wheel count} scalar

Number of wheels on front axle, \(N_{F}\), dimensionless.
Number of wheels on rear axle, NR - Rear wheel count scalar

Number of wheels on rear axle, \(N_{R}\), dimensionless.
Mass, m - Vehicle mass

\section*{scalar}

Vehicle mass, \(m\), in kg .
Horizontal distance from CG to front axle, a-Front axle distance scalar

Horizontal distance \(a\) from the vehicle CG to the front wheel axle, in \(m\).
Horizontal distance from CG to rear axle, b-Rear axle distance scalar

Horizontal distance \(b\) from the vehicle CG to the rear wheel axle, in \(m\).

\section*{CG height above axles, h-Height scalar}

Height of vehicle CG above the axles, \(h\), in \(m\).

\section*{Drag coefficient, Cd - Drag}

\section*{scalar}

Air drag coefficient, \(C_{d}\), dimensionless.

\section*{Frontal area, Af - Area}
scalar
Effective vehicle cross-sectional area, \(A_{f}\) to calculate the aerodynamic drag force on the vehicle, in \(\mathrm{m}^{\wedge} 2\).
```

Initial position, x_o - Position
scalar

```

Vehicle body longitudinal initial position along earth-fixed \(x\)-axis, \(x_{0}\), in \(m\).
```

Initial velocity, xdot_o - Velocity
scalar

```

Vehicle body longitudinal initial velocity along earth-fixed \(x\)-axis, \(\dot{x}_{0}\), in \(\mathrm{m} / \mathrm{s}\).

\section*{Vertical}
```

Lift coefficient, Cl - Lift

```
scalar

Lift coefficient, \(C_{l}\), dimensionless.
Initial vertical position, z_o - Position scalar

Initial vertical CG position, \(z_{0}\), along the vehicle-fixed \(z\)-axis, in \(m\).

\section*{Initial vertical velocity, zdot_o - Velocity scalar}

Initial vertical CG velocity, \(z d o t_{o}\), along the vehicle-fixed \(z\)-axis, in \(m\).

\section*{Pitch}

\section*{Inertia, Iyy - About body y-axis \\ scalar}

Vehicle body moment of inertia about body \(z\)-axis.

\section*{Pitch drag moment coefficient, Cpm - Drag coefficient scalar}

Pitch drag moment coefficient, dimensionless.

\section*{Initial pitch angle, theta_o - Pitch scalar}

Initial pitch angle about body \(z\)-axis, in rad.

\section*{Initial angular velocity, q_o - Pitch velocity scalar}

Initial vehicle body angular velocity about body \(z\)-axis, in rad/s.

\section*{Suspension}

Front axle stiffness force data, FskF - Force vector

Front axle stiffness force data, \(F k_{F}\), in N .

\section*{Dependencies}

To enable this parameter, for the Ground interaction type parameter, select Grade angle or Axle displacement, velocity.

Front axle displacement data, dzsF - Displacement vector

Front axle displacement data, in m.

\section*{Dependencies}

To enable this parameter, for the Ground interaction type parameter, select Grade angle or Axle displacement, velocity.

\section*{Front axle damping force data, FsbF - Damping force vector}

Front axle damping force, in N.

\section*{Dependencies}

To enable this parameter, for the Ground interaction type parameter, select Grade angle or Axle displacement, velocity.

Front axle velocity data, dzdotsF - Velocity vector

Front axle velocity data, in m/s.

\section*{Dependencies}

To enable this parameter, for the Ground interaction type parameter, select Grade angle or Axle displacement, velocity.

Rear axle stiffness force data, FskR - Force vector

Rear axle stiffness force data, in N.

\section*{Dependencies}

To enable this parameter, for the Ground interaction type parameter, select Grade angle or Axle displacement, velocity.

Rear axle displacement data, dzsR - Displacement vector

Rear axle displacement data, in m.

\section*{Dependencies}

To enable this parameter, for the Ground interaction type parameter, select Grade angle or Axle displacement, velocity.

Rear axle damping force data, FsbR - Damping force vector

Rear axle damping force, in N .

\section*{Dependencies}

To enable this parameter, for the Ground interaction type parameter, select Grade angle or Axle displacement, velocity.

Rear axle velocity data, dzdotsR - Velocity vector

Rear axle velocity data, in m/s.

\section*{Dependencies}

To enable this parameter, for the Ground interaction type parameter, select Grade angle or Axle displacement, velocity.

\section*{Environment}

\section*{Absolute air pressure, Pabs - Pressure}
scalar
Environmental air absolute pressure, \(P_{a b s}\), in Pa .
Air temperature, Tair - Ambient air temperature
scalar
Ambient air temperature, \(T_{\text {air }}\), in K .

\section*{Dependencies}

To enable this parameter, clear Air temperature.
Gravitational acceleration, g - Gravity scalar

Gravitational acceleration, \(g\), in \(\mathrm{m} / \mathrm{s}^{\wedge} 2\).

\section*{References}
[1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers, 1992.
[2] Vehicle Dynamics Standards Committee. Vehicle Dynamics Terminology. SAE J670. Warrendale, PA: Society of Automotive Engineers, 2008.
[3] Technical Committee. Road vehicles - Vehicle dynamics and road-holding ability Vocabulary. ISO 8855:2011. Geneva, Switzerland: International Organization for Standardization, 2011.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

Vehicle Body 1DOF Longitudinal | Vehicle Body Total Road Load

Introduced in R2017a

\section*{Vehicle Body Total Road Load}

\author{
Vehicle motion using coast-down testing coefficients \\ Library: Powertrain Blockset / Vehicle Dynamics Vehicle Dynamics Blockset / Vehicle Body
}


\section*{Description}

The Vehicle Body Total Road Load block implements a one degree-of-freedom (1DOF) rigid vehicle model using coast-down testing coefficients. You can use this block in a vehicle model to represent the load that the driveline and chassis applies to a transmission or engine. It is suitable for system-level performance, component sizing, fuel economy, or drive cycle tracking studies. The block calculates the dynamic powertrain load with minimal parameterization or computational cost.

You can configure the block for kinematic, force, or total power input.
- Kinematic - Block uses the vehicle longitudinal velocity and acceleration to calculate the tractive force and power.
- Force - Block uses the tractive force to calculate the vehicle longitudinal displacement and velocity.
- Power - Block uses the engine or transmission power to calculate the vehicle longitudinal displacement and velocity.

\section*{Dynamics}

To calculate the total road load acting on the vehicle, the block implements this equation.
\[
F_{\text {road }}=a+b \dot{x}+c \dot{x}^{2}+m g \sin (\theta)
\]

To determine the coefficients \(a, b\), and \(c\), you can use a test procedure similar to the one described in Road Load Measurement and Dynamometer Simulation Using Coastdown Techniques. You can also use Simulink \({ }^{\circledR}\) Design Optimization \({ }^{\mathrm{TM}}\) to fit the coefficients to measured data.

To calculate the vehicle motion, the block uses Newton's law for rigid bodies.
\[
F_{\text {total }}=m \ddot{x}+F_{\text {road }}
\]

Total power input is a product of the total force and longitudinal velocity. Power due to road and gravitational forces is a product of the road force and longitudinal velocity.
\[
\begin{aligned}
& P_{\text {total }}=F_{\text {total }} \dot{x} \\
& P_{\text {road }}=F_{\text {road }} \dot{x}
\end{aligned}
\]

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Descriptio & Variabl & Equations \\
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\begin{tabular}{l}
PwrTrnsfrd - Power transferred between blocks \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block \\
PwrNotTrnsfrd - Power crossing the block boundary, but not transferred \\
- Positive signals indicate an input \\
- Negative signals indicate a loss \\
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular}} & PwrFx Ext & Externally applied force power & \(P_{\text {FxExt }}\) & \(P_{\text {FxExt }}=F_{\text {total }} \dot{X}\) \\
\hline & & \begin{tabular}{l}
PwrFx \\
Drag
\end{tabular} & Drag force power & \(P_{D}\) & \[
\begin{aligned}
& P_{d}=-(a+b \dot{x} \\
& \left.+c \dot{x}^{2}\right) \dot{x}
\end{aligned}
\] \\
\hline & & wrSto redGr vty & \begin{tabular}{l}
Rate change in \\
gravitationa l potential energy
\end{tabular} & \(P_{g}\) & \(P_{g}=-m g \dot{Z}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Bus Signal & & \begin{tabular}{l}
Descriptio \\
n
\end{tabular} & Variabl e & Equations \\
\hline & PwrSt oredx dot & Rate in change of longitudinal kinetic energy & \(P_{\text {xdot }}\) & \(P_{\dot{\chi}}=m \ddot{\chi} \dot{x}\) \\
\hline
\end{tabular}

The equations use these variables.
\(a \quad\) Steady-state rolling resistance coefficient
\(b \quad\) Viscous driveline and rolling resistance coefficient
c Aerodynamic drag coefficient
\(g \quad\) Gravitational acceleration
\(\chi\)
\(\dot{x} \quad\) Vehicle longitudinal velocity with respect to ground, in vehicle-fixed frame
\(\ddot{x} \quad\) Vehicle longitudinal acceleration with respect to ground, vehicle-fixed frame

Vehicle body mass
\(\Theta \quad\) Road grade angle
\(F_{\text {total }} \quad\) Total force acting on vehicle
\(F_{\text {road }} \quad\) Resistive road load due to losses and gravitational load
\(P_{\text {total }} \quad\) Total tractive input power
\(P_{\text {road }} \quad\) Total power due to losses and gravitational load
\(\dot{Z} \quad\) Vehicle vertical velocity along vehicle-fixed z-axis

\section*{Ports}

\section*{Input}

\section*{xdot - Vehicle longitudinal velocity}
scalar

Vehicle total longitudinal velocity, \(\dot{x}\), in \(\mathrm{m} / \mathrm{s}\).

\section*{Dependencies}

To create this port, for the Input Mode parameter, select Kinematic.

\section*{xddot - Vehicle longitudinal acceleration scalar}

Vehicle total longitudinal acceleration, \(\ddot{x}\), in \(\mathrm{m} / \mathrm{s}^{\wedge} 2\).

\section*{Dependencies}

To create this port, for the Input Mode parameter, select Kinematic.

\section*{PwrTot - Tractive input power}
scalar
Tractive input power, \(P_{\text {total }}\), in W.

\section*{Dependencies}

To create this port, for the Input Mode parameter, select Power.

\section*{ForceTot - Tractive input force \\ scalar}

Tractive input force, \(F_{\text {total }}\), in N .

\section*{Dependencies}

To create this port, for the Input Mode parameter, select Force.

\section*{Grade - Road grade angle}
scalar
Road grade angle, \(\Theta\), in deg.

\section*{Output}

Info - Bus signal
bus
Bus signal containing these block calculations.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Signal} & Description & Value & Units \\
\hline \multirow[t]{9}{*}{\[
\begin{aligned}
& \hline \mathrm{I} \\
& \mathrm{n} \\
& \mathrm{e} \\
& \mathrm{r} \\
& \mathrm{t} \\
& \mathrm{~F} \\
& \mathrm{r} \\
& \mathrm{~m}
\end{aligned}
\]} & \multirow[t]{9}{*}{Cg} & \multirow[t]{3}{*}{Disp} & X & Vehicle CG displacement along earth-fixed X-axis & Computed & m \\
\hline & & & Y & Vehicle CG displacement along earth-fixed \(Y\)-axis & 0 & m \\
\hline & & & Z & Vehicle CG displacement along earth-fixed Z-axis & Computed & m \\
\hline & & \multirow[t]{3}{*}{Vel} & Xdot & Vehicle CG velocity along earthfixed X-axis & Computed & m/s \\
\hline & & & Ydot & Vehicle CG velocity along earthfixed \(Y\)-axis & 0 & m/s \\
\hline & & & Zdot & Vehicle CG velocity along earthfixed Z-axis & Computed & m/s \\
\hline & & \multirow[t]{3}{*}{Ang} & phi & Rotation of vehicle-fixed frame about earth-fixed X-axis (roll) & 0 & rad \\
\hline & & & thet a & Rotation of vehicle-fixed frame about earth-fixed Y-axis (pitch) & Computed & rad \\
\hline & & & psi & Rotation of vehicle-fixed frame about earth-fixed Z-axis (yaw) & 0 & rad \\
\hline \multirow[t]{7}{*}{\[
\begin{aligned}
& \hline \mathrm{B} \\
& \mathrm{~d} \\
& \mathrm{y} \\
& \mathrm{~F} \\
& \mathrm{r} \\
& \mathrm{~m}
\end{aligned}
\]} & \multirow[t]{7}{*}{Cg} & \multirow[t]{3}{*}{Disp} & x & Vehicle CG displacement along vehicle-fixed x-axis & Computed & m \\
\hline & & & y & Vehicle CG displacement along vehicle-fixed y-axis & 0 & m \\
\hline & & & z & Vehicle CG displacement along vehicle-fixed z-axis & 0 & m \\
\hline & & \multirow[t]{3}{*}{Vel} & xdot & Vehicle CG velocity along vehiclefixed \(x\)-axis & Computed & m/s \\
\hline & & & ydot & Vehicle CG velocity along vehiclefixed \(y\)-axis & 0 & m/s \\
\hline & & & zdot & Vehicle CG velocity along vehiclefixed z -axis & 0 & m/s \\
\hline & & Acc & ax & Vehicle CG acceleration along vehicle-fixed x -axis & Computed & gn \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Signal} & Description & Value & Units \\
\hline \multirow{14}{*}{For ces} & & ay & Vehicle CG acceleration along vehicle-fixed y-axis & 0 & gn \\
\hline & & az & Vehicle CG acceleration along vehicle-fixed z-axis & 0 & gn \\
\hline & \multirow[t]{3}{*}{Body} & Fx & Net force on vehicle CG along vehicle-fixed x -axis & Computed & N \\
\hline & & Fy & Net force on vehicle CG along vehicle-fixed y-axis & 0 & N \\
\hline & & Fz & Net force on vehicle CG along vehicle-fixed z-axis & 0 & N \\
\hline & \multirow[t]{3}{*}{Ext} & Fx & External force on vehicle CG along vehicle-fixed \(x\)-axis & Computed & N \\
\hline & & Fy & External force on vehicle CG along vehicle-fixed \(y\)-axis & 0 & N \\
\hline & & Fz & External force on vehicle CG along vehicle-fixed \(z\)-axis & 0 & N \\
\hline & \multirow[t]{3}{*}{Drag} & Fx & Drag force on vehicle CG along vehicle-fixed x -axis & Computed & N \\
\hline & & Fy & Drag force on vehicle CG along vehicle-fixed y-axis & 0 & N \\
\hline & & Fz & Drag force on vehicle CG along vehicle-fixed z-axis & 0 & N \\
\hline & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mathrm{Grvt} \\
& \mathrm{y}
\end{aligned}
\]} & Fx & Gravity force on vehicle CG along vehicle-fixed x-axis & Computed & N \\
\hline & & Fy & Gravity force on vehicle CG along vehicle-fixed y-axis & 0 & N \\
\hline & & Fz & Gravity force on vehicle CG along vehicle-fixed z-axis & Computed & N \\
\hline \multirow[t]{2}{*}{Pwr} & \multicolumn{2}{|l|}{PwrExt} & Applied external power & Computed & W \\
\hline & \multicolumn{2}{|l|}{Drag} & Power loss due to drag & Computed & W \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Signal} & Description & Value & Units \\
\hline \multirow[t]{4}{*}{\[
\begin{array}{|l|}
\hline \text { I' } \\
\hline \mathrm{W} \\
\mathrm{~W} \\
\mathrm{I} \\
\mathrm{n} \\
\mathrm{f} \\
\mathrm{o} \\
\hline
\end{array}
\]} & \begin{tabular}{l}
Pwr \\
Trn \\
sfr \\
d
\end{tabular} & PwrFxExt & Externally applied force power & \(P_{\text {FXExt }}\) & W \\
\hline & \begin{tabular}{l}
Pwr \\
Not \\
Trn sfr \\
d
\end{tabular} & PwrFxDrag & Drag force power & \(P_{D}\) & W \\
\hline & \[
\begin{aligned}
& \text { Pwr } \\
& \text { Sto }
\end{aligned}
\] & wrStoredG rvty & Rate change in gravitational potential energy & \(P_{g}\) & W \\
\hline & red & PwrStored xdot & Rate in change of longitudinal kinetic energy & \(P_{\text {xdot }}\) & W \\
\hline
\end{tabular}

\section*{xdot - Vehicle longitudinal velocity}

\section*{scalar}

Vehicle total longitudinal velocity, \(\dot{x}\), in \(\mathrm{m} / \mathrm{s}\).

\section*{Dependencies}

To create this port, for the Input Mode parameter, select Power or Force.

\section*{ForceTot - Tractive input force}

\section*{scalar}

Tractive input force, \(F_{\text {total }}\), in N.

\section*{Dependencies}

To create this port, for the Input Mode parameter, select Kinematic.

\section*{Parameters}

\section*{Input Mode - Specify input mode}

Kinematic (default)|Force | Power
Specify the input type.
- Kinematic - Block uses the vehicle longitudinal velocity and acceleration to calculate the tractive force and power. Use this configuration for powertrain, driveline, and braking system design, or component sizing.
- Force - Block uses the tractive force to calculate the vehicle longitudinal displacement and velocity. Use this configuration for system-level performance, fuel economy, or drive cycle tracking studies.
- Power - Block uses the engine or transmission power to calculate the vehicle longitudinal displacement and velocity. Use this configuration for system-level performance, fuel economy, or drive cycle tracking studies.

\section*{Dependencies}

This table summarizes the port and input mode configurations.
\begin{tabular}{|l|l|}
\hline Input Mode & Creates Ports \\
\hline Kinematic & \begin{tabular}{l} 
xdot \\
xddot
\end{tabular} \\
\hline Force & Force \\
\hline Power & Power \\
\hline
\end{tabular}

\section*{Mass - Vehicle body mass}
scalar
Vehicle body mass, \(m\), in kg.
Rolling resistance coefficient, a-Rolling scalar

Steady-state rolling resistance coefficient, \(a\), in N .
Rolling and driveline resistance coefficient, b-Rolling and driveline scalar

Viscous driveline and rolling resistance coefficient, \(b\), in \(\mathrm{N}^{*} \mathrm{~s} / \mathrm{m}\).

\section*{Aerodynamic drag coefficient, c-Drag}
scalar
Aerodynamic drag coefficient, \(c\), in \(\mathrm{N} \cdot \mathrm{s}^{\wedge} 2 / \mathrm{m}\).

\section*{Gravitational acceleration, g-Gravity scalar}

Gravitational acceleration, \(g\), in \(\mathrm{m} / \mathrm{s}^{\wedge} 2\).

\section*{Initial velocity, xdot_o - Velocity \\ scalar}

Vehicle longitudinal initial velocity with respect to ground, in m/s.

\section*{References}
[1] Gillespie, Thomas. Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers (SAE), 1992.
[2] Light Duty Vehicle Performance And Economy Measure Committee. Road Load Measurement and Dynamometer Simulation Using Coastdown Techniques. Standard J1263_201003. SAE International, March 2010.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

Drive Cycle Source | Vehicle Body 1DOF Longitudinal | Vehicle Body 3DOF Longitudinal
Introduced in R2017a

\section*{Energy Storage Blocks Alphabetical List}

\section*{Datasheet Battery}

Lithium-ion, lithium-polymer, or lead-acid battery
Library: Powertrain Blockset / Energy Storage and Auxiliary


\section*{Description}

The Datasheet Battery block implements a lithium-ion, lithium-polymer, or lead-acid battery that you can parameterize using manufacturer data. To create the open-circuit voltage and internal resistance parameters that you need for the block, use the manufacturer discharge characteristics by temperature data. For an example, see "Generate Parameter Data for Datasheet Battery Block".

To determine the battery output voltage, the block uses lookup tables for the battery open-circuit voltage and the internal resistance. The lookup tables are functions of the state-of charge (SOC) and battery temperature, characterizing the battery performance at various operating points:
\[
\begin{aligned}
& E_{m}=f(S O C) \\
& R_{\text {int }}=f(T, S O C)
\end{aligned}
\]

To calculate the voltage, the block implements these equations.
\[
\begin{aligned}
& V_{T}=E_{m}+I_{\text {batt }} R_{\text {int }} \\
& I_{\text {batt }}=\frac{I_{\text {in }}}{N_{p}} \\
& V_{\text {out }}=\left\{\begin{array}{lr}
N_{S} V_{T} & \text { unfiltered } \\
\frac{V_{\text {out }}}{\tau S+1} & \text { filtered }
\end{array}\right. \\
& S O C=\frac{1}{C a p_{\text {batt }}} \int_{0}^{t} I_{\text {batt }} d t \\
& L d_{A m p H r}=\int_{0}^{t} I_{\text {batt }} d t
\end{aligned}
\]

Positive current indicates battery discharge. Negative current indicates battery charge.

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Descriptio & Equations \\
\hline \multirow[t]{2}{*}{} & \begin{tabular}{l}
PwrTrnsfrd - Power transferred between blocks \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block
\end{tabular} & PwrLdBatt & Battery network power & \[
\begin{aligned}
& V_{\text {batt }}=V_{\text {out }} \text { OR } \frac{V_{\text {out }}}{\tau s+1} \\
& P_{\text {batt }}=-V_{\text {batt }} I_{\text {batt }} \\
& P_{\text {LdBatt }} \quad-P_{\text {batt }}
\end{aligned}
\] \\
\hline & \begin{tabular}{l}
PwrNotTrnsfrd - Power crossing the block boundary, but not transferred \\
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular} & PwrLossBatt & Battery network power loss & \[
\begin{aligned}
& P_{\text {LossBatt }}= \\
& -N_{p} N_{S} I_{\text {batt }}{ }^{2} R_{\text {int }}
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{2}{|l|}{ Bus Signal } & \begin{tabular}{l} 
Descriptio \\
\(\mathbf{n}\)
\end{tabular} & Equations \\
\hline & \begin{tabular}{l} 
PwrStored — Stored energy rate of \\
change
\end{tabular} & \begin{tabular}{l} 
PwrStoredBa \\
tt
\end{tabular} & \begin{tabular}{l} 
Battery \\
network \\
power \\
increase \\
stored \\
Negative signals indicate a \\
decrease
\end{tabular} & \begin{tabular}{l}
\(P_{\text {StoredBatt }}\) \\
\(=P_{\text {Batt }}\) \\
\(+P_{\text {LossBatt }}\)
\end{tabular} \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll} 
SOC & State-of-charge \\
\(E_{m}\) & Battery open-circuit voltage \\
\(I_{\text {batt }}\) & Per module battery current \\
\(P_{\text {LdBatt }}\) & Battery network power \\
\(P_{\text {batt }}\) & Battery power \\
\(P_{\text {LossBatt }}\) & Battery network power loss \\
\(P_{\text {StoredBatt }}\) & Battery network power stored \\
\(I_{\text {in }}\) & Combined current flowing from the battery network \\
\(R_{\text {int }}\) & Battery internal resistance \\
\(N_{s}\) & Number of cells in series \\
\(N_{p}\) & Number of cells in parallel \\
\(V_{\text {out }} V_{\text {batt }}\) & Combined voltage of the battery network \\
\(V_{T}\) & Per module battery voltage \\
\(C a p_{\text {batt }}\) & Battery capacity \\
\(L d_{\text {AmpHr }}\) & Battery energy
\end{tabular}

\section*{Ports}

\section*{Inputs}

\section*{CapInit - Battery capacity \\ scalar}

Rated battery capacity at the nominal temperature, \(C_{a p}\) batt, in Ah.

\section*{Dependencies}

To create this port, select External Input for the Initial battery capacity parameter.

\section*{BattCurr - Battery load current}

\section*{scalar}

Combined current flowing from the battery network, \(I_{i n}\), in A.

\section*{BattTemp - Battery temperature}

\section*{scalar}

Temperature measured at the battery housing, \(T\), in K .

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|l|}
\hline Signal & Description & \begin{tabular}{l} 
Variabl \\
e
\end{tabular} & Units \\
\hline BattCurr & \begin{tabular}{l} 
Combined current flowing \\
from the battery network
\end{tabular} & \(I_{\text {batt }}\) & A \\
\hline BattAmpHr & Battery energy & \(L d_{A m p H r}\) & A*h \\
\hline BattSoc & State-of-charge capacity & \(S O C\) & NA \\
\hline BattVolt & \begin{tabular}{l} 
Combined voltage of the \\
battery network
\end{tabular} & \(V_{\text {out }}\) & V \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Signal} & Description & Variabl & Units \\
\hline \multicolumn{3}{|l|}{BattPwr} & Battery network power & \(P_{\text {batt }}\) & W \\
\hline \multirow[t]{3}{*}{PwrInf 0} & PwrTrnsfrd & PwrLdBatt & Battery network power & \(P_{\text {LdBatt }}\) & W \\
\hline & PwrNotTrns frd & PwrLossBatt & Battery network power loss & \(P_{\text {LossBatt }}\) & W \\
\hline & PwrStored & PwrStoredBa tt & Battery network power stored & \[
\left\lvert\, \begin{aligned}
& P_{\text {StoredBat }} \\
& t
\end{aligned}\right.
\] & W \\
\hline
\end{tabular}

\section*{BattVolt - Battery output voltage}
scalar
Combined voltage of the battery network, \(V_{\text {out }}\), in V .

\section*{Parameters}

\section*{Block Options}

\section*{Initial battery capacity - Input or parameter \\ Parameter (default)|External Input}

Initial battery capacity, \(C a p_{\text {batt, }}\) in Ah.

\section*{Dependencies}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Block Parameter Initial battery \\
capacity Option
\end{tabular} & Creates \\
\hline External Input & Input port CapInit \\
\hline Parameter & \begin{tabular}{l} 
Parameter Initial battery capacity, \\
BattCapInit
\end{tabular} \\
\hline
\end{tabular}

\section*{Output battery voltage - Unfiltered or Filter Unfiltered (default) | Filtered}

Select Filtered to apply a first-order filter to the output batter voltage.

\section*{Dependencies}

Setting Output battery voltage parameter to Filtered creates these parameters:
- Output battery voltage time constant, Tc
- Output battery voltage initial value, Vinit

Rated capacity at nominal temperature, BattChargeMax - Constant scalar

Rated battery capacity at the nominal temperature, in Ah.
Open circuit voltage table data, Em - 1-D lookup table 1-by-P matrix

Open-circuit voltage data curve, \(E_{m}\), as a function of the discharged capacity for P operating points, in V.

Open circuit voltage breakpoints 1, CapLUTBp - Breakpoints 1-by-P matrix

Discharge capacity breakpoints for P operating points, dimensionless.
Although this parameter is the same as the Battery capacity breakpoints 2, CapSOCBp parameter, the block uses unique parameters for calibration flexibility.

\section*{Internal resistance table data, RInt - 2-D lookup table N -by-M matrix}

Internal resistance map, \(R_{\text {int }}\), as a function of N temperatures and M SOCs, in ohms.
Battery temperature breakpoints 1, BattTempBp - Breakpoints 1-by-N matrix

Battery temperature breakpoints for N temperatures, in K .
Battery capacity breakpoints 2, CapSOCBp - Breakpoints 1-by-M matrix

Battery capacity breakpoints for M SOCs, dimensionless.
Although this parameter is the same as the Open circuit voltage breakpoints 1, CapLUTBp parameter, the block uses unique parameters for calibration flexibility.
```

Number of cells in series, Ns - Integer
scalar

```

Number of cells in series, dimensionless, \(N_{s}\).
Number of cells in parallel, Np - Integer scalar

Number of cells in parallel, dimensionless, \(N_{p}\).

\section*{Initial battery capacity, BattCapInit - Capacity} scalar

Initial battery capacity, \(C_{\text {ap }}\) batt, in Ah.

\section*{Dependencies}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Block Parameter Initial battery \\
capacity Option
\end{tabular} & Creates \\
\hline External Input & Input port CapInit \\
\hline Parameter & \begin{tabular}{l} 
Parameter Initial battery capacity, \\
BattCapInit
\end{tabular} \\
\hline
\end{tabular}

\section*{Output battery voltage time constant, Tc - Filter time constant scalar}

Output battery voltage time constant, \(T_{c}\), in s. Used in a first-order voltage filter.

\section*{Dependencies}

Setting Output battery voltage parameter to Filtered creates these parameters:
- Output battery voltage time constant, Tc
- Output battery voltage initial value, Vinit

Output battery voltage initial value - Filter initial voltage scalar

Output battery voltage initial value, \(V_{\text {init }}\), in V . Used in a first-order voltage filter.

\section*{Dependencies}

Setting Output battery voltage parameter to Filtered creates these parameters:
- Output battery voltage time constant, Tc
- Output battery voltage initial value, Vinit

\section*{References}
[1] Arrhenius, S.A. "Über die Dissociationswärme und den Einflusß der Temperatur auf den Dissociationsgrad der Elektrolyte." Journal of Physical Chemistry. 4 (1889): 96-116.
[2] Connors, K. Chemical Kinetics. New York: VCH Publishers, 1990.
[3] Ji, Yan, Yancheng Zhang, and Chao-Yang Wang. Journal of the Electrochemical Society. Volume 160, Issue 4 (2013), A636-A649.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

Equivalent Circuit Battery | Estimation Equivalent Circuit Battery

\section*{Topics}
"Generate Parameter Data for Datasheet Battery Block"
Battery Modeling

Introduced in R2017a

\section*{Estimation Equivalent Circuit Battery}

Resistor-capacitor (RC) circuit battery that creates lookup tables
Library: Powertrain Blockset / Energy Storage and Auxiliary Drive / Network Battery


\section*{Description}

The Estimation Equivalent Circuit Battery block implements a resistor-capacitor (RC) circuit battery model that you can use to create lookup tables for the Equivalent Circuit Battery block. The lookup tables are functions of the state-of-charge (SOC).

The Estimation Equivalent Circuit Battery block calculates the combined voltage of the network battery using parameter lookup tables. The tables are functions of the SOC. To acquire the SOC, the block integrates the charge and discharge currents.

Specifically, the block implements these parameters as lookup tables that are functions of the SOC:
- Series resistance, \(R_{o}=\mathrm{f}(S O C)\)
- Battery open-circuit voltage, \(E_{m}=f(S O C)\)
- Network resistance, \(R_{n}=f(S O C)\)
- Network capacitance, \(C_{n}=f(S O C)\)

To calculate the combined voltage of the battery network, the block uses these equations.
\[
\begin{aligned}
& V_{T}=E_{m}-I_{\text {batt }} R_{o}-\sum_{1}^{n} V_{n} \\
& V_{n}=\int_{0}^{t}\left[\frac{I_{\text {batt }}}{C_{n}}-\frac{V_{n}}{R_{n} C_{n}}\right] d t \\
& S O C=\frac{-1}{C_{\text {batt }}} \int_{0}^{t} I_{\text {batt }} d t \\
& I_{\text {batt }}=I_{\text {in }} \\
& V_{\text {out }}=V_{T}
\end{aligned}
\]

Positive current indicates battery discharge. Negative current indicates battery charge.
The equations use these variables.
\begin{tabular}{ll} 
SOC & State-of-charge \\
\(E_{m}\) & Battery open-circuit voltage \\
\(I_{\text {batt }}\) & Per module battery current \\
\(I_{\text {in }}\) & Combined current flowing from the battery network \\
\(R_{o}\) & Series resistance \\
\(n\) & Number of RC pairs in series \\
\(V_{\text {out }}, V_{T}\) & Combined voltage of the battery network \\
\(V_{n}\) & Voltage for \(n\)-th RC pair \\
\(R_{n}\) & Resistance for \(n\)-th RC pair \\
\(C_{n}\) & Capacitance for \(n\)-th RC pair \\
\(C_{\text {batt }}\) & Battery capacity
\end{tabular}

\section*{Ports}

\section*{Inputs}

\section*{BattCurr - Battery network current}
scalar

Combined current flowing from the battery network, \(I_{i n}\), in A.

\section*{Output}
```

Info - Bus signal
bus

```

Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|l|}
\hline Signal & Description & Variable & Units \\
\hline CapVolt & Voltage for \(n\)-th RC pair & \(V_{n}\) & V \\
\hline
\end{tabular}

\section*{BattVolt - Battery output voltage}

\section*{scalar}

Combined voltage of the battery network, \(V_{\text {out }}\), in V.

\section*{BattSoc - Battery SOC}

\section*{scalar}

Battery state-of-charge, SOC.

\section*{Parameters}

\section*{Core Battery}

Number of series RC pairs - RC pairs 1 (default) | 2 | 3 | 4 | 5

Number of series RC pairs. For lithium, typically 1 or 2.
Open circuit voltage Em table data, Em - Voltage table array

Open-circuit voltage table, \(E_{m}\), in V. Function of SOC.
Series resistance table data, R0 - Resistance
array
Series resistance table, \(R_{0}\), in ohms. Function of SOC.

\section*{State of charge breakpoints, SOC_BP - SOC breakpoints vector}

State-of-charge (SOC) breakpoints, dimensionless.
Battery capacity, BattCap - Capacity scalar

Battery capacity, \(C_{\text {batt, }}\), in Ah.

\section*{Initial battery capacity, BattCapInit - Capacity scalar}

Initial battery capacity, \(C_{\text {batto }}\), in Ah.

\section*{Initial capacitor voltage, InitialCapVoltage - Voltage vector}

Initial capacitor voltage, in V. Dimension of vector must equal the Number of series RC pairs.

\section*{R and C Table Data}

Network resistance table data, Rn - Lookup table array

Network resistance table data for \(n\)-th RC pair, as a function of SOC, in ohms.
Network capacitance table data, Cn - Lookup table array

Network capacitance table data for \(n\)-th RC pair, as a function of SOC, in F .

\section*{Cell Limits}

Upper Integrator Voltage Limit, Vu - Maximum scalar

Upper voltage limit, in V.
Lower Integrator Voltage Limit, VI - Minimum scalar

Lower voltage limit, in V.

\section*{References}
[1] Ahmed, R., J. Gazzarri, R. Jackey, S. Onori, S. Habibi, et al. "Model-Based Parameter Identification of Healthy and Aged Li-ion Batteries for Electric Vehicle Applications." SAE International Journal of Alternative Powertrains. doi:10.4271/2015-01-0252, 4(2):2015.
[2] Gazzarri, J., N. Shrivastava, R. Jackey, and C. Borghesani. "Battery Pack Modeling, Simulation, and Deployment on a Multicore Real Time Target." SAE International Journal of Aerospace. doi:10.4271/2014-01-2217, 7(2):2014.
[3] Huria, T., M. Ceraolo, J. Gazzarri, and R. Jackey. "High fidelity electrical model with thermal dependence for characterization and simulation of high power lithium battery cells." IEEE \({ }^{\circledR}\) International Electric Vehicle Conference. March 2012, pp. 1-8.
[4] Huria, T., M. Ceraolo, J. Gazzarri, and R. Jackey. "Simplified Extended Kalman Filter Observer for SOC Estimation of Commercial Power-Oriented LFP Lithium Battery Cells." SAE Technical Paper 2013-01-1544. doi:10.4271/2013-01-1544, 2013.
[5] Jackey, R. "A Simple, Effective Lead-Acid Battery Modeling Process for Electrical System Component Selection." SAE Technical Paper 2007-01-0778. doi:10.4271/2007-01-0778, 2007.
[6] Jackey, R., G. Plett, and M. Klein. "Parameterization of a Battery Simulation Model Using Numerical Optimization Methods." SAE Technical Paper 2009-01-1381. doi:10.4271/2009-01-1381, 2009.
[7] Jackey, R., M. Saginaw, T. Huria, M. Ceraolo, P. Sanghvi, and J. Gazzarri. "Battery Model Parameter Estimation Using a Layered Technique: An Example Using a Lithium Iron Phosphate Cell." SAE Technical Paper 2013-01-1547. Warrendale, PA: SAE International, 2013.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

Datasheet Battery | Equivalent Circuit Battery

\section*{Topics}
"Generate Parameter Data for Equivalent Circuit Battery Block" Battery Modeling

\section*{Introduced in R2017a}

\title{
Equivalent Circuit Battery
}

\author{
Resistor-capacitor (RC) circuit battery \\ Library: Powertrain Blockset / Energy Storage and Auxiliary Drive / Network Battery
}


\section*{Description}

The Equivalent Circuit Battery block implements a resistor-capacitor (RC) circuit battery that you can parameterize using equivalent circuit modeling (ECM). To simulate the state-of-charge (SOC) and terminal voltage, the block uses load current and internal core temperature.

The Equivalent Circuit Battery block calculates the combined voltage of the network battery using parameter lookup tables. The tables are functions of the SOC and battery temperature. You can use the Estimation Equivalent Circuit Battery block to help create the lookup tables.

Specifically, the Equivalent Circuit Battery block implements these parameters as lookup tables that are functions of the SOC and battery temperature:
- Series resistance, \(R_{o}=f(S O C, T)\)
- Battery open-circuit voltage, \(E_{m}=f(S O C, T)\)
- Battery capacity, \(C_{\text {batt }}=f(T)\)
- Network resistance, \(R_{n}=f(S O C, T)\)
- Network capacitance, \(C_{n}=\mathrm{f}(S O C, T)\)

To calculate the combined voltage of the battery network, the block uses these equations.
\[
\begin{aligned}
& V_{T}=E_{m}-I_{\text {batt }} R_{o}-\sum_{1}^{n} V_{n} \\
& V_{n}=\int_{0}^{t}\left[\frac{I_{\text {batt }}}{C_{n}}-\frac{V_{n}}{R_{n} C_{n}}\right] d t \\
& S O C=\frac{-1}{C_{\text {batt }}} \int_{0}^{t} I_{\text {batt }} d t \\
& I_{\text {batt }}=\frac{I_{\text {in }}}{N_{p}} \\
& V_{\text {out }}=N_{s} V_{T} \\
& P_{\text {BattLoss }}=I_{\text {batt }} 2^{2} R_{0}+\sum_{1}^{n} \frac{V_{n}^{2}}{R_{n}} \\
& L d_{\text {AmpHr }}=\int_{0}^{t} I_{\text {batt }} d t
\end{aligned}
\]

Positive current indicates battery discharge. Negative current indicates battery charge.

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Equations \\
\hline PwrI nfo & \begin{tabular}{l}
PwrTrnsfrd - Power transferred between blocks \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block
\end{tabular} & PwrLdBat t & Battery network power & \[
\begin{aligned}
& V_{\text {batt }}=V_{\text {out }} \\
& \text { OR } \frac{V_{\text {but }}}{\tau s+1} \\
& P_{\text {batt }}=-V_{\text {batt }} I_{\text {batt }} \\
& P_{\text {LdBatt }}=\quad-P_{\text {batt }}
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{2}{|l|}{ Bus Signal } & Description & Equations \\
\hline & \begin{tabular}{l} 
PwrNotTrnsfrd - Power \\
crossing the block boundary, \\
but not transferred
\end{tabular} & \begin{tabular}{l} 
PwrLossB \\
att
\end{tabular} & \begin{tabular}{l} 
Battery \\
network power \\
loss \\
input \\
Negative signals indicate a \\
loss
\end{tabular} & \(P_{\text {LossBatt }}=\) \\
\hline \begin{tabular}{l} 
PwrStored - Stored energy \\
rate of change \\
- \begin{tabular}{l} 
Positive signals indicate an \\
increase
\end{tabular} \\
- \begin{tabular}{l} 
Negative signals indicate a \\
decrease
\end{tabular} \\
\hline
\end{tabular} \begin{tabular}{l} 
PwrStore \\
dBatt
\end{tabular} & \begin{tabular}{l} 
Battery \\
network power \\
stored
\end{tabular} & \begin{tabular}{l}
\(I_{\text {batt } 2} R_{0}+\sum_{1}^{n} \frac{V_{n}^{2}}{R_{n}}\) \\
\(+P_{\text {LoredBatt }}=P_{\text {Batt }}\) \\
\hline
\end{tabular} & \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll} 
SOC & State-of-charge \\
\(E_{m}\) & Battery open-circuit voltage \\
\(I_{\text {batt }}\) & Per module battery current \\
\(I_{\text {in }}\) & Combined current flowing from the battery network \\
\(R_{o}\) & Series resistance \\
\(N_{p}\) & Number parallel branches \\
\(N_{p}\) & Number of RC pairs in series \\
\(V_{\text {out }}, V_{T}\) & Combined voltage of the battery network \\
\(V_{n}\) & Voltage for \(n\)-th RC pair \\
\(R_{n}\) & Resistance for \(n\)-th RC pair \\
\(C_{n}\) & Capacitance for \(n\)-th RC pair \\
\(C_{\text {batt }}\) & Battery capacity \\
\(P_{\text {batt }}\) & Battery power \\
\(P_{\text {LossBatt }}\) & Negative of battery network power loss \\
\(P_{\text {BattLoss }}\) & Battery network power loss
\end{tabular}
\begin{tabular}{ll}
\(P_{\text {StoredBatt }}\) & Battery network power stored \\
\(P_{\text {LdBatt }}\) & Battery network power \\
\(T\) & Battery temperature
\end{tabular}

\section*{Ports}

\section*{Inputs}

\section*{CapInit - Battery capacity scalar}

Rated battery capacity at the nominal temperature, \(C a p_{\text {batt, }}\), in Ah.

\section*{Dependencies}

To create this port, select External Input for the Initial battery capacity parameter.

\section*{BattCurr - Battery network current}
scalar
Combined current flowing from the battery network, \(I_{i n}\), in A.

\section*{BattTemp - Battery temperature}
scalar
Battery temperature, \(T\), in K.

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|l|}
\hline Signal & Description & Variable & Units \\
\hline BattCurr & \begin{tabular}{l} 
Combined current flowing \\
from the battery network
\end{tabular} & \(I_{\text {batt }}\) & A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Signal} & Description & Variable & Units \\
\hline \multicolumn{3}{|l|}{BattAmpHr} & Battery energy & \(L d_{\text {AmpHr }}\) & A*h \\
\hline \multicolumn{3}{|l|}{BattSoc} & State-of-charge capacity & SOC & NA \\
\hline \multicolumn{3}{|l|}{BattVolt} & Combined voltage of the battery network & \(V_{\text {out }}\) & V \\
\hline \multicolumn{3}{|l|}{BattPwr} & Battery power & \(P_{\text {batt }}\) & W \\
\hline \multirow[t]{3}{*}{PwrInf 0} & PwrTrnsfrd & PwrLdBatt & Battery network power & \(P_{\text {LdBatt }}\) & W \\
\hline & PwrNotTrns frd & PwrLossBat t & Battery network power loss & \(P_{\text {LossBatt }}\) & W \\
\hline & PwrStored & PwrStoredB att & Battery network power stored & \(P_{\text {StoredBatt }}\) & W \\
\hline
\end{tabular}

\section*{BattVolt - Battery output voltage}

\section*{scalar}

Combined voltage of the battery network, \(V_{\text {out }}\), in V.

\section*{Parameters}

\section*{Block Options}

\section*{Initial battery capacity - Input or parameter}

Parameter (default)|External Input
Initial battery capacity, Cap \(_{\text {batt, }}\) in Ah.
Dependencies
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Block Parameter Initial battery \\
capacity Option
\end{tabular} & Creates \\
\hline External Input & Input port CapInit \\
\hline Parameter & \begin{tabular}{l} 
Parameter Initial battery capacity, \\
BattCapInit
\end{tabular} \\
\hline
\end{tabular}

\section*{Output battery voltage - Unfiltered or Filter}

Unfiltered (default) |Filtered

Select Filtered to apply a first-order filter to the output batter voltage.

\section*{Dependencies}

Setting Output battery voltage parameter to Filtered creates these parameters:
- Output battery voltage time constant, Tc
- Output battery voltage initial value, Vinit

\section*{Core Battery}

Number of series RC pairs - RC pairs

\section*{1 (default) | 2 | 3 | 4 | 5}

Number of series RC pairs. For lithium, typically 1 or 2.
Open circuit voltage Em table data, Em - Voltage table array

Open circuit voltage table, \(E_{m}\), in V. Function of SOC and battery temperature.

\section*{Series resistance table data, R0 - Resistance array}

Series resistance table, \(R_{o}\), in ohms. Function of SOC and battery temperature.

\section*{State of charge breakpoints, SOC_BP - SOC breakpoints vector}

State-of-charge (SOC) breakpoints, dimensionless.
Temperature breakpoints, Temperature_BP - Battery
vector
Battery temperature breakpoints, K.
Battery capacity table, BattCap - Capacity array

Battery capacity, \(C_{b a t t}\), in Ah. Function of battery temperature.
Initial capacitor voltage, InitialCapVoltage - Voltage vector

Initial capacitor voltage, in V. Dimension of vector must equal the Number of series RC pairs.
```

Initial battery capacity, BattCapInit - Capacity
scalar

```

Initial battery capacity, \(\mathrm{Cap}_{\text {batt }}\), in Ah.

\section*{Dependencies}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Block Parameter Initial battery \\
capacity Option
\end{tabular} & Creates \\
\hline External Input & Input port CapInit \\
\hline Parameter & \begin{tabular}{l} 
Parameter Initial battery capacity, \\
BattCapInit
\end{tabular} \\
\hline
\end{tabular}

Output battery voltage time constant, Tc - Filter time constant scalar

Output battery voltage time constant, \(T_{c}\), in s . Used in a first-order voltage filter.

\section*{Dependencies}

Setting Output battery voltage parameter to Filtered creates these parameters:
- Output battery voltage time constant, Tc
- Output battery voltage initial value, Vinit

Output battery voltage initial value, Vinit - Filter initial voltage scalar

Output battery voltage initial value, \(V_{\text {init }}\), in V . Used in a first-order voltage filter.

\section*{Dependencies}

Setting Output battery voltage parameter to Filtered creates these parameters:
- Output battery voltage time constant, Tc
- Output battery voltage initial value, Vinit

\section*{R and C Table Data}

\section*{Network resistance table data, Rn - Lookup table array}

Network resistance table data for \(n\)-th RC pair, in ohms, as a function of SOC and battery temperature.

\section*{Network capacitance table data, Cn - Lookup table array}

Network capacitance table data for \(n\)-th RC pair, in F, as a function of SOC and battery temperature.

\section*{Cell Limits}

\section*{Upper integrator voltage limit, Vu - Maximum} scalar

Upper voltage limit, in V.
Lower integrator voltage limit, Vl - Minimum scalar

Lower voltage limit, in V.

\section*{References}
[1] Ahmed, R., J. Gazzarri, R. Jackey, S. Onori, S. Habibi, et al. "Model-Based Parameter Identification of Healthy and Aged Li-ion Batteries for Electric Vehicle Applications." SAE International Journal of Alternative Powertrains. doi:10.4271/2015-01-0252, 4(2):2015.
[2] Gazzarri, J., N. Shrivastava, R. Jackey, and C. Borghesani. "Battery Pack Modeling, Simulation, and Deployment on a Multicore Real Time Target." SAE International Journal of Aerospace. doi:10.4271/2014-01-2217, 7(2):2014.
[3] Huria, T., M. Ceraolo, J. Gazzarri, and R. Jackey. "High fidelity electrical model with thermal dependence for characterization and simulation of high power lithium battery cells." IEEE International Electric Vehicle Conference. March 2012, pp. 18.
[4] Huria, T., M. Ceraolo, J. Gazzarri, and R. Jackey. "Simplified Extended Kalman Filter Observer for SOC Estimation of Commercial Power-Oriented LFP Lithium Battery Cells." SAE Technical Paper 2013-01-1544. doi:10.4271/2013-01-1544, 2013.
[5] Jackey, R. "A Simple, Effective Lead-Acid Battery Modeling Process for Electrical System Component Selection." SAE Technical Paper 2007-01-0778. doi:10.4271/2007-01-0778, 2007.
[6] Jackey, R., G. Plett, and M. Klein. "Parameterization of a Battery Simulation Model Using Numerical Optimization Methods." SAE Technical Paper 2009-01-1381. doi:10.4271/2009-01-1381, 2009.
[7] Jackey, R., M. Saginaw, T. Huria, M. Ceraolo, P. Sanghvi, and J. Gazzarri. "Battery Model Parameter Estimation Using a Layered Technique: An Example Using a Lithium Iron Phosphate Cell." SAE Technical Paper 2013-01-1547. Warrendale, PA: SAE International, 2013.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

Datasheet Battery | Estimation Equivalent Circuit Battery

\section*{Topics}
"Generate Parameter Data for Equivalent Circuit Battery Block"
Battery Modeling
Introduced in R2017a

\section*{Reduced Lundell Alternator}


\section*{Description}

The Reduced Lundell Alternator block implements a reduced Lundell (claw-pole) alternator with an external voltage regulator. The back-electromotive force (EMF) voltage is proportional to the input velocity and field current. The motor operates as a source torque to the internal combustion engine.

Use the Reduced Lundell Alternator block:
- To model an automotive electrical system
- In an engine model with a front-end accessory drive (FEAD)

The calculated motor shaft torque is in the opposite direction of the engine speed. You can:
- Tune the external voltage regulator to a desired bandwidth. The stator current and two diode drops reduce the stator voltage.
- Filter the load current to desired bandwidth. The load current has a lower saturation of 0 A .

The Reduced Lundell Alternator block implements equations for the electrical, control, and mechanical systems that use these variables.

\section*{Electrical}

To calculate voltages, the block uses these equations.
\begin{tabular}{|l|l|}
\hline Calculation & Equations \\
\hline Alternator output voltage & \(v_{s}=K_{v} i_{f} \omega-R_{S} i_{s}-2 V_{d}\) \\
\hline Field winding voltage & \(v_{f}=R_{f} i_{f}+L_{f} \frac{d i_{f}}{d t}\) \\
\hline
\end{tabular}

\section*{Control}

The controller assumes no resistance or voltage drop.
\begin{tabular}{|l|l|}
\hline Calculation & Equations \\
\hline \begin{tabular}{l} 
Field winding voltage \\
transform
\end{tabular} & \(V_{f}(s)=R_{f} I_{f}(s)+s L_{f} I_{f}(s)\) \\
\hline \begin{tabular}{l} 
Field winding current \\
transform
\end{tabular} & \(I_{f}(s)=\frac{V_{f}(s)}{\left(R_{f}+s L_{f}\right)}\) \\
\hline \begin{tabular}{l} 
Open loop electrical transfer \\
function
\end{tabular} & \(G(s)=\frac{V_{S}(s)}{V_{f}(s)}=\frac{K_{v} \omega}{\left(R_{f}+s L_{f}\right)}\) \\
\hline \begin{tabular}{l} 
Open loop voltage regulator \\
transfer function
\end{tabular} & \(G_{C}(s)=\frac{V_{f}(s)}{V r e f(s)}\) \\
\hline Closed loop transfer function & \(T(s)=\frac{G(s) G c(s)}{1+G(s) G c(s)}\) \\
\hline Closed loop controller design & \(T(s)=\frac{1}{\tau s+1} \rightarrow G(s) G c(s)=\frac{1}{\tau s}\) \\
& \(G(s) G_{C}(s)=\frac{K_{v} \omega}{\left(R_{f}+s L_{f}\right)} K_{g} \quad\left(K_{p}+\frac{K_{i}}{s}\right)\) \\
& \(K_{p}=L_{f}, K_{i}=R_{f}, a n d \quad K_{g}=\frac{2 \pi f}{K_{v} \omega}\) \\
\hline
\end{tabular}

\section*{Mechanical}

To calculate torques, the block uses these equations.
\begin{tabular}{|l|l|}
\hline Calculation & Equations \\
\hline Electrical torque & \(\tau_{\text {elec }}=\left(K_{v} i_{f} \omega\right) i_{\text {load }}\) \\
\hline Frictional torque & \(\tau_{\text {friction }}=K_{b} \omega\) \\
\hline Windage torque & \(\tau_{\text {windage }}=K_{w} \omega^{2}\) \\
\hline Torque at start & \(\tau_{\text {start }}=K_{c}\) when \(\omega=0\) \\
\hline Motor shaft torque & \(\tau_{\text {mech }}=\tau_{\text {elec }}+\tau_{\text {friction }}+\tau_{\text {windage }}+\tau_{\text {start }}\) \\
\hline
\end{tabular}

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Variable & Equations \\
\hline \multirow[t]{3}{*}{PwrI nfo} & PwrTrnsfrd - Power transferred between & PwrMtr & Mechanical power & \(P_{\text {mot }}\) & \(P_{\text {mot }}=\omega \tau_{\text {mech }}\) \\
\hline & \begin{tabular}{l}
blocks \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block
\end{tabular} & PwrBus & Electrical power & \(P_{\text {bus }}\) & \[
\begin{gathered}
P_{\text {bus }}= \\
v_{S} i_{\text {load }}
\end{gathered}
\] \\
\hline & \begin{tabular}{l}
PwrNotTrnsfrd Power crossing the block boundary, but not transferred \\
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular} & \begin{tabular}{l}
PwrLos \\
s
\end{tabular} & Motor power loss & \(P_{\text {loss }}\) & \[
\begin{aligned}
& P_{\text {loss }}=-\left(P_{\text {mot }}\right. \\
& \left.+P_{\text {bus }}-P_{\text {ind }}\right)
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline \multicolumn{2}{|l|}{ Bus Signal } & Description & Variable & Equations \\
\hline & \begin{tabular}{l} 
PwrStored - Stored \\
energy rate of change
\end{tabular} & PwrInd & \begin{tabular}{l} 
Electrical \\
winding loss \\
Positive signals \\
indicate an increase \\
Negative signals \\
indicate a decrease
\end{tabular} & \(P_{\text {ind }}\) & \(P_{\text {ind }}=\quad L_{f} i_{f} \frac{d i_{f}}{d t}\) \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(v_{\text {ref }}\) & Alternator output voltage command \\
\(v_{f}\) & Field winding voltage \\
\(i_{f}\) & Field winding current \\
\(i_{s}\) & Stator winding current \\
\(V_{d}\) & Diode voltage drop \\
\(R_{f}\) & Field winding resistance \\
\(R_{s}\) & Stator winding resistance \\
\(L_{f}\) & Field winding inductance \\
\(K_{v}\) & Voltage constant \\
\(F_{v}\) & Voltage regulator bandwidth \\
\(F_{c}\) & Input current filter bandwidth \\
\(V_{f \text { max }}\) & Field control voltage upper saturation limit \\
\(V_{f m i n}\) & Field control voltage lower saturation limit \\
\(K_{c}\) & Coulomb friction coefficient \\
\(K_{b}\) & Viscous friction coefficient \\
\(K_{w}\) & Windage coefficient \\
\(\omega\) & Motor shaft angular speed \\
\(i_{\text {load }}\) & Alternator load current \\
\(v_{s}\) & Alternator output voltage \\
\(\tau_{\text {mech }}, T_{\text {mech }}\) & Motor shaft torque
\end{tabular}

\section*{Ports}

\section*{Inputs}

\section*{RefVolt - Alternator output voltage command}
scalar
Alternator output voltage command, in V.

\section*{AltSpd - Angular speed}
scalar
Motor shaft input angular speed, in rad/s.

\section*{LdCurr - Alternator load current scalar}

Alternator load current, in A.
Do not connect the port to the alternator rated current, which is a constant value. The block uses the alternator load current as the stator winding current, \(i_{s}\), to determine the alternator voltage and motor torque. If you connect the port to the rated alternator current, the block does not model the dynamic effect of load current changes on the voltage and motor torque.

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|l|}
\hline Signal & Description & Units \\
\hline FldVolt & Field winding voltage & A \\
\hline FldFlux & Field flux & Wb \\
\hline \multirow{2}{*}{ PwrInfo } & PwrTrnsfrd & PwrMtr & Mechanical power \\
\cline { 3 - 5 } & & PwrBus & Electrical power \\
W & W \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline Signal & Description & Units \\
\hline \multirow{3}{*|}{\begin{tabular}{l} 
PwrNotTrns \\
frd
\end{tabular}} & PwrLoss & Motor power loss & W \\
\cline { 2 - 5 } & PwrStored & PwrInd & Electrical winding loss & W \\
\hline
\end{tabular}

\section*{AltVolt - Alternator output voltage}

\section*{scalar}

Alternator output voltage, in V.

\section*{LdTrq - Motor shaft torque}
scalar
Motor shaft torque, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Parameters}

\section*{Machine Configuration}

\section*{Voltage constant, Kv - Constant}
scalar
Voltage constant, in V/rad/s.
```

Field winding resistance, Rf - Resistance
scalar

```

Field winding resistance, in ohm.

\section*{Field winding inductance, Lf - Inductance} scalar

Field winding inductance, in \(H\).
Stator winding resistance, Rs - Resistance
scalar
Stator winding resistance, in ohm.

\section*{Diode voltage drop, Vd - Voltage}
scalar

Diode voltage drop, in V.

\section*{Voltage Regulator}

Regulator bandwidth, Fv - Bandwidth scalar

The regulator bandwidth, in Hz .

\section*{Current filter bandwidth, Fc - Bandwidth scalar}

The current filter bandwidth, in Hz .

\section*{Field voltage max, Vfmax - Maximum field voltage} scalar

The maximum field voltage, in V.

\section*{Field voltage min, Vfmin - Minimum field voltage scalar}

The minimum field voltage, in V.
Mechanical Losses
Coulomb friction, Kc - Friction scalar

Coulomb friction, in \(\mathrm{N} \cdot \mathrm{m}\).
Viscous friction, Kb - Friction
scalar
Viscous friction, in \(\mathrm{N} \cdot \mathrm{m} / \mathrm{rad} / \mathrm{s}\).
Windage, Kw - Windage
scalar
Windage, in \(\mathrm{N} \cdot \mathrm{m} / \mathrm{rad}^{2} / \mathrm{s}^{2}\).

\section*{References}
[1] Krause, P. C. Analysis of Electric Machinery. New York: McGraw-Hill, 1994.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

Starter

\section*{Introduced in R2017a}

\section*{Starter}

Starter as a DC motor
\(\begin{array}{ll}\text { Library: } & \text { Powertrain Blockset / Energy Storage and Auxiliary } \\ & \text { Drive / Starter }\end{array}\)


\section*{Description}

The Starter block implements a starter assembly as a separately excited DC motor, permanent magnet DC motor, or series connection DC motor. The motor operates as a torque source to an internal combustion engine.

Use the Starter block:
- In an engine model with a front-end accessory drive (FEAD)
- To model engine start and stop scenarios

The Starter block supports only an angular speed input to the DC motor. A load torque input requires engine dynamics.

\section*{Separately Excited DC Motor}

In a separately excited DC motor, the field winding is connected to a separate source of DC power.

The relationship between the field winding voltage, field resistance, and field inductance is given by:
\[
V_{f}=L_{f} \frac{d i_{f}}{d t}+R_{f} i_{f}
\]

The counter-electromotive force is a product of the field resistance, mutual inductance, and motor shaft angular speed:
\[
E M F=L_{a} i_{f} L_{a f} \omega
\]

The armature voltage is given by:
\[
V_{a}=L_{a} \frac{d i_{a}}{d t}+R_{a} i_{a}+E M F
\]

The starter motor current load is the sum of the field winding current and armature winding current:
\[
i_{\text {load }}=i_{f}+i_{a}
\]

The starter motor shaft torque is the product of the armature current, field current, and mutual inductance:
\[
T_{\text {mech }}=i_{a} i_{f} L_{a f}
\]

\section*{Permanent Magnet DC Motor}

In a permanent magnet DC motor, the magnets establish the excitation flux, so there is no field current.

The counter-electromotive force is proportional to the motor shaft angular speed:
\[
E M F=K_{t} \omega
\]

The armature voltage is given by:
\[
V_{a}=L_{a} \frac{d i_{a}}{d t}+R_{a} i_{a}+E M F
\]

The starter motor current load is equal to the armature winding current:
\[
i_{\text {load }}=i_{a}
\]

The starter motor shaft torque is proportional to the armature winding current:
\[
T_{\text {mech }}=K_{t} i_{a}
\]

\section*{Series Excited DC Motor}

A series excited DC motor connects the armature and field windings in series with a common DC power source.

The counter-electromotive force is a product of the field and armature initial series current, field, and armature mutual inductance and motor shaft angular speed:
\[
E M F=i_{a f} L_{a f} \omega
\]

The field and armature winding voltage is given by:
\[
V_{a f}=L_{s e r} \frac{d i_{a f}}{d t}+R_{s e r} i_{a f}+E M F
\]

The starter motor current load is equal to the field and armature series current:
\[
i_{\text {load }}=i_{a f}
\]

The starter motor shaft torque is the product of the squared field and armature series current and the field and armature mutual inductance:
\[
T_{\text {mech }}=i_{a f}^{2} L_{a f}
\]

For motor stability, the motor shaft angular speed must be greater than the ratio of the series connected field and armature resistance to the mutual inductance:
\[
\omega>-\frac{R_{S e r}}{L_{a f}}
\]

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Variab & Equations \\
\hline \multirow[t]{3}{*}{PwrI nfo} & \multirow[t]{3}{*}{\begin{tabular}{l}
PwrTrnsfrd - Power transferred between blocks \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block
\end{tabular}} & PwrM tr & Mechanical power & \(P_{\text {mot }}\) & \[
\begin{aligned}
& P_{\text {mot }}= \\
& -\omega T_{\text {mech }}
\end{aligned}
\] \\
\hline & & PwrB us & Electrical power & \(P_{\text {bus }}\) & Separately excited DC motor
\[
\left\lvert\, \begin{aligned}
& P_{b u s}=v_{a} i_{a} \\
& +v_{f} i_{f}
\end{aligned}\right.
\] \\
\hline & & & & & PM excited DC motor
\[
P_{b u s}=v_{a} i_{a}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Variab & Equations \\
\hline \multirow[t]{5}{*}{} & & & & & Series excited DC motor
\[
P_{b u s}=v_{a f} i_{a f}
\] \\
\hline & \begin{tabular}{l}
PwrNotTrnsfrd - Power crossing the block boundary, but not transferred \\
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular} & PwrL oss & Motor losses & \(P_{\text {loss }}\) & \[
\begin{aligned}
& P_{\text {loss }}=-\left(P_{\text {mot }}\right. \\
& \left.+P_{\text {bus }}-P_{\text {ind }}\right)
\end{aligned}
\] \\
\hline & \multirow[t]{3}{*}{\begin{tabular}{l}
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
PwrI \\
nd
\end{tabular}} & \multirow[t]{3}{*}{Electrical inductance} & \multirow[t]{3}{*}{\(P_{\text {ind }}\)} & Separately excited DC motor
\[
\begin{aligned}
& P_{\text {ind }}=\quad L_{f} i_{f} \frac{d i_{f}}{d t} \\
& +L_{a} i_{a} \frac{d i_{a}}{d t}
\end{aligned}
\] \\
\hline & & & & & PM excited DC motor
\[
P_{\text {ind }}=\quad L_{a} i_{a} \frac{d i_{a}}{d t}
\] \\
\hline & & & & & Series excited DC motor
\[
P_{\text {ind }}=L_{\text {ser }} i_{a f} \frac{d i_{a f}}{d t}
\] \\
\hline
\end{tabular}

The equations use these variables.
\(R_{a} \quad\) Armature winding resistance
\(L_{a} \quad\) Armature winding inductance
EMF Counter-electromotive force
\(R_{f} \quad\) Field winding resistance
\(L_{f} \quad\) Field winding inductance
\(L_{a f} \quad\) Field and armature mutual inductance
\(i_{a} \quad\) Armature winding current
\(i_{f} \quad\) Field winding current
\(K_{t} \quad\) Motor torque constant
\(\omega \quad\) Motor shaft angular speed
\(V_{a} \quad\) Armature winding voltage
\(V_{f} \quad\) Field winding voltage
\(V_{a f} \quad\) Field and armature winding voltage
\(i_{a f} \quad\) Field and armature series current
\(R_{\text {ser }} \quad\) Series connected field and armature resistance
\(L_{\text {ser }} \quad\) Series connected field and armature inductance
\(i_{\text {load }}\) Starter motor current load
\(T_{\text {mech }} \quad\) Starter motor shaft torque

\section*{Ports}

\section*{Inputs}

\section*{MtrSpd - Angular speed}
scalar
Motor shaft angular speed, in rad/s.

\section*{StartVolt - Armature and field voltage \\ scalar}
- Armature winding voltage \(V_{a}\) and field winding voltage \(V_{f}\), in V .
- In series excited DC motor, armature and field winding voltage \(V_{a f}\).

\section*{Output}

\section*{Info - Bus signal}
bus

Bus signal containing these block calculations.
\begin{tabular}{|c|c|c|c|c|}
\hline Signal & & & Description & Units \\
\hline ArmCurr & & & Armature winding current & A \\
\hline FldCurr & & & Field winding current & A \\
\hline PwrInfo & PwrTrnsfrd & PwrMtr & Mechanical power & W \\
\hline & & PwrBus & Electrical power & W \\
\hline & PwrNotTrns frd & PwrLoss & Motor power loss & W \\
\hline & PwrStored & PwrInd & Electrical inductance & W \\
\hline
\end{tabular}

\section*{LdCurr - Starter motor load current \\ scalar}

Starter motor load current, in A.

\section*{MtrTrq - Starter motor shaft torque}

\section*{scalar}

Starter motor shaft torque, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Parameters}

\section*{Configuration}

\section*{Motor Type - Select motor type}

Separately Excited DC Motor (default)|Permanent Magnet Excited DC Motor |Series Connection DC Motor

Select one of the three motor types.

\section*{Dependencies}

The table summarizes the motor parameter dependencies.
\begin{tabular}{|l|l|}
\hline Motor Type & Enables Motor Parameter \\
\hline Separately Excited DC Motor & Armature winding resistance, Ra \\
\cline { 2 - 3 } &
\end{tabular}
\begin{tabular}{|c|c|}
\hline Motor Type & Enables Motor Parameter \\
\hline \multirow[t]{5}{*}{} & Armature winding inductance, La \\
\hline & Field winding resistance Rf \\
\hline & Field winding inductance, Lf \\
\hline & Mutual inductance, Laf \\
\hline & Initial armature and field current, Iaf \\
\hline \multirow[t]{4}{*}{Permanent Magnet Excited DC Motor} & Armature winding resistance, Rapm \\
\hline & Armature winding inductance, Lapm \\
\hline & Torque constant, Kt \\
\hline & Initial armature current, Ia \\
\hline \multirow[t]{4}{*}{Series Connection DC Motor} & Total resistance, Rser \\
\hline & Total inductance, Lser \\
\hline & Initial current, Iafser \\
\hline & Mutual inductance, Lafser \\
\hline
\end{tabular}

Separately Excited DC Motor
Armature winding resistance, Ra - Resistance
scalar
Armature winding resistance, in ohm.

\section*{Dependencies}

To enable this parameter, select Separately Excited DC Motor for the Motor Type parameter.

Armature winding inductance, La - Inductance scalar

Armature winding inductance, in H .

\section*{Dependencies}

To enable this parameter, select Separately Excited DC Motor for the Motor Type parameter.

\section*{Field winding resistance, Rf - Resistance scalar}

Field winding resistance, in ohm.

\section*{Dependencies}

To enable this parameter, select Separately Excited DC Motor for the Motor Type parameter.
```

Field winding inductance, Lf - Inductance
scalar

```

Field winding inductance, in H .

\section*{Dependencies}

To enable this parameter, select Separately Excited DC Motor for the Motor Type parameter.
```

Mutual inductance, Laf - Inductance
scalar

```

Mutual inductance, in H .

\section*{Dependencies}

To enable this parameter, select Separately Excited DC Motor for the Motor Type parameter.
```

Initial armature and field current, Iaf - Current
vector

```

Initial armature and field current, in A.

\section*{Dependencies}

To enable this parameter, select Separately Excited DC Motor for the Motor Type parameter.

Permanent Magnet Excited DC Motor
Armature winding resistance, Rapm - Resistance scalar

Armature winding resistance, in ohm.

\section*{Dependencies}

To enable this parameter, select Permanent Magnet Excited DC Motor for the Motor Type parameter.

Armature winding inductance, Lapm - Inductance scalar

Armature winding inductance, in H .

\section*{Dependencies}

To enable this parameter, select Permanent Magnet Excited DC Motor for the Motor Type parameter.
```

Torque constant, Kt - Motor torque constant
scalar

```

Motor torque constant, in \(\mathrm{N} \cdot \mathrm{m} / \mathrm{A}\).

\section*{Dependencies}

To enable this parameter, select Permanent Magnet Excited DC Motor for the Motor Type parameter.
```

Initial armature current, Ia - Current
scalar

```

Initial armature current, in A.

\section*{Dependencies}

To enable this parameter, select Permanent Magnet Excited DC Motor for the Motor Type parameter.

Series Excited DC Motor
```

Total resistance, Rser - Resistance

```
scalar
Series connected field and armature resistance, in ohm.

\section*{Dependencies}

To enable this parameter, select Series Excited DC Motor for the Motor Type parameter.
```

Total inductance, Lser - Inductance

```
scalar

Series connected field and armature inductance, in H .

\section*{Dependencies}

To enable this parameter, select Series Excited DC Motor for the Motor Type parameter.
```

Initial current, Iafser - Current
scalar

```

Initial series current, in A.

\section*{Dependencies}

To enable this parameter, select Series Excited DC Motor for the Motor Type parameter.
```

Mutual inductance, Lafser - Inductance
scalar

```

Field and armature mutual inductance, in H .

\section*{Dependencies}

To enable this parameter, select Series Excited DC Motor for the Motor Type parameter.

\section*{References}
[1] Krause, P. C. Analysis of Electric Machinery. New York: McGraw-Hill, 1994.

\section*{Extended Capabilities}

\author{
C/C++ Code Generation \\ Generate \(C\) and \(C++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\text {TM }}\).
}

\section*{See Also}

Reduced Lundell Alternator

Introduced in R2017a

\section*{Bidirectional DC-DC}

DC-to-DC converter that supports bidirectional boost and buck
Library: Powertrain Blockset / Energy Storage and Auxiliary Drive / DC-DC


\section*{Description}

The Bidirectional DC-DC block implements a DC-to-DC converter that supports bidirectional boost and buck (lower) operation. Unless the DC-to-DC conversion limits the power, the output voltage tracks the voltage command. You can specify electrical losses or measured efficiency.

Depending on your battery system configuration, the voltage might not be at a potential that is required by electrical system components such has inverters and motors. You can use the block to boost or buck the voltage. Connect the block to the battery and one of these blocks:
- Mapped Motor
- IM Controller
- Interior PM Controller
- Surface Mount PM Controller

To calculate the electrical loss during the DC-to-DC conversion, use Parameterize losses by.
\begin{tabular}{|l|l|}
\hline Parameter Option & Description \\
\hline \begin{tabular}{l} 
Single efficiency \\
measurement
\end{tabular} & \begin{tabular}{l} 
Electrical loss calculated using a constant value for \\
conversion efficiency.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Parameter Option & Description \\
\hline Tabulated loss data & \begin{tabular}{l} 
Electrical loss calculated as a function of load current and \\
voltage. DC-to-DC converter data sheets typically provide \\
loss data in this format. When you use this option, provide \\
data for all the operating quadrants in which the simulation \\
will run. If you provide partial data, the block assumes the \\
same loss pattern for other quadrants. The block does not \\
extrapolate loss that is outside the range voltage and \\
current that you provide. The block allows you to account \\
for fixed losses that are still present for zero voltage or \\
current.
\end{tabular} \\
\hline \begin{tabular}{l} 
Tabulated efficiency \\
data
\end{tabular} & \begin{tabular}{l} 
Electrical loss calculated using conversion efficiency that is \\
a function of load current and voltage. When you use this \\
option, provide data for all the operating quadrants in \\
which the simulation will run. If you provide partial data, \\
the block assumes the same efficiency pattern for other \\
quadrants. The block: \\
- Assumes zero loss when either the voltage or current is \\
zero.
\end{tabular} \\
- \begin{tabular}{l} 
Uses linear interpolation to determine the loss. At lower \\
power conditions, for calculation accuracy, provide \\
efficiency at low voltage and low current.
\end{tabular} \\
\hline
\end{tabular}

Note The block does not support inversion. The polarity of the input voltage matches the polarity of the output voltage.

\section*{Theory}

The Bidirectional DC-DC block uses the commanded voltage and the actual voltage to determine whether to boost or buck (lower) the voltage. You can specify a time constant for the voltage response.
\begin{tabular}{|l|l|}
\hline If & Then \\
\hline Volt \(_{c m d}>\) Src \(_{\text {Volt }}\) & Boost \\
\hline Volt \(_{c m d}<\) Src \(_{\text {Volt }}\) & Buck \\
\hline
\end{tabular}

The Bidirectional DC-DC block uses a time constant-based regulator to provide a fixed output voltage that is independent of load current. Using the output voltage and current, the block determines the losses of the DC-to-DC conversion. The block uses the conversion losses to calculate the input current. The block accounts for:
- Bidirectional current flow
- Source to load - Battery discharge
- Load to source - Battery charge
- Rated power limits

The block provides voltage control that is power limited based on these equations. The voltage is fixed. The block does not implement a voltage drop because the load current approximates DC-to-DC conversion with a bandwidth that is greater than the load current draw.
\begin{tabular}{|c|c|}
\hline DC-to-DC converter load voltage & \[
\begin{aligned}
& \text { LdVolt }_{\text {Cmd }}=\min \left(\text { Volt }_{\text {Cmd }}, \frac{P_{\text {limit }}}{L d_{A m p}}, 0\right) \\
& \text { LdVolt }=\text { LdVolt }_{\text {Cmd }} \cdot \frac{1}{\tau s+1}
\end{aligned}
\] \\
\hline Power loss for single efficiency source to load & \[
P w r_{\text {Loss }}=\frac{100-E f f}{E f f} \cdot L d_{\text {Volt }} \cdot L d_{A m p}
\] \\
\hline Power loss for single efficiency load to source & \[
P w r_{\text {Loss }}=\frac{100-E f f}{E f f} \cdot\left|L d_{\text {Volt }} \cdot L d_{A m p}\right|
\] \\
\hline Power loss for tabulated efficiency & Prw Loss \(=f\left(L d_{\text {Volt }}, L d_{\text {Amp }}\right)\) \\
\hline Source current draw from DC-to-DC converter & \[
S r c_{A m p}=\frac{L d_{P w r}+P^{2} w_{\text {Loss }}}{S r C_{\text {Volt }}}
\] \\
\hline Source power from DC-to-DC converter & Src \(c_{\text {Pwr }}=\) Src \(_{\text {Amp }} \cdot \operatorname{Src}_{\text {Volt }}\) \\
\hline
\end{tabular}

\section*{Power Accounting}

For the power accounting, the block implements these equations.


The equations use these variables.
\begin{tabular}{ll} 
Volt \(_{\text {Cmd }}\) & DC-to-DC converter commanded output voltage \\
\(S r C_{\text {Volt }}\) & Source input voltage to DC-to-DC converter \\
\(L d_{\text {Amp }}\) & Load current of DC-to-DC converter \\
\(L d_{\text {Volt }}\) & Load voltage of DC-to-DC converter \\
\(S r C_{A m p}\) & Source current draw from DC-to-DC converter \\
\(\tau\) & Conversion time constant \\
\(V_{\text {init }}\) & Initial load voltage of the DC-to-DC converter \\
\(P_{\text {limit }}\) & Output power limit for DC-to-DC converter \\
\(E f f\) & Input to output efficiency \\
\(S r C_{P w r}\) & Source power to DC-to-DC converter
\end{tabular}
\begin{tabular}{ll}
\(L d_{P w r}\) & Load power from DC-to-DC converter \\
\(P w r_{\text {Loss }}\) & Power loss \\
\(L d V o l t_{C m d}\) & \begin{tabular}{l} 
Commanded load voltage of DC-to-DC converter before application of time \\
constant
\end{tabular}
\end{tabular}

\section*{Ports}

\section*{Inputs}

\section*{VoltCmd - Commanded voltage \\ scalar}

DC-to-DC converter commanded output voltage, Volt Cmd , in V.

\section*{SrcVolt - Input voltage scalar}

Source input voltage to DC-to-DC converter, Src \(_{\text {Volt }}\), in V.

\section*{LdCurr - Load current} scalar

Load current of DC-to-DC converter, \(L d_{A m p}\), in A.

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|l|}
\hline Signal & Description & \begin{tabular}{l} 
Variabl \\
e
\end{tabular} & Units \\
\hline SrcPwr & \begin{tabular}{l} 
Source power to DC-to-DC \\
converter
\end{tabular} & \(S r C_{P w r}\) & W \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Signal} & Description & Variabl e & Units \\
\hline \multicolumn{3}{|l|}{LdPwr} & Load power from DC-to-DC converter & \(L d_{\text {Pwr }}\) & W \\
\hline \multicolumn{3}{|l|}{PwrLoss} & Power loss & Pwr \({ }_{\text {Loss }}\) & W \\
\hline \multicolumn{3}{|l|}{LdVoltCmd} & Commanded load voltage of DC-to-DC converter before application of time constant & \begin{tabular}{l}
LdVolt \(_{\text {Cm }}\) \\
\({ }^{d}\)
\end{tabular} & V \\
\hline \multirow[t]{4}{*}{PwrInf
\[
0
\]} & \multirow[t]{2}{*}{PwrTrnsfrd} & \begin{tabular}{l}
PwrBusSr \\
C
\end{tabular} & Source power to DC-to-DC converter & \(P_{\text {src }}\) & W \\
\hline & & PwrBusLd & Load power from DC-to-DC converter & \(P_{\text {bus }}\) & W \\
\hline & PwrNotTrnsfr d & PwrLoss & Converter power loss & \(P_{\text {loss }}\) & W \\
\hline & PwrStored & \multicolumn{4}{|l|}{Not used} \\
\hline
\end{tabular}

\section*{LdVolt - Load voltage}
scalar
Load voltage of DC-to-DC converter, \(L d_{\text {Volt }}\), in V .

\section*{SrcCurr - Source current}
scalar
Source current draw from DC-to-DC converter, Src \(_{\text {Amp }}\), in A.

\section*{Parameters}

\section*{Electrical Control}

\section*{Converter response time constant - Constant scalar}

Converter response time, \(\tau\), in s.

\section*{Converter response initial voltage, Vinit - Voltage scalar}

Initial load voltage of the DC-to-DC converter, \(V_{\text {init }}\), in V .

\section*{Converter power limit, Plimit-Power \\ scalar}

Initial load voltage of the DC-to-DC converter, \(P_{\text {limit }}\), in W.

\section*{Electrical Losses}

Parameterize losses by - Loss calculation
Single efficiency measurement (default)|Tabulated loss dataTabulated efficiency data

This table summarizes the loss options used to calculate electrical options.
\begin{tabular}{|l|l|}
\hline Parameter Option & Description \\
\hline \begin{tabular}{l} 
Single efficiency \\
measurement
\end{tabular} & \begin{tabular}{l} 
Electrical loss calculated using a constant value for \\
conversion efficiency.
\end{tabular} \\
\hline Tabulated loss data & \begin{tabular}{l} 
Electrical loss calculated as a function of load current and \\
voltage. DC-to-DC converter data sheets typically provide \\
loss data in this format. When you use this option, provide \\
data for all the operating quadrants in which the simulation \\
will run. If you provide partial data, the block assumes the \\
same loss pattern for other quadrants. The block does not \\
extrapolate loss that is outside the range voltage and \\
current that you provide. The block allows you to account \\
for fixed losses that are still present for zero voltage or \\
current.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Parameter Option & Description \\
\hline \begin{tabular}{l} 
Tabulated efficiency \\
data
\end{tabular} & \begin{tabular}{l} 
Electrical loss calculated using conversion efficiency that is \\
a function of load current and voltage. When you use this \\
option, provide data for all the operating quadrants in \\
which the simulation will run. If you provide partial data, \\
the block assumes the same efficiency pattern for other \\
quadrants. The block:
\end{tabular} \\
& - \begin{tabular}{l} 
Assumes zero loss when either the voltage or current is \\
zero.
\end{tabular} \\
& \begin{tabular}{l} 
Uses linear interpolation to determine the loss. At lower \\
power conditions, for calculation accuracy, provide \\
efficiency at low voltage and low current.
\end{tabular} \\
\hline
\end{tabular}

\section*{Overall DC to DC converter efficiency, eff - Constant scalar}

Overall conversion efficiency, Eff, in \%.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Single efficiency measurement.

\section*{Vector of voltages (v) for tabulated loss, v_loss_bp - Breakpoints} 1-by-M matrix

Tabulated loss breakpoints for M load voltages, in V.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated loss data.

\section*{Vector of currents (i) for tabulated loss, i_loss_bp - Breakpoints 1-by-N matrix}

Tabulated loss breakpoints for N load currents, in A.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated loss data.

\section*{Corresponding losses, losses_table - 2-D lookup table N -by-M matrix}

Electrical loss map, as a function of N load currents and M load voltages, in W.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated loss data.
Vector of voltages (v) for tabulated efficiency, v_eff_bp Breakpoints
1-by-M matrix
Tabulated efficiency breakpoints for M load voltages, in V.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.

Vector of currents (i) for tabulated efficiency, i_eff_bp -
Breakpoints 1-by-N matrix

Tabulated efficiency breakpoints for N load currents, in A .

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.

\section*{Corresponding efficiency, efficiency_table - 2-D lookup table} N -by-M matrix

Electrical efficiency map, as a function of N load currents and Mload voltages, in \%.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.

\section*{Extended Capabilities}

\author{
C/C++ Code Generation \\ Generate \(C\) and \(C++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\text {TM }}\).
}

\author{
See Also \\ Equivalent Circuit Battery | Estimation Equivalent Circuit Battery
}

\author{
Topics \\ Battery Modeling
}

\section*{Introduced in R2017b}

\title{
Power Accounting Bus Creator
}

Create power information bus
Library: Powertrain Blockset / Utilities / Power Accounting


\section*{Description}

Creates a power information bus for reporting system power and energy consumption. You can associate the block to a parent system, select types of power signals to track, and add signal descriptions. If you want to generate a power and energy report, you must use this block to log the power signals in your plant model blocks. The Powertrain Blockset plant blocks use the Power Accounting Bus Creator to log the power signals. The documentation for each block includes information about the logged power bus signals.

The system-level power and energy accounting satisfies the conservation of energy.
\[
\sum P_{\text {trans }}+\sum P_{\text {nottrans }}=\sum P_{\text {store }}
\]

To add the Power Accounting Bus Creator to your plant block, follow these steps:
1 Add the Power Accounting Bus Creator block to your block.
2 Select the types of power signals that you want to log. See "Power Signals" on page 3-55.
3 Associate the Power Accounting Bus Creator with a parent subsystem. See "Block Association" on page 3-56.
4 Connect the power signals to the Power Accounting Bus Creator.
- Follow the sign convention.
- To ensure that your plant block conserves energy, include all power associated with the block.

5 In the Power Accounting Bus Creator:
- On the Transferred power tab, specify these parameters:
- Associated Port
- Description
- On the Not Transferred power tab, specify the Description parameter:

6 In the plant block, connect the transferred power signals to the Power Accounting Bus Creator ports that are specified with the Associated Port parameter.

\section*{Power Signals}

The Power Accounting Bus Creator sorts the signals into three power types.
\begin{tabular}{|c|c|c|c|}
\hline Pow & & Description & Examples \\
\hline \(P_{\text {trans }}\) & Transferre d & \begin{tabular}{l}
Power transferred between blocks: \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block
\end{tabular} & \begin{tabular}{l}
- Crankshaft power transferred from mapped engine to transmission. \\
- Road load power transferred from wheel to vehicle. \\
- Rate of heat flow transferred from throttle to manifold volume.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Power Type} & Description & Examples \\
\hline \(P_{\text {nottrans }}\) & \begin{tabular}{l}
Not \\
transferre \\
d
\end{tabular} & \begin{tabular}{l}
Power crossing the block boundary, but not transferred: \\
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular} & \begin{tabular}{l}
- Rate of heat transfer with the environment. \\
- From environment is an input (positive signal) \\
- To environment is a loss (negative signal) \\
- Flow boundary with the environment. \\
- From environment is an input (positive signal) \\
- To environment is a loss (negative signal) \\
- Mapped engine fuel flow.
\end{tabular} \\
\hline \(P_{\text {store }}\) & Stored & \begin{tabular}{l}
Stored energy rate of change: \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular} & \begin{tabular}{l}
Energy rate of change: \\
- Battery storage \\
- Kinetic energy in drivetrain components \\
- Vehicle potential energy \\
- Vehicle velocity
\end{tabular} \\
\hline
\end{tabular}

\section*{Block Association}

When you add the Power Accounting Bus Creator to your plant block, you associate the signals to a parent block. There are two association methods.
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
Metho \\
\(\mathbf{d}\)
\end{tabular} & Description & Example \\
\hline \begin{tabular}{ll} 
Paren \\
t
\end{tabular} & \begin{tabular}{l} 
Power Accounting \\
Bus Creator \\
associates the \\
power bus signals \\
with the parent \\
block.
\end{tabular} & \begin{tabular}{l} 
In the conventional vehicle reference application, navigate \\
to the Passenger Car > Engine > SiMappedEngine \\
\(>\) Accessory Load Model plant subsystem. Open the \\
Power Accounting Bus Creator.
\end{tabular} \\
\hline
\end{tabular}



\section*{Ports}

\section*{Input}

\section*{PwrTrnsfrd - Power transferred between blocks}
bus
PwrTrnsfrd - Power transferred between blocks
- Positive signals indicate flow into block
- Negative signals indicate flow out of block

\section*{Dependencies}

To create this input port, select Transferred power.

\section*{PwrNotTrnsfrd - Power crossing block boundary, not transferred bus}

PwrNotTrnsfrd - Power crossing the block boundary, but not transferred
- Positive signals indicate an input
- Negative signals indicate a loss

\section*{Dependencies}

To create this input port, select Not transferred power.

\section*{PwrStored - Stored energy rate of change bus}

PwrStored - Stored energy rate of change
- Positive signals indicate an increase
- Negative signals indicate a decrease

Dependencies
To create this input port, select Stored power.

\section*{Output}

\section*{PwrInfo - Power information bus}
bus
Power information bus

\section*{Parameters}

\section*{Block Options}

Associated block - Associated block
Parent (default)| Parent reference block
When you add the Power Accounting Bus Creator to your plant block, you associate the signals to a parent block. There are two association methods.
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
Metho \\
d
\end{tabular} & Description & Example \\
\hline \begin{tabular}{l} 
Paren \\
t
\end{tabular} & \begin{tabular}{l} 
Power Accounting \\
Bus Creator \\
associates the \\
power bus signals \\
with the parent \\
block.
\end{tabular} & \begin{tabular}{l} 
In the conventional vehicle reference application, navigate \\
to the Passenger Car > Engine > SiMappedEngine \\
\(>\) Accessory Load Model plant subsystem. Open the \\
Power Accounting Bus Creator.
\end{tabular} \\
\hline
\end{tabular}



\section*{Library block name - Block name}

\section*{Block name}

\section*{Dependencies}

To create this parameter, set Associated block to Parent reference block.

\section*{Power Input Types}

\section*{Transferred power - Power transferred between blocks on (default) | off}

Power transferred between blocks.

\section*{Dependencies}

Selecting this parameter creates the:
- PwrTrnsfrd input port
- Transferred parameters

\section*{Not transferred power - Power crossing block boundary on (default) | off}

Power crossing block boundary, but not transferred.

\section*{Dependencies}

Selecting this parameter creates the:
- PwrNotTrnsfrd input port
- Not Transferred parameters

\section*{Stored power - Stored energy rate of change on (default) | off}

Stored energy rate of change.

\section*{Dependencies}

Selecting this parameter creates the:
- PwrStored input port
- Stored parameters

\section*{Transferred}

\section*{Signal name - Name of signal char}

Signal name.
For example, this table summarizes the Power Accounting Bus Creator parameter Transferred parameter values for the listed blocks.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{array}{|l|}
\hline \text { Bloc } \\
\text { k }
\end{array}
\]} & \multicolumn{3}{|l|}{Power Accounting Bus Creator Parameter Values} \\
\hline & Signal Name & Associated Port & Description \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Ideal \\
Fixe \\
d \\
Gear \\
Tran \\
smis \\
sion
\end{tabular}} & PwrTrnsfrd.PwrDiffrnt \(l\) & \{'DiffTrq', 'DiffSpd'\} & Differential \\
\hline & PwrTrnsfrd.PwrEng & \{'EngTrq', 'EngSpd'\} & Engine \\
\hline \multirow[t]{2}{*}{Gear box} & PwrTrnsfrd.PwrBase & \{\{'BTrq', 'BSpd'\}'B'\} & Base input \\
\hline & PwrTrnsfrd.PwrFlwr & \{\{'FTrq', 'FSpd'\}'F'\} & Follower output \\
\hline \multirow[t]{3}{*}{\[
\begin{array}{|l|}
\hline \text { Boos } \\
\mathrm{t} \\
\text { Driv } \\
\mathrm{e} \\
\text { Shaft }
\end{array}
\]} & PwrTrnsfrd.PwrCmpsr & 'Cmpsr' & Compressor \\
\hline & PwrTrnsfrd.PwrExt & 'ExtTrq' & External \\
\hline & PwrTrnsfrd.Turb & 'Turb' & Turbine \\
\hline
\end{tabular}

\section*{Associated Port - Name of ports that transfer power}
\{'PortA','PortB','PortC'\}
Name of ports that transfer power.
For example, this table summarizes the Power Accounting Bus Creator parameter Transferred parameter values for the listed blocks.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{array}{|l}
\hline \text { Bloc } \\
\text { k }
\end{array}
\]} & \multicolumn{3}{|l|}{Power Accounting Bus Creator Parameter Values} \\
\hline & Signal Name & Associated Port & Description \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Ideal \\
Fixe d \\
Gear \\
Tran \\
smis \\
sion
\end{tabular}} & ```
PwrTrnsfrd.PwrDiffrnt
l
``` & \{'DiffTrq', 'DiffSpd'\} & Differential \\
\hline & PwrTrnsfrd.PwrEng & \{'EngTrq', 'EngSpd'\} & Engine \\
\hline \multirow[t]{2}{*}{Gear box} & PwrTrnsfrd.PwrBase & \{\{'BTrq', 'BSpd'\}'B'\} & Base input \\
\hline & PwrTrnsfrd.PwrFlwr & \{\{'FTrq', 'FSpd'\}'F'\} & Follower output \\
\hline \multirow[t]{3}{*}{\begin{tabular}{|l|}
\hline Boos \\
t \\
Driv \\
e \\
Shaft \\
\hline
\end{tabular}} & PwrTrnsfrd.PwrCmpsr & ' \(\mathrm{Cmps} \mathrm{r}^{\prime}\) & Compressor \\
\hline & PwrTrnsfrd.PwrExt & 'ExtTrq' & External \\
\hline & PwrTrnsfrd.Turb & 'Turb' & Turbine \\
\hline
\end{tabular}

\section*{Description - Signal description}
char
Signal description.
For example, this table summarizes the Power Accounting Bus Creator parameter Transferred parameter values for the listed blocks.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Bloc } \\
& \text { k }
\end{aligned}
\]} & \multicolumn{3}{|l|}{Power Accounting Bus Creator Parameter Values} \\
\hline & Signal Name & Associated Port & Description \\
\hline \begin{tabular}{l}
Ideal \\
Fixe
\end{tabular} & PwrTrnsfrd.PwrDiffrnt \(l\) & \{'DiffTrq', 'DiffSpd'\} & Differential \\
\hline \begin{tabular}{l}
d \\
Gear \\
Tran \\
smis \\
sion
\end{tabular} & PwrTrnsfrd.PwrEng & \{'EngTrq', 'EngSpd'\} & Engine \\
\hline \[
\begin{aligned}
& \text { Gear } \\
& \text { box }
\end{aligned}
\] & PwrTrnsfrd.PwrBase & \{\{'BTrq', 'BSpd'\}'B'\} & Base input \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \hline \text { Bloc } \\
& \text { k }
\end{aligned}
\]} & \multicolumn{3}{|l|}{Power Accounting Bus Creator Parameter Values} \\
\hline & Signal Name & Associated Port & Description \\
\hline & PwrTrnsfrd.PwrFlwr & \{\{'FTrq', 'FSpd'\}'F'\} & Follower output \\
\hline Boos & PwrTrnsfrd.PwrCmpsr & 'Cmpsr' & Compressor \\
\hline t & PwrTrnsfrd.PwrExt & 'ExtTrq' & External \\
\hline Shaft & PwrTrnsfrd.Turb & 'Turb' & Turbine \\
\hline
\end{tabular}

\section*{Not Transferred}

\section*{Signal name - Name of signal \\ char}

Signal name.
For example, this table summarizes the Power Accounting Bus Creator parameter Not Transferred parameter values for the listed blocks.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Block } & \multicolumn{2}{|l|}{ Power Accounting Bus Creator Parameter Values } \\
\cline { 2 - 3 } & Signal Name & Description \\
\hline \begin{tabular}{l} 
Ideal \\
Fixed \\
Gear \\
Transmis \\
sion
\end{tabular} & PwrNotTrnsfrd.PwrDampLoss & Pamping loss \\
\cline { 2 - 3 } & PwrNotTrnsfrd.PwrEffLoss & Efficiency loss \\
\hline Gearbox & PwrNotTrnsfrd.PwrDampLoss & Damping loss \\
\cline { 2 - 3 } & PwrNotTrnsfrd.PwrMechLoss & Mechanical loss \\
\hline \begin{tabular}{l} 
Boost \\
Drive \\
Shaft
\end{tabular} & PwrNotTrnsfrd.PwrMechLoss & Mechanical loss \\
\hline
\end{tabular}

\section*{Description - Signal description}
char
Signal description.

For example, this table summarizes the Power Accounting Bus Creator parameter Not Transferred parameter values for the listed blocks.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Block } & \multicolumn{2}{|l|}{ Power Accounting Bus Creator Parameter Values } \\
\cline { 2 - 3 } & Signal Name & Description \\
\hline \begin{tabular}{l} 
Ideal \\
Fixed \\
Gear \\
Transmis \\
sion
\end{tabular} & PwrNotTrnsfrd.PwrDampLoss & Damping loss \\
\cline { 2 - 3 } & PwrNotTrnsfrd.PwrEffLoss & Efficiency loss \\
\hline Gearbox & PwrNotTrnsfrd.PwrDampLoss & Damping loss \\
\cline { 2 - 3 } & PwrNotTrnsfrd.PwrMechLoss & Mechanical loss \\
\hline \begin{tabular}{l} 
Boost \\
Drive \\
Shaft
\end{tabular} & PwrNotTrnsfrd.PwrMechLoss & Mechanical loss \\
\hline
\end{tabular}

\section*{Stored}

\section*{Signal name - Name of signal \\ char}

Signal name.
For example, this table summarizes the Power Accounting Bus Creator parameter Stored parameter values for the listed blocks.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Block } & \multicolumn{2}{|l|}{ Power Accounting Bus Creator Parameter Values } \\
\cline { 2 - 3 } & Signal Name & Description \\
\hline \begin{tabular}{l} 
Ideal \\
Fixed \\
Gear \\
Transmis \\
sion
\end{tabular} & PwrStored.PwrStoredTrans & Rotational \\
\hline \begin{tabular}{l} 
Control \\
Volume \\
System
\end{tabular} & PwrStored.PwrHeatStored & Stored heat \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Block } & Power Accounting Bus Creator Parameter Values \\
\cline { 2 - 3 } & Signal Name & Description \\
\hline \begin{tabular}{l} 
Datashee \\
t Battery
\end{tabular} & PwrStored. PwrStoredBatt & Battery stored \\
\hline
\end{tabular}

\section*{Description - Signal description}
char
Signal description.
For example, this table summarizes the Power Accounting Bus Creator parameter Stored parameter values for the listed blocks.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Block } & Power Accounting Bus Creator Parameter Values \\
\cline { 2 - 3 } & Signal Name & Description \\
\hline \begin{tabular}{l} 
Ideal \\
Fixed \\
Gear \\
Transmis \\
sion
\end{tabular} & PwrStored.PwrStoredTrans & Rotational \\
\hline \begin{tabular}{l} 
Control \\
Volume \\
System
\end{tabular} & PwrStored.PwrHeatStored & Stored heat \\
\hline \begin{tabular}{l} 
Datashee \\
t Battery
\end{tabular} & PwrStored.PwrStoredBatt & Battery stored \\
\hline
\end{tabular}

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}
autoblks.pwr.PlantInfo

\section*{Topics \\ "Conventional Vehicle Powertrain Efficiency" \\ "Analyze Power and Energy"}

Introduced in R2019a

\section*{Propulsion Blocks - Alphabetical List}

\section*{Boost Drive Shaft}

Boost drive shaft speed
Library: Powertrain Blockset / Propulsion / Combustion Engine Components / Boost


\section*{Description}

The Boost Drive Shaft block uses the compressor, turbine, and external torques to calculate the drive shaft speed. Use the block to model turbochargers and superchargers in an engine model.

You can specify these configurations:
- Turbocharger - Connect the compressor to the turbine
- Two-way ports for turbine and compressor connections
- Option to add an externally applied input torque
- Compressor only - Connect the drive shaft to the compressor
- Two-way port for compressor connection
- Externally applied input torque
- Turbine only - Connect the drive shaft to the turbine
- Two-way port for turbine connection
- Externally applied load torque

For the Turbine only and Turbocharger configurations, the block modifies the turbine torque with a mechanical efficiency.

\section*{Equations}

The Boost Drive Shaft block applies Newton's Second Law for Rotation. Positive torques cause the drive shaft to accelerate. Negative torques impose a load and decelerate the drive shaft.

The block also calculates the power loss due to mechanical inefficiency.
\begin{tabular}{|l|l|}
\hline Calculation & Equations \\
\hline Shaft dynamics & \(\frac{d \omega}{d t}=\frac{1}{J_{\text {shaft }}}\left(\eta_{\text {mech }} \tau_{\text {turb }}+\tau_{\text {comp }}+\tau_{\text {ext }}\right)\) with initial speed \(\omega_{0}\) \\
\hline Speed constraint & \(\omega_{\min } \leq \omega \leq \omega_{\max }\) \\
\hline Power loss & \(\dot{W}_{\text {loss }}=\omega \tau_{\text {turb }}\left(1-\eta_{\text {mech }}\right)\) \\
\hline
\end{tabular}

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Equation \\
\hline \multirow[t]{5}{*}{} & \multirow[t]{3}{*}{\begin{tabular}{l}
PwrTrnsfrd - Power transferred between blocks \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block
\end{tabular}} & PwrCmps r & Shaft power from compressor & \(\tau_{\text {comp }} \omega\) \\
\hline & & PwrTurb & Shaft power from turbine & \(\tau_{\text {turb }} \omega\) \\
\hline & & PwrExt & Externally applied power & \(\tau_{\text {ext }} \omega\) \\
\hline & \begin{tabular}{l}
PwrNotTrnsfrd - Power crossing the block boundary, but not transferred \\
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular} & PwrMechLoss & Mechanical power loss & \(-\dot{W}_{\text {turb }}\) \\
\hline & \begin{tabular}{l}
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular} & PwrStoredDrives hft & Rate change in rotational kinetic energy & \[
\begin{aligned}
& \left(\eta_{\text {mech }} \tau_{\text {turb }}\right. \\
& +\tau_{\text {comp }} \\
& \left.+\tau_{\text {ext }}\right) \omega
\end{aligned}
\] \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(\omega\) & Shaft speed \\
\(\omega_{0}\) & Initial drive shaft speed \\
\(\omega_{\min }\) & Minimum drive shaft speed \\
\(\omega_{\max }\) & Maximum drive shaft speed \\
\(J_{\text {shaft }}\) & Shaft inertia \\
\(\eta_{\max }\) & Mechanical efficiency of turbine \\
\(\tau_{\text {comp }}\) & Compressor torque \\
\(\tau_{\text {turb }}\) & Turbine torque \\
\(\tau_{\text {ext }}\) & Externally applied torque. \\
\(\dot{W}_{\text {loss }}\) & Power loss due to mechanical inefficiency
\end{tabular}

\section*{Ports}

\section*{Input}

\section*{Cmprs - Compressor torque}
two-way connector port
Compressor torque, \(\tau_{\text {comp }}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To create this port, for the Configuration parameter, select Turbocharger or Compressor only.

\section*{Turb - Turbine torque}
two-way connector port
Turbine torque, \(\tau_{\text {turb }}\), in \(\mathrm{N} \cdot \mathrm{m}\).
Dependencies
To create this port, for the Configuration parameter, select Turbocharger or Turbine only.

\section*{ExtTrq - Externally applied torque}
scalar
Externally applied torque, \(\tau_{\text {ext }}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

For turbocharger configurations, to create this port, set Additional torque input to External torque input.

\section*{Output}

\section*{Info - Bus signal \\ bus}

Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|l|}{ Signal } & Description & Units \\
\hline DriveshftSpd & Shaft speed & rad/s \\
\hline \multicolumn{5}{|l|}{ MechPwrLoss } & Mechanical power loss & W \\
\hline \multirow{4}{|l|}{ ExtTrq } & PwrInfo & \begin{tabular}{l} 
PwrTrnsf \\
rd
\end{tabular} & PwrCmpsr
\end{tabular}

\section*{Cmprs - Compressor speed}
two-way connector port
Compressor speed, \(\omega\), in rad/s.

\section*{Dependencies}

To create this port, for the Configuration parameter, select Turbocharger or Compressor only.

\section*{Turb - Turbine speed \\ two-way connector port}

Turbine speed, \(\omega\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To create this port, for the Configuration parameter, select Turbocharger or Turbine only.

\section*{Parameters}

\section*{Block Options}

\section*{Configuration - Specify configuration}

Turbocharger (default)|Turbine only|Compressor only

\section*{Dependencies}
- Selecting Turbocharger or Compressor only creates the Cmprs port.
- Selecting Turbocharger or Turbine only creates the Turb port.

\section*{Additional torque input - Specify external torque input}

\section*{External torque input (default)|No external torque input}

\section*{Dependencies}
- To enable this parameter, select a Turbocharger configuration.
- To create the Trq port, select External torque input.

Shaft inertia, J_shaft - Inertia

\section*{scalar}

Shaft inertia, \(J_{\text {shaft }}\) in \(\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2\).
Initial shaft speed, w_0 - Speed scalar

Initial drive shaft speed, \(\omega_{0}\), in rad/s.

\section*{Min shaft speed, w_min - Speed}
scalar

Minimum drive shaft speed, \(\omega_{\text {min }}\), in rad/s.
Max shaft speed, w_max - Speed

\section*{scalar}

Maximum drive shaft speed, \(\omega_{\text {max }}\), in rad/s.

\section*{Turbine mechanical efficiency, eta_mech - Efficiency scalar}

Mechanical efficiency of turbine \(\eta_{\max }\).

\section*{Dependencies}

To enable this parameter, select the Turbocharger or Turbine only configuration.

\section*{Extended Capabilities}

\author{
C/C++ Code Generation \\ Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).
}

\section*{See Also}

Compressor | Turbine
Introduced in R2017a

\section*{CI Controller}

Compression-ignition controller that includes air mass flow, torque, and EGR estimation Library: Powertrain Blockset / Propulsion / Combustion Engine Controllers


\section*{Description}

The CI Controller block implements a compression-ignition (CI) controller with air mass flow, torque, exhaust gas recirculation (EGR) flow, exhaust back-pressure, and exhaust gas temperature estimation. You can use the CI Controller block in engine control design or performance, fuel economy, and emission tradeoff studies. The core engine block requires the commands that are output from the CI Controller block.

The block uses the commanded torque and measured engine speed to determine these open-loop actuator commands:
- Injector pulse-width
- Fuel injection timing
- Variable geometry turbocharger (VGT) rack position
- EGR valve area percent

The CI Controller block has two subsystems:
- The Controller subsystem - Determines the commands based on tables that are functions of commanded torque and measured engine speed.
\begin{tabular}{|l|l|}
\hline Based On & Determines Commands for \\
\hline Commanded torque & Injector pulse-width \\
Measured engine speed & Fuel injection timing \\
& VGT rack position \\
& EGR valve area percent \\
\hline
\end{tabular}
- The Estimator subsystem - Determines estimates based on these engine attributes.
\begin{tabular}{|l|l|}
\hline Based On & Estimates \\
\hline Measured engine speed & Air mass flow \\
Fuel injection timing & Torque \\
Cycle average intake manifold pressure & Exhaust gas temperature \\
and temperature & Exhaust gas back-pressure \\
Fuel injector pulse-width & EGR valve gas mass flow \\
Absolute ambient pressure & \\
EGR valve area percent & \\
VGT rack position & \\
VGT speed & \\
\hline
\end{tabular}

The figure illustrates the signal flow.


The figure uses these variables.
\begin{tabular}{ll}
\(N\) & Engine speed \\
\(M A P\) & Cycle average intake manifold absolute pressure \\
\(M A T\) & Cycle average intake manifold gas absolute temperature \\
\(E G R a p\), & EGR valve area percent and EGR valve area percent command, \\
\(E G R_{c m d}\) & respectively \\
\(V G T_{p o s}\) & VGT rack position \\
\(N_{v g t}\) & Corrected turbocharger speed \\
\(R P_{c m d}\) & VGT rack position command \\
\(P w_{i n j}\) & Fuel injector pulse-width \\
\(M A I N S O I\) & Start of injection timing for main fuel injection pulse
\end{tabular}

The Model-Based Calibration Toolbox \({ }^{\text {TM }}\) was used to develop the tables that are available with the Powertrain Blockset.

\section*{Controller}

The controller governs the combustion process by commanding VGT rack position, EGR valve area percent, fuel injection timing, and injector pulse-width. Feedforward lookup tables, which are functions of measured engine speed and commanded torque, determine the control commands.

\section*{Air}

The controller commands the EGR valve area percent and VGT rack position. Changing the VGT rack position modifies the turbine flow characteristics. At low-requested torques, the rack position can reduce the exhaust back pressure, resulting in a low turbocharger speed and boost pressure. When the commanded fuel requires additional air mass flow, the rack position is set to close the turbocharger vanes, increasing the turbocharger speed and intake manifold boost pressure.

The variable geometry turbocharger (VGT) rack position lookup table is a function of commanded torque and engine speed
\[
R P_{c m d}=f_{R P c m d}\left(T r q_{c m d}, N\right)
\]
where:
- \(R P_{c m d}\) is VGT rack position command, in percent.
- \(T r q_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.


The commanded exhaust gas recirculation (EGR) valve area percent lookup table is a function of commanded torque and engine speed
\[
E G R_{c m d}=f_{E G R c m d}\left(\operatorname{Tr} q_{c m d}, N\right)
\]
where:
- \(E G R_{\text {cmd }}\) is commanded EGR valve area percent, in percent.
- \(T r q_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.


\section*{Fuel}

To initiate combustion, a CI engine injects fuel directly into the combustion chamber. After the injection, the fuel spontaneously ignites, increasing cylinder pressure. The total mass of the injected fuel and main injection timing determines the torque production.

Assuming constant fuel rail pressure, the CI controller commands the injector pulse-width based on the total requested fuel mass:
\[
P w_{i n j}=\frac{F_{c m d, t o t}}{S_{i n j}}
\]

The equation uses these variables.
\(P w_{\text {inj }} \quad\) Fuel injector pulse-width
\begin{tabular}{ll}
\(S_{i n j}\) & Fuel injector slope \\
\(F_{c m d, t o t}\) & Commanded total fuel mass per injection \\
MAINSOI & Main start-of-injection timing \\
\(N\) & Engine speed
\end{tabular}

The commanded total fuel mass per injection table is a function of the torque command and engine speed
\[
F_{c m d, t o t}=f_{F c m d, t o t}\left(\operatorname{Tr} q_{c m d}, N\right)
\]
where:
- \(F_{c m d, t o t}=F\) is commanded total fuel mass per injection, in mg per cylinder.
- \(T r q_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.


The main start-of-injection (SOI) timing lookup table is a function of commanded fuel mass and engine speed
\[
\text { MAINSOI }=f\left(F_{c m d, t o t}, N\right)
\]
where:
- MAINSOI is the main start-of-injection timing, in degrees crank angle after top dead center (degATDC).
- \(F_{c m d, t o t}=F\) is commanded fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.


\section*{Idle Speed}

When the commanded torque is below a threshold value, the idle speed controller regulates the engine speed.
\begin{tabular}{|l|l|}
\hline If & Idle Speed Controller \\
\hline\(T r q_{\text {cmd,input }}<\operatorname{Tr} q_{\text {idlecmd,enable }}\) & Enabled \\
\hline\(T r q_{\text {idlecmd,enable }} \leq \operatorname{Tr} q_{\text {cmd,input }}\) & Not enabled \\
\hline
\end{tabular}

The idle speed controller uses a discrete PI controller to regulate the target idle speed by commanding a torque.

The PI controller uses this transfer function:
\[
C_{i d l e}(z)=K_{p, i d l e}+K_{i, \text { idle }} \frac{t_{s}}{z-1}
\]

The idle speed commanded torque must be less than the maximum commanded torque:
\(0 \leq \operatorname{Tr} q_{\text {idlecomd }} \leq T r q_{i d l e c m d, m a x}\)
Idle speed control is active under these conditions. If the commanded input torque drops below the threshold for enabling the idle speed controller ( \(\operatorname{Tr} q_{\text {cmd,input }}<\operatorname{Tr}_{i d l e c m d, e n a b l e}\) ), the commanded engine torque is given by:
\(\operatorname{Tr} q_{c m d}=\max \left(\operatorname{Tr} q_{\text {cmd,input }} \operatorname{Tr}_{\text {idlecmd }}\right)\).

The equations use these variables.
\begin{tabular}{ll}
\(\operatorname{Tr} q_{\text {cmd }}\) & Commanded engine torque \\
\(\operatorname{Tr} q_{\text {cmd,input }}\) & Input commanded engine torque \\
\(\operatorname{Tr} q_{\text {idlecmd,enable }}\) & Threshold for enabling idle speed controller \\
\(\operatorname{Tr} q_{\text {idlecmd }}\) & Idle speed controller commanded torque \\
\(\operatorname{Tr} q_{\text {idlecmd,max }}\) & Maximum commanded torque \\
\(N_{\text {idle }}\) & Base idle speed \\
\(K_{p, \text { idle }}\) & Idle speed controller proportional gain \\
\(K_{i, \text { idle }}\) & Idle speed controller integral gain
\end{tabular}

\section*{Speed Limiter}

To prevent over revving the engine, the block implements an engine speed limit controller that limits the engine speed to the value specified by the Rev-limiter speed threshold parameter on the Controls > Idle Speed tab.

If the engine speed, \(N\), exceeds the engine speed limit, \(N_{\text {lim }}\), the block sets the commanded engine torque to 0 .

To smoothly transition the torque command to 0 as the engine speed approaches the speed limit, the block implements a lookup table multiplier. The lookup table multiplies the torque command by a value that ranges from 0 (engine speed exceeds limit) to 1 (engine speed does not exceed the limit).

\section*{Estimator}

Using the CI Core Engine block, the CI Controller block estimates the air mass flow rate, EGR valve mass flow, exhaust back-pressure, engine torque, AFR, and exhaust temperature from sensor feedback. The Info port provides the estimated values, but block does not use them to determine the open-loop engine actuator commands.

\section*{Air Mass Flow}

To calculate the air mass flow, the compression-ignition (CI) engine uses the "CI Engine Speed-Density Air Mass Flow Model". The speed-density model uses the speed-density equation to calculate the engine air mass flow, relating the engine intake port mass flow to the intake manifold pressure, intake manifold temperature, and engine speed.

\section*{EGR Valve Mass Flow}

To calculate the estimated exhaust gas recirculation (EGR) valve mass flow, the block calculates the EGR flow that would occur at standard temperature and pressure conditions, and then corrects the flow to actual temperature and pressure conditions. The block EGR calculation uses estimated exhaust back-pressure, estimated exhaust temperature, standard temperature, and standard pressure.
\[
\dot{m}_{\text {egr }, \text { est }}=\dot{m}_{\text {egr }, s t d} \frac{P_{\text {exh }, \text { est }}}{P_{s t d}} \sqrt{\frac{T_{\text {std }}}{T_{\text {exh }, \text { est }}}}
\]
- The standard exhaust gas recirculation (EGR) mass flow is a lookup table that is a function of the standard flow pressure ratio and EGR valve flow area
\[
\dot{m}_{e g r, s t d}=f\left(\frac{M A P}{P_{\text {exh,est }}}, E G R a p\right)
\]
where:
- \(\dot{m}_{e g r, s t d}\) is the standard EGR valve mass flow, in \(\mathrm{g} / \mathrm{s}\).
- \(P_{\text {exh,est }}\) is the estimated exhaust back-pressure, in Pa.
- MAP is the cycle average intake manifold absolute pressure, in Pa.
- EGRap is the measured EGR valve area, in percent.


The equations use these variables.
\[
\dot{m}_{e g r, e s t} \quad \text { Estimated EGR valve mass flow }
\]
\begin{tabular}{ll}
\(\dot{m}_{e g r, s t d}\) & Standard EGR valve mass flow \\
\(P_{s t d}\) & Standard pressure \\
\(T_{s t d}\) & Standard temperature \\
\(T_{\text {exh,est }}\) & Estimated exhaust manifold gas temperature \\
\(M A P\) & Measured cycle average intake manifold absolute pressure \\
\(P_{\text {exh }, \text { est }}\) & Estimated exhaust back-pressure \\
\(P_{\text {Amb }}\) & Absolute ambient pressure \\
EGRap & Measured EGR valve area percent
\end{tabular}

\section*{Exhaust Back-Pressure}

To estimate the EGR valve mass flow, the block requires an estimate of the exhaust backpressure. To estimate the exhaust back-pressure, the block uses the ambient pressure and the turbocharger pressure ratio.
\[
P_{\text {exh }, \text { est }}=P_{\text {Amb }} P r_{\text {turbo }}
\]

For the turbocharger pressure ration calculation, the block uses two lookup tables. The first lookup table determines the approximate turbocharger pressure ratio as a function of turbocharger mass flow and corrected turbocharger speed. Using a second lookup table, the block corrects the approximate turbocharger pressure ratio for VGT rack position.
\[
P r_{\text {turbo }}=f\left(\dot{m}_{\text {airstd }}, N_{v g t c o r r}\right) f\left(V G T_{p o s}\right)
\]
where:
\[
N_{v g t c o r r}=\frac{N_{v g t}}{\sqrt{T_{\text {exh,est }}}}
\]

The equations use these variables.
\begin{tabular}{ll}
\(\dot{m}_{\text {egr, est }}\) & Estimated EGR valve mass flow \\
\(\dot{m}_{\text {egr,std }}\) & Standard EGR valve mass flow \\
\(\dot{m}_{\text {port,est }}\) & Estimated intake port mass flow rate \\
\(\dot{m}_{\text {airstd }}\) & Standard air mass flow
\end{tabular}
\begin{tabular}{ll} 
EGRap & Measured EGR valve area \\
MAP & Measured cycle average intake manifold absolute pressure \\
\(M A T\) & Measured cycle average intake manifold gas absolute temperature \\
\(P_{\text {std }}\) & Standard pressure \\
\(T_{\text {std }}\) & Standard temperature \\
\(T_{\text {exhest }}\) & Estimated exhaust manifold gas temperature \\
\(P r_{\text {vgtorr }}\) & Turbocharger pressure ratio correction for VGT rack position \\
\(P r_{\text {turbo }}\) & Turbocharger pressure ratio \\
\(P_{\text {exh,est }}\) & Estimated exhaust back-pressure \\
\(P_{\text {Amb }}\) & Absolute ambient pressure \\
\(N_{\text {vgtorr }}\) & Corrected turbocharger speed \\
\(V G T_{\text {pos }}\) & Measured VGT rack position
\end{tabular}

The exhaust-back pressure calculation uses these lookup tables:
- The turbocharger pressure ratio, corrected for variable geometry turbocharger (VGT) speed, is a lookup table that is a function of the standard air mass flow and corrected turbocharger speed, \(P r_{\text {turbo }}=f\left(\dot{m}_{\text {airstd }}, N_{v g t c o r r}\right)\), where:
- \(P r_{\text {turbo }}\) is the turbocharger pressure ratio, corrected for VGT speed.
- \(\dot{m}_{\text {airstd }}\) is the standard air mass flow, in g/s.
- \(N_{\text {vgtcorr }}\) is the corrected turbocharger speed, in \(\mathrm{rpm} / \mathrm{K}^{\wedge}(1 / 2)\).


To calculate the standard air mass flow through the turbocharger, the block uses conservation of mass, the estimated intake port, and EGR mass flows (from the last estimated calculation). The calculation assumes negligible exhaust manifold filling dynamics.
\[
\dot{m}_{\text {airstd }}=\left(\dot{m}_{\text {port, est }}-\dot{m}_{\text {egr, est }}\right) \frac{P_{s t d}}{M A P} \sqrt{\frac{M A T}{T_{s t d}}}
\]
- The variable geometry turbocharger pressure ratio correction is a function of the rack position, \(P r_{\text {vgtcorr }}=f\left(V G T_{\text {pos }}\right)\), where:
- \(P r_{\text {vgtoorr }}\) is the turbocharger pressure ratio correction.
- \(V G T_{\text {pos }}\) is the variable geometry turbocharger (VGT) rack position.


\section*{Engine Torque}

To calculate the engine torque, you can configure the block to use either of these torque models.
\begin{tabular}{|c|c|}
\hline Brake Torque Model & Description \\
\hline "CI Engine Torque Structure Model" & \begin{tabular}{l}
The CI core engine torque structure model determines the engine torque by reducing the maximum engine torque potential as these engine conditions vary from nominal: \\
- Start of injection (SOI) timing \\
- Exhaust back-pressure \\
- Burned fuel mass \\
- Intake manifold gas pressure, temperature, and oxygen percentage \\
- Fuel rail pressure \\
To account for the effect of post-inject fuel on torque, the model uses a calibrated torque offset table.
\end{tabular} \\
\hline "CI Engine Simple Torque Model" & For the simple engine torque calculation, the CI engine uses a torque lookup table map that is a function of engine speed and injected fuel mass. \\
\hline
\end{tabular}

\section*{Exhaust Temperature}

The exhaust temperature calculation depends on the torque model. For both torque models, the block implements lookup tables.
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
Torque \\
Model
\end{tabular} & Description & Equations \\
\hline \begin{tabular}{l} 
Simple \\
Torque \\
Lookup
\end{tabular} & \begin{tabular}{l} 
Exhaust temperature lookup \\
table is a function of the injected \\
fuel mass and engine speed.
\end{tabular} & \(T_{\text {exh }}=f_{\text {Texh }}(F, N)\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Torque Model & Description & Equations \\
\hline Torque Structur e & \begin{tabular}{l}
The nominal exhaust temperature, Texh \(_{\text {nom, }}\), is a product of these exhaust temperature efficiencies: \\
- SOI timing \\
- Intake manifold gas pressure \\
- Intake manifold gas temperature \\
- Intake manifold gas oxygen percentage \\
- Fuel rail pressure \\
- Optimal temperature \\
The exhaust temperature, \(T e x h_{\text {nom, }}\), is offset by a post temperature effect, \(\Delta T_{\text {post }}\), that accounts for post and late injections during the expansion and exhaust strokes.
\end{tabular} &  \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(F\) & Compression stroke injected fuel mass \\
\(N\) & Engine speed \\
\(T e x h\) & Exhaust manifold gas temperature \\
\(T e x h_{\text {opt }}\) & Optimal exhaust manifold gas temperature \\
\(\Delta T_{\text {post }}\) & Post injection temperature effect \\
\(T e x h_{\text {nom }}\) & Nominal exhaust temperature \\
\(S O I_{\text {exhteff }}\) & Main SOI exhaust temperature efficiency multiplier \\
\(\Delta S O I\) & Main SOI timing relative to optimal timing \\
\(M A P_{\text {exheff }}\) & Intake manifold gas pressure exhaust temperature efficiency multiplier \\
\(M A P_{\text {ratio }}\) & Intake manifold gas pressure ratio relative to optimal pressure ratio
\end{tabular}
\(\lambda \quad\) Intake manifold gas lambda
\(M A T_{\text {exheff }} \quad\) Intake manifold gas temperature exhaust temperature efficiency multiplier
\(\triangle M A T \quad\) Intake manifold gas temperature relative to optimal temperature
\(O 2 P_{\text {exheff }}\) Intake manifold gas oxygen exhaust temperature efficiency multiplier
\(\triangle O 2 P \quad\) Intake gas oxygen percent relative to optimal
\(F U E L P_{\text {exheff }}\) Fuel rail pressure exhaust temperature efficiency multiplier
\(\triangle F U E L P \quad\) Fuel rail pressure relative to optimal

\section*{Air-Fuel Ratio}

The measured engine speed and fuel injector pulse-width determine the commanded fuel mass flow rate:
\[
\dot{m}_{f u e l, c m d}=\frac{N S_{i n j} P w_{i n j} N_{c y l}}{\operatorname{Cps}\left(\frac{60 s}{m i n}\right)\left(\frac{1000 \mathrm{mg}}{g}\right)}
\]

The commanded total fuel mass flow and estimated port mass flow rates determine the estimated AFR:
\[
A F R_{\text {est }}=\frac{\dot{m}_{\text {port }, \text { est }}}{\dot{m}_{\text {fuel }, c m d}}
\]

The equations use these variables.
\begin{tabular}{ll}
\(P w_{i n j}\) & Fuel injector pulse-width \\
\(A F R_{e s t}\) & Estimated air-fuel ratio \\
\(\dot{m}_{\text {fuel }, \text { cmd }}\) & Commanded fuel mass flow rate \\
\(S_{i n j}\) & Fuel injector slope \\
\(N\) & Engine speed \\
\(N_{c y l}\) & Number of engine cylinders \\
\(C p s\) & Crankshaft revolutions per power stroke, rev/stroke \\
\(\dot{m}_{\text {port,est }}\) & Total estimated engine air mass flow at intake ports
\end{tabular}

\section*{Ports}

\section*{Input}

\section*{TrqCmd - Commanded engine torque scalar}

Commanded engine torque, \(\operatorname{Tr} q_{\text {cmd,input }}\), in \(\mathrm{N} \cdot \mathrm{m}\).
EngSpd - Measured engine speed scalar

Measured engine speed, \(N\), in rpm.

\section*{Map - Measured intake manifold absolute pressure scalar}

Measured intake manifold absolute pressure, MAP, in Pa.
Mat - Measured intake manifold absolute temperature scalar

Measured intake manifold absolute temperature, MAT, in K.
AmbPrs - Ambient pressure scalar

Absolute ambient pressure, \(P_{A m b}\), in Pa.
EgrVlvAreaPct - EGR valve area percent scalar

Measured EGR valve area percent, EGRap, in \%.
VgtPos - VGT speed
scalar
Measured VGT rack position, \(V G T_{\text {pos }}\).
VgtSpd - VGT speed
scalar

Measured VGT speed, \(N_{v g t}\), in rpm.

\section*{Ect - Engine cooling temperature}

\section*{scalar}

Engine cooling temperature, \(T_{\text {coolant }}\), in K.

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|c|c|c|c|}
\hline Signal & Description & Variable & Units \\
\hline Inj Pw & Fuel injector pulse-width & \(P w_{\text {inj }}\) & ms \\
\hline EgrVlvAreaPctCmd & EGR valve area percent command & \(E G R_{\text {cmd }}\) & \% \\
\hline TurbRackPosCmd & VGT rack position command & \(R P_{\text {cmd }}\) & N/A \\
\hline TrqCmd & Engine torque & Tr \(q_{\text {cmd }}\) & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline FuelMassTotCmd & Commanded total fuel mass per injection & \(F_{\text {cmd, tot }}\) & mg \\
\hline FuelMainSoi & Main start-of-injection timing & MAINSOI & degATDC \\
\hline FuelMassFlwCmd & Commanded fuel mass flow rate & \(\dot{m}_{\text {fuel, cmd }}\) & kg/s \\
\hline EstIntkPortMassFl w & Estimated port mass flow rate & \(\dot{m}_{\text {port, est }}\) & kg/s \\
\hline EstEngTrq & Estimated engine torque & Tr \(q_{\text {est }}\) & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline EstExhManGasTemp & Estimated exhaust manifold gas temperature & \(T_{\text {exh,est }}\) & K \\
\hline EstExhPrs & Estimated exhaust backpressure & Pex & Pa \\
\hline EstEGRFlow & EstEGRFlow & EstEGRFlow & EstEGRFlow \\
\hline EstAfr & Estimated air-fuel ratio & \(A F R_{\text {est }}\) & N/A \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Signal & Description & Variable & Units \\
\hline EngRevLimAct & \begin{tabular}{l} 
Flag that indicates if rev- \\
limiter control is active
\end{tabular} & N/A & N/A \\
\hline
\end{tabular}

\section*{InjPw - Fuel injector pulse-width \\ scalar}

Fuel injector pulse-width, \(P w_{i n j}\), in ms .

\section*{FuelMainSoi - Fuel main injecting timing \\ scalar}

Main start-of-injection timing, MAINSOI, in degrees crank angle after top dead center (degATDC).

\section*{TurbRackPosCmd - Rack position \\ scalar}

VGT rack position command, \(R P_{\text {cmd }}\).

\section*{EgrVlvAreaPctCmd - Intake cam phaser angle command scalar}

EGR valve area percent command, \(E G R_{\text {cmd }}\).

\section*{Parameters}

\section*{Controls}

Air - EGR
EGR valve area percent, f_egrcmd - Lookup table array

The commanded exhaust gas recirculation (EGR) valve area percent lookup table is a function of commanded torque and engine speed
\[
E G R_{c m d}=f_{E G R c m d}\left(\operatorname{Tr} q_{c m d}, N\right)
\]
where:
- \(E G R_{\text {cmd }}\) is commanded EGR valve area percent, in percent.
- \(T r q_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.


Commanded torque breakpoints, f_egr_tq_bpt - Breakpoints vector

Commanded torque breakpoints, in \(\mathrm{N} \cdot \mathrm{m}\).
```

Speed breakpoints, f_egr_n_bpt - Breakpoints
vector

```

Speed breakpoints, in rpm.

\section*{Air - VGR}

VGT rack position table, f_rpcmd - Lookup table array

The variable geometry turbocharger (VGT) rack position lookup table is a function of commanded torque and engine speed
\[
R P_{c m d}=f_{R P c m d}\left(\operatorname{Tr} q_{c m d}, N\right)
\]
where:
- \(R P_{\text {cmd }}\) is VGT rack position command, in percent.
- \(\quad T r q_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.


Commanded torque breakpoints, f_rp_tq_bpt - Breakpoints vector

Breakpoints, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Speed breakpoints, f_rp_n_bpt - Breakpoints vector}

Breakpoints, in rpm.

\section*{Fuel}

\section*{Injector slope, Sinj - Slope} scalar

Fuel injector slope, \(S_{i n j}\), in \(\mathrm{mg} / \mathrm{ms}\).
```

Stoichiometric air-fuel ratio, afr_stoich - Ratio scalar

```

Stoichiometric air-fuel ratio, \(A F R_{\text {stoich }}\).
Fuel lower heating value, fuel_lhv - Heat scalar

Fuel lower heating value, in J/kg.

\section*{Fuel mass per injection table, f_fcmd_tot - Lookup table array}

The commanded total fuel mass per injection table is a function of the torque command and engine speed
\[
F_{c m d, t o t}=f_{F c m d, t o t}\left(\operatorname{Tr} q_{c m d}, N\right)
\]
where:
- \(F_{c m d, t o t}=F\) is commanded total fuel mass per injection, in mg per cylinder.
- \(\operatorname{Tr} q_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.


\section*{Fuel main injection timing table, f_main_soi - Lookup table} array

The main start-of-injection (SOI) timing lookup table is a function of commanded fuel mass and engine speed
\[
\text { MAINSOI }=f\left(F_{c m d, t o t}, N\right)
\]
where:
- MAINSOI is the main start-of-injection timing, in degrees crank angle after top dead center (degATDC).
- \(F_{\text {cmd,tot }}=F\) is commanded fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.


Fuel main injection timing fuel breakpoints, f_main_soi_f_bpt Breakpoints
vector
Fuel main injection timing fuel breakpoints, in mg per injection.

\section*{Fuel main injection timing speed breakpoints, f_main_soi_n_bpt Breakpoints}
vector
Fuel main injection timing speed breakpoints, in rpm.

\section*{Commanded torque breakpoints, f_f_tot_tq_bpt - Breakpoints} vector

Commanded torque breakpoints, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Speed breakpoints, f_f_tot_n_bpt - Breakpoints}

\section*{vector}

Speed breakpoints, in rpm.

\section*{Idle Speed}

\section*{Base idle speed, N_idle - Speed scalar}

Base idle speed, \(N_{\text {idle }}\), in rpm.

\section*{Enable torque command limit, Trq_idlecmd_enable - Torque scalar}

Torque to enable the idle speed controller, \(\operatorname{Tr}_{\text {idlecmd,enable }}\), in \(\mathrm{N} \cdot \mathrm{m}\).
```

Maximum torque command, Trq_idlecmd_max - Torque
scalar

```

Maximum idle controller commanded torque, \(\operatorname{Tr} q_{\text {idlecmd,max }}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Proportional gain, Kp_idle - PI Controller} scalar

Proportional gain for idle speed control, \(K_{p, i d l e}\), in \(\mathrm{N} \cdot \mathrm{m} / \mathrm{rpm}\).

\section*{Integral gain, Ki_idle - PI Controller scalar}

Integral gain for idle speed control, \(K_{i, i d l e}\), in \(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rpm} \cdot \mathrm{s})\).

\section*{Rev-limiter speed threshold - Engine speed limit scalar}

Engine speed limit, \(N_{\text {lim }}\) in rpm.
If the engine speed, \(N\), exceeds the engine speed limit, \(N_{\text {lim }}\), the block sets the commanded engine torque to 0 .

To smoothly transition the torque command to 0 as the engine speed approaches the speed limit, the block implements a lookup table multiplier. The lookup table multiplies the torque command by a value that ranges from 0 (engine speed exceeds limit) to 1 (engine speed does not exceed the limit).

\section*{Estimation}

Air
Number of cylinders, NCyl - Engine cylinders scalar

Number of engine cylinders, \(N_{\text {cyl }}\).

\section*{Crank revolutions per power stroke, Cps - Revolutions per stroke scalar}

Crankshaft revolutions per power stroke, \(C p s\), in rev/stroke.

\section*{Total displaced volume, Vd - Volume scalar}

Displaced volume, \(V_{d}\), in m^3.
```

Ideal gas constant air, Rair - Constant
scalar

```

Ideal gas constant, \(R_{\text {air }}\), in \(\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})\).
Air standard pressure, Pstd - Pressure
scalar
Standard air pressure, \(P_{\text {std }}\), in Pa.

\section*{Air standard temperature, Tstd - Temperature scalar}

Standard air temperature, \(T_{s t d}\), in K.

\section*{Speed density volumetric efficiency, f_nv - Lookup table array}

The volumetric efficiency lookup table is a function of the intake manifold absolute pressure at intake valve closing (IVC) and engine speed
\[
\eta_{v}=f_{\eta_{v}}(M A P, N)
\]
where:
- \(\eta_{\nu}\) is engine volumetric efficiency, dimensionless.
- MAP is intake manifold absolute pressure, in KPa.
- \(N\) is engine speed, in rpm.


Speed density intake manifold pressure breakpoints, f_nv_prs_bpt Breakpoints
vector
Intake manifold pressure breakpoints for speed-density volumetric efficiency lookup table, in KPa.

Speed density engine speed breakpoints, f_nv_n_bpt - Breakpoints vector

Engine speed breakpoints for speed-density volumetric efficiency lookup table, in rpm.
EGR valve standard flow calibration, f_egr_stdflow - Lookup table array

The standard exhaust gas recirculation (EGR) mass flow is a lookup table that is a function of the standard flow pressure ratio and EGR valve flow area
\[
\dot{m}_{e g r, s t d}=f\left(\frac{M A P}{P_{\text {exh,est }}}, E G R a p\right)
\]
where:
- \(\dot{m}_{e g r, s t d}\) is the standard EGR valve mass flow, in \(\mathrm{g} / \mathrm{s}\).
- \(P_{\text {exh,est }}\) is the estimated exhaust back-pressure, in Pa.
- MAP is the cycle average intake manifold absolute pressure, in Pa.
- EGRap is the measured EGR valve area, in percent.


\section*{EGR valve standard flow pressure ratio breakpoints, f_egr_stdflow_pr_bpt - Breakpoints \\ vector}

EGR valve standard flow pressure ratio breakpoints, dimensionless.

\section*{EGR valve standard flow area percent breakpoints, f_egr_stdflow_egrap_bpt - Breakpoints vector}

EGR valve standard flow area percent breakpoints, in percent.

\section*{Turbocharger pressure ratio, f_turbo_pr - Lookup table array}

The turbocharger pressure ratio, corrected for variable geometry turbocharger (VGT) speed, is a lookup table that is a function of the standard air mass flow and corrected turbocharger speed, \(P r_{\text {turbo }}=f\left(\dot{m}_{\text {airstd }}, N_{v g t c o r r}\right)\), where:
- \(P r_{\text {turbo }}\) is the turbocharger pressure ratio, corrected for VGT speed.
- \(\dot{m}_{\text {airstd }}\) is the standard air mass flow, in \(\mathrm{g} / \mathrm{s}\).
- \(N_{v g t c o r r}\) is the corrected turbocharger speed, in \(\mathrm{rpm} / \mathrm{K}^{\wedge}(1 / 2)\).


\section*{Turbocharger pressure ratio standard flow breakpoints, f_turbo_pr_stdflow_bpt - Breakpoints \\ vector}

Turbocharger pressure ratio standard flow breakpoints, in \(\mathrm{g} / \mathrm{s}\).

> Turbocharger pressure ratio corrected speed breakpoints, f_turbo_pr_corrspd_bpt - Breakpoints
> vector

Turbocharger pressure ratio corrected speed breakpoints, in \(\mathrm{rpm} / \mathrm{K}^{\wedge}(1 / 2)\).

\section*{Turbocharger pressure ratio VGT position correction, f_turbo_pr_vgtposcorr - Lookup table array}

The variable geometry turbocharger pressure ratio correction is a function of the rack position, \(P r_{\text {vgtcorr }}=f\left(V G T_{\text {pos }}\right)\), where:
- \(P r_{\text {vgtoorr }}\) is the turbocharger pressure ratio correction.
- \(V G T_{\text {pos }}\) is the variable geometry turbocharger (VGT) rack position.


\section*{Turbocharger pressure ratio VGT position correction breakpoints, f_turbo_pr_vgtposcorr_bpt - Breakpoints \\ vector}

Turbocharger pressure ratio VGT position correction breakpoints, dimensionless.

\section*{Torque - Simple Torque Lookup}

\section*{Torque table, f_tq_nf - Lookup table}
array
For the simple torque lookup table model, the CI engine uses a lookup table is a function of engine speed and injected fuel mass, \(T_{\text {brake }}=f_{\text {Tnf }}(F, N)\), where:
- \(T q=T_{b r a k e}\) is engine brake torque after accounting for engine mechanical and pumping friction effects, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(F\) is injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Simple Torque Lookup.
Torque table fuel mass per injection breakpoints, f_tq_nf_f_bpt -
Breakpoints
vector
Torque table fuel mass per injection breakpoints, in mg per injection.

\section*{Dependencies}

To enable this parameter, for Torque model, select Simple Torque Lookup.
Torque table speed breakpoints, f_tq_nf_n_bpt - Breakpoints

\section*{vector}

Engine speed breakpoints, in rpm.

\section*{Dependencies}

To enable this parameter, for Torque model, select Simple Torque Lookup.

\section*{Torque - Torque Structure}

Fuel mass per injection breakpoints, f_tqs_f_bpt - Breakpoints vector

Fuel mass per injection breakpoints, in mg per injection.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Engine speed breakpoints, f_tqs_n_bpt - Breakpoints vector}

Engine speed breakpoints, in rpm.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Optimal main start of injection timing, f_tqs_mainsoi - Optimal MAINSOI}
array
The optimal main start of injection (SOI) timing lookup table, \(f_{\text {SOIC }}\), is a function of the engine speed and injected fuel mass, SOI \(_{c}=f_{\text {SOIC }}(F, N)\), where:
- \(S O I_{c}\) is optimal SOI timing, in degATDC.
- \(F\) is compression stroke injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Optimal intake manifold gas pressure, f_tqs_map - Optimal intake MAP array

The optimal intake manifold gas pressure lookup table, \(f_{\text {MAP }}\), is a function of the engine speed and injected fuel mass, \(M A P=f_{\text {MAP }}(F, N)\), where:
- MAP is optimal intake manifold gas pressure, in Pa.
- \(F\) is compression stroke injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Optimal exhaust manifold gas pressure, f_tqs_emap - Optimal exhaust MAP}
array
The optimal exhaust manifold gas pressure lookup table, \(f_{\text {EMAP }}\), is a function of the engine speed and injected fuel mass, \(E M A P=f_{E M A P}(F, N)\), where:
- EMAP is optimal exhaust manifold gas pressure, in Pa.
- \(F\) is compression stroke injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Optimal intake manifold gas temperature, f_tqs_mat - Optimal intake MAT}
array
The optimal intake manifold gas temperature lookup table, \(f_{\text {MAT }}\), is a function of the engine speed and injected fuel mass, \(M A T=f_{M A T}(F, N)\), where:
- MAT is optimal intake manifold gas temperature, in K.
- \(F\) is compression stroke injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Optimal intake gas oxygen percent, f_tqs_o2pct - Optimal intake gas oxygen \\ array}

The optimal intake gas oxygen percent lookup table, \(f_{O 2}\), is a function of the engine speed and injected fuel mass, \(O 2 P C T=f_{O 2}(F, N)\), where:
- O2PCT is optimal intake gas oxygen, in percent.
- \(F\) is compression stroke injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Optimal fuel rail pressure, f_tqs_fuelpress - Optimal fuel rail pressure array}

The optimal fuel rail pressure lookup table, \(f_{\text {fuelp }}\), is a function of the engine speed and injected fuel mass, \(F U E L P=f_{\text {fuelp }}(F, N)\), where:
- FUELP is optimal fuel rail pressure, in MPa.
- \(F\) is compression stroke injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Optimal gross indicated mean effective pressure, f_tqs_imepg Optimal mean effective pressure \\ array}

The optimal gross indicated mean effective pressure lookup table, \(f_{\text {imepg }}\), is a function of the engine speed and injected fuel mass, \(I M E P G=f_{\text {imepg }}(F, N)\), where:
- IMEPG is optimal gross indicated mean effective pressure, in Pa.
- \(F\) is compression stroke injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Optimal friction mean effective pressure, f_tqs_fmep - Optimal friction mean effective pressure} array

The optimal friction mean effective pressure lookup table, \(f_{\text {fmep }}\), is a function of the engine speed and injected fuel mass, \(F M E P=f_{\text {fmep }}(F, N)\), where:
- FMEP is optimal friction mean effective pressure, in Pa.
- \(F\) is compression stroke injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Optimal pumping mean effective pressure, f_tqs_pmep - Optimal pumping mean effective pressure}
array
The optimal pumping mean effective pressure lookup table, \(f_{\text {pmep }}\), is a function of the engine speed and injected fuel mass, \(P M E P=f_{\text {pmep }}(F, N)\), where:
- \(P M E P\) is optimal pumping mean effective pressure, in Pa.
- \(F\) is compression stroke injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Friction multiplier as a function of temperature, f_tqs_fric_temp_mod - Friction multiplier array

Friction multiplier as a function of temperature, dimensionless.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Friction multiplier temperature breakpoints, f_tqs_fric_temp_bpt Breakpoints}
vector
Friction multiplier temperature breakpoints, in K.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Main start of injection timing efficiency multiplier, f_tqs_mainsoi_eff - MAINSOI efficiency multiplier array

The main start of injection (SOI) timing efficiency multiplier lookup table, \(f_{\text {SOIeff }}\), is a function of the engine speed and main SOI timing relative to optimal timing, \(S O I_{\text {eff }}=\) \(f_{\text {SOIeff }}(\Delta S O I, N)\), where:
- \(S O I_{e f f}\) is main SOI timing efficiency multiplier, dimensionless.
- \(\triangle\) SOI is main SOI timing relative to optimal timing, in degBTDC.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Main start of injection timing relative to optimal timing breakpoints, f_tqs_mainsoi_delta_bpt - Breakpoints}
vector
Main start of injection timing relative to optimal timing breakpoints, in degBTDC.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Intake manifold gas pressure efficiency multiplier, f_tqs_map_eff Intake pressure efficiency multiplier}
array
The intake manifold gas pressure efficiency multiplier lookup table, \(f_{\text {MAPeff }}\), is a function of the intake manifold gas pressure ratio relative to optimal pressure ratio and lambda, \(M A P_{\text {eff }}=f_{\text {MAPeff }}\left(M A P_{\text {ratio }}, \lambda\right)\), where:
- \(M A P_{\text {eff }}\) is intake manifold gas pressure efficiency multiplier, dimensionless.
- \(M A P_{\text {ratio }}\) is intake manifold gas pressure ratio relative to optimal pressure ratio, dimensionless.
- \(\lambda\) is intake manifold gas lambda, dimensionless.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Intake manifold gas pressure ratio relative to optimal pressure ratio breakpoints, f_tqs_map_ratio_bpt - Breakpoints}

\section*{vector}

Intake manifold gas pressure ratio relative to optimal pressure ratio breakpoints, dimensionless.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Intake manifold gas lambda breakpoints, f_tqs_lambda_bpt - Breakpoints vector}

Intake manifold gas lambda breakpoints, dimensionless.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Intake manifold gas temperature efficiency multiplier, f_tqs_mat_eff - Intake temperature efficiency multiplier}
```

array

```

The intake manifold gas temperature efficiency multiplier lookup table, \(f_{\text {MATeff }}\), is a function of the engine speed and intake manifold gas temperature relative to optimal temperature, \(M A T_{\text {eff }}=f_{\text {MATeff }}(\triangle M A T, N)\), where:
- \(M A T_{\text {eff }}\) is intake manifold gas temperature efficiency multiplier, dimensionless.
- \(\triangle M A T\) is intake manifold gas temperature relative to optimal temperature, in K .
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Intake manifold gas temperature relative to optimal gas temperature breakpoints, f_tqs_mat_delta_bpt - Breakpoints \\ vector}

Intake manifold gas temperature relative to optimal gas temperature breakpoints, in K .

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
```

Intake manifold gas oxygen efficiency multiplier, f_tqs_o2pct_eff -
Intake oxygen efficiency multiplier
array

```

The intake manifold gas oxygen efficiency multiplier lookup table, \(f_{\text {o2Peff }}\), is a function of the engine speed and intake manifold gas oxygen percent relative to optimal, \(O 2 P_{\text {eff }}=\) \(f_{\text {O2Peff }}(\triangle O 2 P, N)\), where:
- \(O 2 P_{\text {eff }}\) is intake manifold gas oxygen efficiency multiplier, dimensionless.
- \(\triangle O 2 P\) is intake gas oxygen percent relative to optimal, in percent.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Intake gas oxygen percent relative to optimal breakpoints, f_tqs_o2pct_delta_bpt - Breakpoints \\ vector}

Intake gas oxygen percent relative to optimal breakpoints, in percent.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Fuel rail pressure efficiency multiplier, f_tqs_fuelpress_eff Efficiency multiplier
array
The fuel rail pressure efficiency multiplier lookup table, \(f_{\text {FUELPeff }}\), is a function of the engine speed and fuel rail pressure relative to optimal breakpoints, \(F U E L P_{\text {eff }}=\) \(f_{\text {FUELPeff }}(\triangle F U E L P, N)\), where:
- \(F U E L P_{\text {eff }}\) is fuel rail pressure efficiency multiplier, dimensionless.
- \(\triangle F U E L P\) is fuel rail pressure relative to optimal, in MPa.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Fuel rail pressure relative to optimal breakpoints, f_tqs_fuelpress_delta_bpt - Breakpoints

\section*{vector}

Fuel rail pressure relative to optimal breakpoints, in MPa.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Fuel mass injection type identifier, f_tqs_f_inj_type - Type identifier vector

Fuel mass injection type identifier, dimensionless.
In the CI Core Engine and CI Controller blocks, you can represent multiple injections with the start of injection (SOI) and fuel mass inputs to the model. To specify the type of injection, use the Fuel mass injection type identifier parameter.
\begin{tabular}{|l|l|}
\hline Type of Injection & Parameter Value \\
\hline Pilot & 0 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Type of Injection & Parameter Value \\
\hline Main & 1 \\
\hline Post & 2 \\
\hline Passed & 3 \\
\hline
\end{tabular}

The model considers Passed fuel injections and fuel injected later than a threshold to be unburned fuel. Use the Maximum start of injection angle for burned fuel, f_tqs_f_burned_soi_limit parameter to specify the threshold.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Indicated mean effective pressure post inject correction, f_tqs_imep_post_corr - Post inject correction array}

The indicated mean effective pressure post inject correction lookup table, \(f_{\text {IMEPpost }}\), is a function of the engine speed and fuel rail pressure relative to optimal breakpoints, \(\Delta I M E P_{\text {post }}=f_{\text {IMEPpost }}\left(\Delta S O I_{\text {post }}, F_{\text {post }}\right)\), where:
- \(\triangle I M E P_{\text {post }}\) is indicated mean effective pressure post inject correction, in Pa.
- \(\Delta S O I_{\text {post }}\) is indicated mean effective pressure post inject start of inject timing centroid, in degATDC.
- \(F_{\text {post }}\) is indicated mean effective pressure post inject mass sum, in mg per injection.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Indicated mean effective pressure post inject mass sum breakpoints, f_tqs_f_post_sum_bpt - Breakpoints vector

Indicated mean effective pressure post inject mass sum breakpoints, in mg per injection.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Indicated mean effective pressure post inject start of inject timing centroid breakpoints, f_tqs_soi_post_cent_bpt - Breakpoints vector

Indicated mean effective pressure post inject start of inject timing centroid breakpoints, in degATDC.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Maximum start of injection angle for burned fuel, f_tqs_f_burned_soi_limit - Maximum SOI angle for burned fuel vector

Maximum start of injection angle for burned fuel, in degATDC.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Exhaust}

Exhaust gas specific heat at constant pressure, cp_exh - Specific heat scalar

Exhaust gas-specific heat, \(C p_{\text {exh }}\), in \(\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})\).

\section*{Exhaust Temperature - Simple Torque Lookup}

\section*{Exhaust temperature table, f_t_exh - Lookup table} array

The lookup table for the exhaust temperature is a function of injected fuel mass and engine speed
\[
T_{e x h}=f_{T e x h}(F, N)
\]
where:
- \(T_{\text {exh }}\) is exhaust temperature, in K.
- \(F\) is injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Simple Torque Lookup.
Fuel mass per injection breakpoints, f_t_exh_f_bpt - Breakpoints array

Engine load breakpoints used for exhaust temperature lookup table, in mg per injection.

\section*{Dependencies}

To enable this parameter, for Torque model, select Simple Torque Lookup.

\section*{Speed breakpoints, f_t_exh_n_bpt - Breakpoints array}

Engine speed breakpoints used for exhaust temperature lookup table, in rpm.

\section*{Dependencies}

To enable this parameter, for Torque model, select Simple Torque Lookup.

\section*{Exhaust Temperature - Torque Structure}

\section*{Optimal exhaust manifold gas temperature, f_tqs_exht - Optimal exhaust manifold gas temperature}
array
The optimal exhaust manifold gas temperature lookup table, \(f_{\text {Texh }}\), is a function of the engine speed engine speed and injected fuel mass, \(\operatorname{Texh}_{\text {opt }}=f_{\text {Texh }}(F, N)\), where:
- Texh \({ }_{\text {opt }}\) is optimal exhaust manifold gas temperature, in K.
- \(F\) is compression stroke injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Main start of injection timing exhaust temperature efficiency multiplier, f_tqs_exht_mainsoi_eff - Main SOI timing efficiency multiplier array}

The main start of injection (SOI) timing exhaust temperature efficiency multiplier lookup table, \(f_{\text {SOIexhteff, }}\) is a function of the engine speed engine speed and injected fuel mass, \(S O I_{\text {exhteff }}=f_{\text {SOITexhteff }}(\triangle S O I, N)\), where:
- \(S O I_{\text {exhteff }}\) is main SOI exhaust temperature efficiency multiplier, dimensionless.
- \(\triangle S O I\) is main SOI timing relative to optimal timing, in degBTDC.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Intake manifold gas pressure exhaust temperature efficiency multiplier, f_tqs_exht_map_eff - Intake manifold efficiency multiplier array

The intake manifold gas pressure exhaust temperature efficiency multiplier lookup table, \(f_{\text {MAPexheff, }}\) is a function of the intake manifold gas pressure ratio relative to optimal pressure ratio and lambda, \(M A P_{\text {exheff }}=f_{\text {MAPexheff }}\left(M A P_{\text {ratio }}, \lambda\right)\), where:
- \(M A P_{\text {exheff }}\) is intake manifold gas pressure exhaust temperature efficiency multiplier, dimensionless.
- \(M A P_{\text {ratio }}\) is intake manifold gas pressure ratio relative to optimal pressure ratio, dimensionless.
- \(\lambda\) is intake manifold gas lambda, dimensionless.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Intake manifold gas temperature exhaust temperature efficiency multiplier, f_tqs_exht_mat_eff - Intake manifold efficiency multiplier array}

The intake manifold gas temperature exhaust temperature efficiency multiplier lookup table, \(f_{\text {MATexheff }}\), is a function of the engine speed and intake manifold gas temperature relative to optimal temperature, \(M A T_{\text {exheff }}=f_{\text {MATexheff }}(\triangle M A T, N)\), where:
- \(M A T_{\text {exheff }}\) is intake manifold gas temperature exhaust temperature efficiency multiplier, dimensionless.
- \(\triangle M A T\) is intake manifold gas temperature relative to optimal temperature, in K .
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Intake manifold gas oxygen exhaust temperature efficiency multiplier, f_tqs_exht_o2pct_eff - Intake manifold efficiency multiplier array}

The intake manifold gas oxygen exhaust temperature efficiency multiplier lookup table, \(f_{\text {O2Pexheff, }}\) is a function of the engine speed and intake manifold gas oxygen percent relative to optimal, \(O 2 P_{\text {exheff }}=f_{\text {O2Pexheff }}(\Delta O 2 P, N)\), where:
- \(O 2 P_{\text {exheff }}\) is intake manifold gas oxygen exhaust temperature efficiency multiplier, dimensionless.
- \(\triangle O 2 P\) is intake gas oxygen percent relative to optimal, in percent.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Fuel rail pressure exhaust temperature efficiency multiplier, f_tqs_exht_fuelpress_eff - Fuel rail pressure exhaust temperature efficiency multiplier
array
The fuel rail pressure efficiency exhaust temperature multiplier lookup table, \(f_{\text {FUELPexheff, }}\) is a function of the engine speed and fuel rail pressure relative to optimal breakpoints, \(F U E L P_{\text {exheff }}=f_{F U E L P e x h e f f}(\triangle F U E L P, N)\), where:
- FUELP \(P_{\text {exheff }}\) is fuel rail pressure exhaust temperature efficiency multiplier, dimensionless.
- \(\triangle F U E L P\) is fuel rail pressure relative to optimal, in MPa.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Post-injection cylinder wall heat loss transfer coefficient, f_tqs_exht_post_inj_wall_htc - Post-injection offset \\ scalar}

Post-injection cylinder wall heat loss transfer coefficient, in W/K.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{References}
[1] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

CI Core Engine | Mapped CI Engine

\section*{Topics}
"Engine Calibration Maps"
"Generate Mapped CI Engine from a Spreadsheet"

Introduced in R2017a

\section*{Cl Core Engine}

Compression-ignition engine from intake to exhaust port
Library: Powertrain Blockset / Propulsion / Combustion Engine Components / Core Engine


\section*{Description}

The CI Core Engine block implements a compression-ignition (CI) engine from intake to the exhaust port. You can use the block for hardware-in-the-loop (HIL) engine control design or vehicle-level fuel economy and performance simulations.

The CI Core Engine block calculates:
- Brake torque
- Exhaust temperature
- Air-fuel ratio (AFR)
- Fuel rail pressure
- Engine-out (EO) exhaust emissions:
- Hydrocarbon (HC)
- Carbon monoxide (CO)
- Nitric oxide and nitrogen dioxide (NOx)
- Carbon dioxide \(\left(\mathrm{CO}_{2}\right)\)
- Particulate matter (PM)

\section*{Air Mass Flow}

To calculate the air mass flow, the compression-ignition (CI) engine uses the "CI Engine Speed-Density Air Mass Flow Model". The speed-density model uses the speed-density
equation to calculate the engine air mass flow, relating the engine intake port mass flow to the intake manifold pressure, intake manifold temperature, and engine speed.

\section*{Brake Torque}

To calculate the engine torque, you can configure the block to use either of these torque models.
\begin{tabular}{|l|l|}
\hline Brake Torque Model & Description \\
\hline "CI Engine Torque & \begin{tabular}{l} 
The CI core engine torque structure model determines the \\
engine torque by reducing the maximum engine torque \\
potential as these engine conditions vary from nominal:
\end{tabular} \\
& \begin{tabular}{ll} 
- & Start of injection (SOI) timing \\
- & Exhaust back-pressure
\end{tabular} \\
& \begin{tabular}{l} 
- Burned fuel mass
\end{tabular} \\
& \begin{tabular}{l} 
Intake manifold gas pressure, temperature, and oxygen \\
- Fuel rail pressure
\end{tabular} \\
& \begin{tabular}{l} 
To account for the effect of post-inject fuel on torque, the \\
model uses a calibrated torque offset table.
\end{tabular} \\
\hline "CI Engine Simple Torque & \begin{tabular}{l} 
For the simple engine torque calculation, the CI engine uses \\
a torque lookup table map that is a function of engine speed \\
and injected fuel mass.
\end{tabular} \\
Model"
\end{tabular}

\section*{Fuel Flow}

In the CI Core Engine and CI Controller blocks, you can represent multiple injections with the start of injection (SOI) and fuel mass inputs to the model. To specify the type of injection, use the Fuel mass injection type identifier parameter.
\begin{tabular}{|l|l|}
\hline Type of Injection & Parameter Value \\
\hline Pilot & 0 \\
\hline Main & 1 \\
\hline Post & 2 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Type of Injection & Parameter Value \\
\hline Passed & 3 \\
\hline
\end{tabular}

The model considers Passed fuel injections and fuel injected later than a threshold to be unburned fuel. Use the Maximum start of injection angle for burned fuel, f_tqs_f_burned_soi_limit parameter to specify the threshold.

To calculate the engine fuel mass flow, the CI Core Engine block uses fuel mass flow delivered by the injectors and the engine airflow.
\[
\dot{m}_{\text {fuel }}=\frac{N \cdot N_{\text {cyl }}}{\operatorname{Cps}\left(\frac{60 s}{\min }\right)\left(\frac{1000 \mathrm{mg}}{g}\right)} \sum m_{\text {fuel, inj }}
\]

To calculate the fuel economy for high-fidelity models, the block uses the volumetric fuel flow.
\[
Q_{f u e l}=\frac{\dot{m}_{\text {fuel }}}{\left(\frac{1000 \mathrm{~kg}}{m^{3}}\right) S g_{f u e l}}
\]

The equation uses these variables.
\(\dot{m}_{\text {fuel }} \quad\) Fuel mass flow, \(\mathrm{g} / \mathrm{s}\)
\(m_{\text {fuel, inj }}\) Fuel mass per injection
Cps Crankshaft revolutions per power stroke, rev/stroke
\(N_{\text {cyl }} \quad\) Number of engine cylinders
\(N \quad\) Engine speed, rpm
\(Q_{\text {fuel }} \quad\) Volumetric fuel flow
\(S g_{\text {fuel }} \quad\) Specific gravity of fuel

\section*{Air-Fuel Ratio}

To calculate the air-fuel (AFR) ratio, the CI Core Engine and SI Core Engine blocks implement this equation.
\[
A F R=\frac{\dot{m}_{a i r}}{\dot{m}_{\text {fuel }}}
\]

The CI Core Engine uses this equation to calculate the relative AFR.
\[
\lambda=\frac{A F R}{A F R_{S}}
\]

To calculate the exhaust gas recirculation (EGR), the blocks implement this equation. The calculation expresses the EGR as a percent of the total intake port flow.
\[
E G R_{p c t}=100 \frac{\dot{m}_{\text {intk, }}}{\dot{m}_{\text {intk }}}=100 y_{i n t k, b}
\]

The equations use these variables.
AFR Air-fuel ratio
\(A F R_{s} \quad\) Stoichiometric air-fuel ratio
\(\dot{m}_{\text {intk }} \quad\) Engine air mass flow
\(\dot{m}_{\text {fuel }} \quad\) Fuel mass flow
\(\lambda \quad\) Relative AFR
\(y_{\text {intk,b }} \quad\) Intake burned mass fraction
\(E G R_{p c t}\) EGR percent
\(\dot{m}_{\text {intk, }}\) Recirculated burned gas mass flow rate

\section*{Exhaust Temperature}

The exhaust temperature calculation depends on the torque model. For both torque models, the block implements lookup tables.
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
Torque \\
Model
\end{tabular} & Description & Equations \\
\hline \begin{tabular}{l} 
Simple \\
Torque \\
Lookup
\end{tabular} & \begin{tabular}{l} 
Exhaust temperature lookup \\
table is a function of the injected \\
fuel mass and engine speed.
\end{tabular} & \(T_{\text {exh }}=f_{\text {Texh }}(F, N)\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Torque Model & Description & Equations \\
\hline \begin{tabular}{|l|}
\hline Torque \\
Structur \\
e
\end{tabular} & \begin{tabular}{l}
The nominal exhaust temperature, \(T_{e x h}{ }_{\text {nom }}\), is a product of these exhaust temperature efficiencies: \\
- SOI timing \\
- Intake manifold gas pressure \\
- Intake manifold gas temperature \\
- Intake manifold gas oxygen percentage \\
- Fuel rail pressure \\
- Optimal temperature \\
The exhaust temperature, Texh \({ }_{\text {nom }}\), is offset by a post temperature effect, \(\Delta T_{\text {post }}\), that accounts for post and late injections during the expansion and exhaust strokes.
\end{tabular} & \[
\begin{aligned}
& T_{\text {exhnom }}=\text { SOI }_{\text {exhteff }} M A P_{\text {exhteff }} M A T_{e}, \\
& T_{\text {exh }}=T_{\text {exhnom }}+\Delta T_{\text {post }} \\
& S O I_{\text {exhteff }}=f_{\text {SOI }_{\text {exhteff }}}(\Delta S O I, N) \\
& M A P_{\text {exhteff }}=f_{M A P_{\text {exhteff }}\left(M A P_{\text {ratio }}, \lambda\right)}(\Delta M A T, N) \\
& M A T_{\text {exhteff }}=f_{M A T_{\text {exhteff }}(\Delta M 2}(\Delta, N) \\
& O 2 p_{\text {exhteff }}=f_{\text {O2p }}^{\text {exhteff }}
\end{aligned}(\Delta O 2 p, N)
\] \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(F\) & Compression stroke injected fuel mass \\
\(N\) & Engine speed \\
\(T e x h\) & Exhaust manifold gas temperature \\
\(T e x h_{\text {opt }}\) & Optimal exhaust manifold gas temperature \\
\(\Delta T_{\text {post }}\) & Post injection temperature effect \\
\(T e x h_{\text {nom }}\) & Nominal exhaust temperature \\
\(S O I_{\text {exhteff }}\) & Main SOI exhaust temperature efficiency multiplier \\
\(\Delta S O I\) & Main SOI timing relative to optimal timing \\
\(M A P_{\text {exheff }}\) & Intake manifold gas pressure exhaust temperature efficiency multiplier \\
\(M A P_{\text {ratio }}\) & Intake manifold gas pressure ratio relative to optimal pressure ratio
\end{tabular}
\(\lambda \quad\) Intake manifold gas lambda
\(M A T_{\text {exheff }} \quad\) Intake manifold gas temperature exhaust temperature efficiency multiplier
\(\triangle M A T \quad\) Intake manifold gas temperature relative to optimal temperature
\(O 2 P_{\text {exheff }}\) Intake manifold gas oxygen exhaust temperature efficiency multiplier
\(\triangle O 2 P \quad\) Intake gas oxygen percent relative to optimal
\(F U E L P_{\text {exheff }}\) Fuel rail pressure exhaust temperature efficiency multiplier
\(\triangle F U E L P \quad\) Fuel rail pressure relative to optimal

\section*{EO Exhaust Emissions}

The block calculates these engine-out (EO) exhaust emissions:
- Hydrocarbon (HC)
- Carbon monoxide (CO)
- Nitric oxide and nitrogen dioxide (NOx)
- Carbon dioxide \(\left(\mathrm{CO}_{2}\right)\)
- Particulate matter (PM)

The exhaust temperature determines the specific enthalpy.
\[
h_{e x h}=C p_{e x h} T_{e x h}
\]

The exhaust mass flow rate is the sum of the intake port air mass flow and the fuel mass flow.
\[
\dot{m}_{\text {exh }}=\dot{m}_{\text {intake }}+\dot{m}_{\text {fuel }}
\]

To calculate the exhaust emissions, the block multiplies the emission mass fraction by the exhaust mass flow rate. To determine the emission mass fractions, the block uses lookup tables that are functions of the engine torque and speed.
\[
\begin{aligned}
& y_{e x h, i}=f_{i \_f r a c}\left(T_{\text {brake }}, N\right) \\
& \dot{m}_{\text {exh }, i}=\dot{m}_{\text {exh }} y_{\text {exh }, i}
\end{aligned}
\]

The fraction of air and fuel entering the intake port, injected fuel, and stoichiometric AFR determine the air mass fraction that exits the exhaust.
\[
y_{\text {exh, air }}=\max \left[y_{\text {in, air }}-\frac{\dot{m}_{\text {fuel }}+y_{\text {in, } \text { fuel }} \dot{m}_{\text {intake }}}{\dot{m}_{\text {fuel }}+\dot{m}_{\text {intake }}} A F R_{s}\right]
\]

If the engine is operating at the stoichiometric or fuel rich AFR, no air exits the exhaust. Unburned hydrocarbons and burned gas comprise the remainder of the exhaust gas. This equation determines the exhaust burned gas mass fraction.
\[
y_{e x h, b}=\max \left[\left(1-y_{e x h, \text { air }}-y_{\text {exh }, H C}\right), 0\right]
\]

The equations use these variables.
\(T_{\text {exh }} \quad\) Engine exhaust temperature
\(h_{\text {exh }} \quad\) Exhaust manifold inlet-specific enthalpy
\(C p_{\text {exh }} \quad\) Exhaust gas specific heat
\(\dot{m}_{\text {intk }} \quad\) Intake port air mass flow rate
\(\dot{m}_{\text {fuel }} \quad\) Fuel mass flow rate
\(\dot{m}_{\text {exh }}\) Exhaust mass flow rate
\(y_{i n, \text { fuel }}\) Intake fuel mass fraction
\(y_{\text {exh,i }}\) Exhaust mass fraction for \(\mathrm{i}=\mathrm{CO}_{2}, \mathrm{CO}, \mathrm{HC}, \mathrm{NOx}\), air, burned gas, and PM
\(\dot{m}_{\text {exh, } i}\) Exhaust mass flow rate for \(\mathrm{i}=\mathrm{CO}_{2}, \mathrm{CO}, \mathrm{HC}, \mathrm{NOx}\), air, burned gas, and PM
\(T_{\text {brake }} \quad\) Engine brake torque
\(N \quad\) Engine speed
\(y_{\text {exh,air }}\) Exhaust air mass fraction
\(y_{\text {exh,b }}\) Exhaust air burned mass fraction

\section*{Power Accounting}

For the power accounting, the block implements equations that depend on Torque model.

When you set Torque model to Simple Torque Lookup, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Equations \\
\hline \multirow[t]{6}{*}{PwrInf 0} & \multirow[t]{6}{*}{\begin{tabular}{l}
PwrTrnsfr d - Power transferred between blocks \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block \\
PwrNotTrn sfrdPower crossing the block boundary, but not transferred \\
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular}} & PwrInt kHeatF lw & Intake heat flow & \(\dot{m}_{\text {intk }} h_{\text {intk }}\) \\
\hline & & PwrExh HeatFl w & Exhaust heat flow & \(-\dot{m}_{\text {exh }} h_{\text {exh }}\) \\
\hline & & PwrCrk shft & Crankshaft power & \(-T_{\text {brake }} \omega\) \\
\hline & & PwrFue l & Fuel input power & \(\dot{m}_{\text {fuel }} L H V\) \\
\hline & & PwrLos
\[
\mathrm{s}
\] & All losses & \[
\begin{aligned}
& T_{\text {brake }} \omega-\dot{m}_{\text {fuel }} L H V-\dot{m}_{\text {intk }} h_{\text {intk }} \\
& +\dot{m}_{\text {exh }} h_{\text {exh }}
\end{aligned}
\] \\
\hline & & & & \\
\hline
\end{tabular}


When you set Torque model to Torque Structure, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Equations \\
\hline \multirow[t]{3}{*}{PwrInf 0} & \multirow[t]{3}{*}{\begin{tabular}{l}
PwrTrnsfr d - Power transferred between blocks \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block
\end{tabular}} & PwrInt kHeatF lw & Intake heat flow & \(\dot{m}_{\text {intk }} h_{\text {intk }}\) \\
\hline & & PwrExh HeatFl w & Exhaust heat flow & \(-\dot{m}_{\text {exh }} h_{\text {exh }}\) \\
\hline & & PwrCrk shft & Crankshaft power & \(-T_{\text {brake }} \omega\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Equations \\
\hline \multirow[t]{5}{*}{} & \multirow[t]{4}{*}{\begin{tabular}{l}
PwrNotTrn sfrdPower crossing the block boundary, but not transferred \\
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular}} & PwrFue l & Fuel input power & \(\dot{m}_{\text {fuel }} L H V\) \\
\hline & & PwrFri cLoss & Friction loss & \(-T_{\text {fric }} \omega\) \\
\hline & & PwrPum pLoss & Pumping loss & \(-T_{\text {pump }} \omega\) \\
\hline & & PwrHea tTrnsf rLoss & Heat transfer loss & \[
\begin{aligned}
& T_{\text {brake }} \omega-\dot{m}_{\text {fuel }} L H V-\dot{m}_{\text {intk }} h_{\text {intk }} \\
& +\dot{m}_{\text {exh }} h_{\text {exh }}+T_{\text {fric }} \omega+T_{\text {pump }} \omega
\end{aligned}
\] \\
\hline & \begin{tabular}{l}
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular} & Not used & & \\
\hline
\end{tabular}
\(h_{\text {exh }} \quad\) Exhaust manifold inlet-specific enthalpy
\(h_{\text {intk }} \quad\) Intake port specific enthalpy
\(\dot{m}_{\text {intk }} \quad\) Intake port air mass flow rate
\begin{tabular}{ll}
\(\dot{m}_{\text {fuel }}\) & Fuel mass flow rate \\
\(\dot{m}_{\text {exh }}\) & Exhaust mass flow rate \\
\(\omega\) & Engine speed \\
\(T_{\text {brake }}\) & Brake torque \\
\(T_{\text {pump }}\) & Engine pumping torque offset to inner torque \\
\(T_{\text {fric }}\) & Engine friction torque \\
\(L H V\) & Fuel lower heating value
\end{tabular}

\section*{Ports}

\section*{Input}

\section*{FuelMass - Fuel injector pulse-width \\ vector}

Fuel mass per injection, \(m_{\text {fuel, inj, }}\), in \(m g\) per injection.

\section*{Soi - Start of fuel injection timing}

\section*{vector}

Fuel injection timing, SOI, in degrees crank angle after top dead center (degATDC). First vector value, \(\mathrm{Soi}(1)\), is main injection timing.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{EngSpd - Engine speed} scalar

Engine speed, \(N\), in rpm.

\section*{FuelPrs - Fuel rail pressure}
scalar
Fuel rail pressure, FUELP, in MPa.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Ect - Engine cooling temperature}
scalar
Engine cooling temperature, \(T_{\text {coolant }}\), in K.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Intk - Intake port pressure, temperature, enthalpy, mass fractions} two-way connector port

Bus containing the upstream:
- Prs - Pressure, in Pa
- Temp - Temperature, in K
- Enth - Specific enthalpy, in J/kg
- MassFrac - Intake port mass fractions, dimensionless. Exhaust gas recirculation (EGR) mass flow at the intake port is burned gas.

Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H20MassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- N02MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

\section*{Exh - Exhaust port pressure, temperature, enthalpy, mass fractions} two-way connector port

Bus containing the exhaust:
- Prs - Pressure, in Pa
- Temp - Temperature, in K
- Enth - Specific enthalpy, in J/kg
- MassFrac - Exhaust port mass fractions, dimensionless.

Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H2OMassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- N02MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

\section*{Output}

\section*{Info - Bus signal \\ bus}

Bus signal containing these block calculations.
\begin{tabular}{|c|c|c|c|}
\hline Signal & Description & Variable & Units \\
\hline IntkGasMassFlw & Engine intake air mass flow. & \(\dot{m}_{\text {air }}\) & kg/s \\
\hline IntkAirMassFlw & Engine intake port mass flow. & \(\dot{m}_{\text {intk }}\) & kg/s \\
\hline NrmlzdAirChrg & Engine load (that is, normalized cylinder air mass) corrected for final steady-state cam phase angles & \(L\) & N/A \\
\hline Afr & Air-fuel ratio at engine exhaust port & AFR & N/A \\
\hline FuelMassFlw & Fuel flow into engine & \(\dot{m}_{\text {fuel }}\) & kg/s \\
\hline FuelVolFlw & Volumetric fuel flow & \(Q_{\text {fuel }}\) & \(\mathrm{m}^{3} / \mathrm{s}\) \\
\hline ExhManGasTemp & Exhaust gas temperature at exhaust manifold inlet & \(T_{\text {exh }}\) & K \\
\hline EngTrq & Engine brake torque & Tbrake & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline EngSpd & Engine speed & \(N\) & rpm \\
\hline IntkCamPhase & Intake cam phaser angle & \(\varphi_{I C P} \mathrm{i}\) & degrees crank advance \\
\hline ExhCamPhase & Exhaust cam phaser angle & \(\varphi_{E C P}\) & degrees crank retard \\
\hline CrkAng & Engine crankshaft absolute angle & \begin{tabular}{l}
\[
\int_{0}^{(360) C p s} E n g S p d \frac{180}{30} d \theta
\] \\
where Cps is crankshaft revolutions per power stroke
\end{tabular} & degrees crank angle \\
\hline EgrPct & EGR percent & \(E G R_{p c t}\) & N/A \\
\hline EoAir & EO air mass flow rate & \(\dot{m}_{\text {exh }}\) & kg/s \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Signal} & Description & Variable & Units \\
\hline \multicolumn{3}{|l|}{EoBrndGas} & EO burned gas mass flow rate & \(y_{\text {exh, },}\) & kg/s \\
\hline \multicolumn{3}{|l|}{EoHC} & EO hydrocarbon emission mass flow rate & \(y_{\text {exh,HC }}\) & kg/s \\
\hline \multicolumn{3}{|l|}{EoC0} & EO carbon monoxide emission mass flow rate & \(Y_{\text {exh,Co }}\) & kg/s \\
\hline \multicolumn{3}{|l|}{EoN0x} & EO nitric oxide and nitrogen dioxide emissions mass flow rate & \(Y_{\text {exh,NOx }}\) & kg/s \\
\hline \multicolumn{3}{|l|}{EoC02} & EO carbon dioxide emission mass flow rate & \(y_{\text {exh,CO2 }}\) & kg/s \\
\hline \multicolumn{3}{|l|}{EoPm} & EO particulate matter emission mass flow rate & \(y_{\text {exh,PM }}\) & kg/s \\
\hline \multirow[t]{5}{*}{PwrI nfo} & \multirow[t]{3}{*}{PwrTrn sfrd} & PwrIntkH eatFlw & Intake heat flow & \(\dot{m}_{\text {intk }} h_{\text {intk }}\) & W \\
\hline & & PwrExhHe atFlw & Exhaust heat flow & \(-\dot{m}_{\text {exh }} h_{\text {exh }}\) & W \\
\hline & & PwrCrksh ft & Crankshaft power & \(-T_{\text {brake }} \omega\) & W \\
\hline & \multirow[t]{2}{*}{PwrNot Trnsfr d} & PwrFuel & Fuel input power & \(\dot{m}_{\text {fuel }} L H V\) & W \\
\hline & & PwrLoss & \begin{tabular}{l}
For Torque model set to Simple Torque Lookup: \\
All losses
\end{tabular} & \[
\begin{aligned}
& T_{\text {brake }} \omega-\dot{m}_{\text {fuel }} L H V \\
& -\dot{m}_{\text {intk }} h_{\text {intk }}+\dot{m}_{e x h} h_{\text {exh }}
\end{aligned}
\] & W \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Signal} & Description & Variable & Units \\
\hline & PwrFricL oss & \begin{tabular}{l}
For Torque model set to Torque Structure: \\
Friction loss
\end{tabular} & \(-T_{\text {fric }} \omega\) & W \\
\hline & PwrPumpL OSS & \begin{tabular}{l}
For Torque model set to Torque Structure: \\
Pumping loss
\end{tabular} & \(-T_{\text {pump }} \omega\) & W \\
\hline & PwrHeatT rnsfrLos s & \begin{tabular}{l}
For Torque model set to Torque Structure: \\
Heat transfer loss
\end{tabular} & \[
\begin{aligned}
& T_{\text {brake }} \omega-\dot{m}_{\text {fuel }} L H V \\
& -\dot{m}_{\text {intk }} h_{\text {intk }}+\dot{m}_{\text {exh }} h_{\text {exh }} \\
& +T_{\text {fric }} \omega+T_{\text {pump }} \omega
\end{aligned}
\] & W \\
\hline PwrSto red & Not used & & & \\
\hline
\end{tabular}

\section*{EngTrq - Engine brake torque \\ scalar}

Engine brake torque, \(T_{\text {brake }}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Intk - Intake port mass flow rate, heat flow rate, temperature, mass fraction two-way connector port}

Bus containing:
- MassFlwRate - Intake port mass flow rate, in kg/s
- HeatFlwRate - Intake port heat flow rate, in J/s
- ExhManGasTemp - Intake port temperature, in K
- MassFrac - Intake port mass fractions, dimensionless.

Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H20MassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- NO2MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

\section*{Exh - Exhaust port mass flow rate, heat flow rate, temperature, mass fraction} two-way connector port

Bus containing:
- MassFlwRate - Exhaust port mass flow rate, in kg/s
- HeatFlwRate - Exhaust heat flow rate, in J/s
- ExhManGasTemp - Exhaust port temperature, in K
- MassFrac - Exhaust port mass fractions, dimensionless.

Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H20MassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- N02MassFrac - Nitrogen dioxide
- N0xMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

\section*{Parameters}

\section*{Block Options}

\section*{Torque model - Select torque model}

Torque Structure (default)|Simple Torque Lookup
To calculate the engine torque, you can configure the block to use either of these torque models.
\begin{tabular}{|c|c|}
\hline Brake Torque Model & Description \\
\hline "CI Engine Torque Structure Model" & \begin{tabular}{l}
The CI core engine torque structure model determines the engine torque by reducing the maximum engine torque potential as these engine conditions vary from nominal: \\
- Start of injection (SOI) timing \\
- Exhaust back-pressure \\
- Burned fuel mass \\
- Intake manifold gas pressure, temperature, and oxygen percentage \\
- Fuel rail pressure \\
To account for the effect of post-inject fuel on torque, the model uses a calibrated torque offset table.
\end{tabular} \\
\hline "CI Engine Simple Torque Model" & For the simple engine torque calculation, the CI engine uses a torque lookup table map that is a function of engine speed and injected fuel mass. \\
\hline
\end{tabular}

\section*{Air}

\section*{Number of cylinders, NCyl - Engine cylinders \\ scalar}

Number of engine cylinders, \(N_{\text {cyl }}\).

\section*{Crank revolutions per power stroke, Cps - Revolutions per stroke scalar}

Crankshaft revolutions per power stroke, \(C p s\), in rev/stroke.

\section*{Total displaced volume, Vd - Volume scalar}

Displaced volume, \(V_{d}\), in m^3.
```

Ideal gas constant air, Rair - Constant
scalar

```

Ideal gas constant, \(R_{\text {air }}\), in \(\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})\).
Air standard pressure, Pstd - Pressure scalar

Standard air pressure, \(P_{s t d}\), in Pa.
Speed-density volumetric efficiency, f_nv - Lookup table array

The volumetric efficiency lookup table is a function of the intake manifold absolute pressure at intake valve closing (IVC) and engine speed
\[
\eta_{\nu}=f_{\eta_{\nu}}(M A P, N)
\]
where:
- \(\eta_{v}\) is engine volumetric efficiency, dimensionless.
- MAP is intake manifold absolute pressure, in KPa.
- \(N\) is engine speed, in rpm.


\section*{Speed-density intake manifold pressure breakpoints, f_nv_prs_bpt Breakpoints \\ array}

Intake manifold pressure breakpoints for speed-density volumetric efficiency lookup table, in KPa.

\section*{Speed-density engine speed breakpoints, f_nv_n_bpt - Breakpoints array}

Engine speed breakpoints for speed-density volumetric efficiency lookup table, in rpm.

\section*{Torque}

\section*{Torque - Simple Torque Lookup}
```

Torque table, f_tq_nf - Lookup table
array

```

For the simple torque lookup table model, the CI engine uses a lookup table is a function of engine speed and injected fuel mass, \(T_{\text {brake }}=f_{\text {Tnf }}(F, N)\), where:
- \(T q=T_{b r a k e}\) is engine brake torque after accounting for engine mechanical and pumping friction effects, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(F\) is injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Simple Torque Lookup.

\section*{Torque table fuel mass per injection breakpoints, f_tq_nf_f_bpt Breakpoints}
vector
Torque table fuel mass per injection breakpoints, in mg per injection.

\section*{Dependencies}

To enable this parameter, for Torque model, select Simple Torque Lookup.
Torque table speed breakpoints, f_tq_nf_n_bpt - Breakpoints vector

Engine speed breakpoints, in rpm.

\section*{Dependencies}

To enable this parameter, for Torque model, select Simple Torque Lookup.

\section*{Torque - Torque Structure}

Fuel mass per injection breakpoints, f_tqs_f_bpt - Breakpoints vector

Fuel mass per injection breakpoints, in mg per injection.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Engine speed breakpoints, f_tqs_n_bpt - Breakpoints vector}

Engine speed breakpoints, in rpm.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Optimal main start of injection timing, f_tqs_mainsoi - Optimal MAINSOI \\ array}

The optimal main start of injection (SOI) timing lookup table, \(f_{\text {SOIC }}\), is a function of the engine speed and injected fuel mass, \(S O I_{C}=f_{\text {SOIC }}(F, N)\), where:
- \(S O I_{c}\) is optimal SOI timing, in degATDC.
- \(F\) is compression stroke injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Optimal intake manifold gas pressure, f_tqs_map - Optimal intake MAP array}

The optimal intake manifold gas pressure lookup table, \(f_{\text {MAP }}\), is a function of the engine speed and injected fuel mass, \(M A P=f_{\text {MAP }}(F, N)\), where:
- MAP is optimal intake manifold gas pressure, in Pa.
- \(F\) is compression stroke injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Optimal exhaust manifold gas pressure, f_tqs_emap - Optimal exhaust MAP}
array
The optimal exhaust manifold gas pressure lookup table, \(f_{\text {EMAP }}\), is a function of the engine speed and injected fuel mass, \(E M A P=f_{E M A P}(F, N)\), where:
- EMAP is optimal exhaust manifold gas pressure, in Pa.
- \(F\) is compression stroke injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Optimal intake manifold gas temperature, f_tqs_mat - Optimal intake MAT}
array
The optimal intake manifold gas temperature lookup table, \(f_{\text {MAT }}\), is a function of the engine speed and injected fuel mass, MAT \(=f_{\text {MAT }}(F, N)\), where:
- MAT is optimal intake manifold gas temperature, in K.
- \(F\) is compression stroke injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Optimal intake gas oxygen percent, f_tqs_o2pct - Optimal intake gas oxygen \\ array}

The optimal intake gas oxygen percent lookup table, \(f_{O 2}\), is a function of the engine speed and injected fuel mass, \(O 2 P C T=f_{O 2}(F, N)\), where:
- O2PCT is optimal intake gas oxygen, in percent.
- \(F\) is compression stroke injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Optimal fuel rail pressure, f_tqs_fuelpress - Optimal fuel rail pressure array}

The optimal fuel rail pressure lookup table, \(f_{\text {fuelp }}\), is a function of the engine speed and injected fuel mass, \(F U E L P=f_{\text {fuelp }}(F, N)\), where:
- FUELP is optimal fuel rail pressure, in MPa.
- \(F\) is compression stroke injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Optimal gross indicated mean effective pressure, f_tqs_imepg Optimal mean effective pressure \\ array}

The optimal gross indicated mean effective pressure lookup table, \(f_{\text {imepg }}\), is a function of the engine speed and injected fuel mass, \(I M E P G=f_{\text {imepg }}(F, N)\), where:
- IMEPG is optimal gross indicated mean effective pressure, in Pa.
- \(F\) is compression stroke injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Optimal friction mean effective pressure, f_tqs_fmep - Optimal friction mean effective pressure} array

The optimal friction mean effective pressure lookup table, \(f_{\text {fmep }}\), is a function of the engine speed and injected fuel mass, \(F M E P=f_{\text {fmep }}(F, N)\), where:
- FMEP is optimal friction mean effective pressure, in Pa.
- \(F\) is compression stroke injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Optimal pumping mean effective pressure, f_tqs_pmep - Optimal pumping mean effective pressure}
array
The optimal pumping mean effective pressure lookup table, \(f_{\text {pmep }}\), is a function of the engine speed and injected fuel mass, \(P M E P=f_{\text {pmep }}(F, N)\), where:
- \(P M E P\) is optimal pumping mean effective pressure, in Pa.
- \(F\) is compression stroke injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Friction multiplier as a function of temperature, f_tqs_fric_temp_mod - Friction multiplier array

Friction multiplier as a function of temperature, dimensionless.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Friction multiplier temperature breakpoints, f_tqs_fric_temp_bpt Breakpoints}
vector
Friction multiplier temperature breakpoints, in K.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Main start of injection timing efficiency multiplier, f_tqs_mainsoi_eff - MAINSOI efficiency multiplier array

The main start of injection (SOI) timing efficiency multiplier lookup table, \(f_{\text {SOIeff }}\), is a function of the engine speed and main SOI timing relative to optimal timing, \(S O I_{\text {eff }}=\) \(f_{\text {SOIeff }}(\Delta S O I, N)\), where:
- \(S O I_{e f f}\) is main SOI timing efficiency multiplier, dimensionless.
- \(\Delta S O I\) is main SOI timing relative to optimal timing, in degBTDC.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
```

Main start of injection timing relative to optimal timing
breakpoints, f_tqs_mainsoi_delta_bpt - Breakpoints

```
vector

Main start of injection timing relative to optimal timing breakpoints, in degBTDC.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Intake manifold gas pressure efficiency multiplier, f_tqs_map_eff Intake pressure efficiency multiplier}
array
The intake manifold gas pressure efficiency multiplier lookup table, \(f_{\text {MAPeff }}\), is a function of the intake manifold gas pressure ratio relative to optimal pressure ratio and lambda, \(M A P_{\text {eff }}=f_{\text {MAPeff }}\left(M A P_{\text {ratio }}, \lambda\right)\), where:
- \(M A P_{e f f}\) is intake manifold gas pressure efficiency multiplier, dimensionless.
- \(M A P_{\text {ratio }}\) is intake manifold gas pressure ratio relative to optimal pressure ratio, dimensionless.
- \(\lambda\) is intake manifold gas lambda, dimensionless.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Intake manifold gas pressure ratio relative to optimal pressure ratio breakpoints, f_tqs_map_ratio_bpt - Breakpoints}
vector
Intake manifold gas pressure ratio relative to optimal pressure ratio breakpoints, dimensionless.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Intake manifold gas lambda breakpoints, f_tqs_lambda_bpt - Breakpoints vector

Intake manifold gas lambda breakpoints, dimensionless.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Intake manifold gas temperature efficiency multiplier, f_tqs_mat_eff - Intake temperature efficiency multiplier}
```

array

```

The intake manifold gas temperature efficiency multiplier lookup table, \(f_{\text {MATeff }}\), is a function of the engine speed and intake manifold gas temperature relative to optimal temperature, \(M A T_{\text {eff }}=f_{\text {MATeff }}(\triangle M A T, N)\), where:
- \(M A T_{\text {eff }}\) is intake manifold gas temperature efficiency multiplier, dimensionless.
- \(\triangle M A T\) is intake manifold gas temperature relative to optimal temperature, in K .
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Intake manifold gas temperature relative to optimal gas temperature breakpoints, f_tqs_mat_delta_bpt - Breakpoints \\ vector}

Intake manifold gas temperature relative to optimal gas temperature breakpoints, in K .

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
```

Intake manifold gas oxygen efficiency multiplier, f_tqs_o2pct_eff -
Intake oxygen efficiency multiplier
array

```

The intake manifold gas oxygen efficiency multiplier lookup table, \(f_{\text {o2Peff }}\), is a function of the engine speed and intake manifold gas oxygen percent relative to optimal, \(O 2 P_{\text {eff }}=\) \(f_{\text {O2Peff }}(\triangle O 2 P, N)\), where:
- \(O 2 P_{\text {eff }}\) is intake manifold gas oxygen efficiency multiplier, dimensionless.
- \(\triangle O 2 P\) is intake gas oxygen percent relative to optimal, in percent.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Intake gas oxygen percent relative to optimal breakpoints, f_tqs_o2pct_delta_bpt - Breakpoints \\ vector}

Intake gas oxygen percent relative to optimal breakpoints, in percent.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Fuel rail pressure efficiency multiplier, f_tqs_fuelpress_eff -} Efficiency multiplier
array
The fuel rail pressure efficiency multiplier lookup table, \(f_{\text {FUELPeff }}\), is a function of the engine speed and fuel rail pressure relative to optimal breakpoints, \(F U E L P_{\text {eff }}=\) \(f_{\text {FUELPeff }}(\triangle F U E L P, N)\), where:
- \(F U E L P_{\text {eff }}\) is fuel rail pressure efficiency multiplier, dimensionless.
- \(\triangle F U E L P\) is fuel rail pressure relative to optimal, in MPa.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Fuel rail pressure relative to optimal breakpoints, f_tqs_fuelpress_delta_bpt - Breakpoints

\section*{vector}

Fuel rail pressure relative to optimal breakpoints, in MPa.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Fuel mass injection type identifier, f_tqs_f_inj_type - Type identifier vector

Fuel mass injection type identifier, dimensionless.
In the CI Core Engine and CI Controller blocks, you can represent multiple injections with the start of injection (SOI) and fuel mass inputs to the model. To specify the type of injection, use the Fuel mass injection type identifier parameter.
\begin{tabular}{|l|l|}
\hline Type of Injection & Parameter Value \\
\hline Pilot & 0 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Type of Injection & Parameter Value \\
\hline Main & 1 \\
\hline Post & 2 \\
\hline Passed & 3 \\
\hline
\end{tabular}

The model considers Passed fuel injections and fuel injected later than a threshold to be unburned fuel. Use the Maximum start of injection angle for burned fuel, f_tqs_f_burned_soi_limit parameter to specify the threshold.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Indicated mean effective pressure post inject correction, f_tqs_imep_post_corr - Post inject correction array}

The indicated mean effective pressure post inject correction lookup table, \(f_{\text {IMEPpost }}\), is a function of the engine speed and fuel rail pressure relative to optimal breakpoints, \(\Delta I M E P_{\text {post }}=f_{\text {IMEPpost }}\left(\Delta S O I_{\text {post }}, F_{\text {post }}\right)\), where:
- \(\triangle I M E P_{\text {post }}\) is indicated mean effective pressure post inject correction, in Pa.
- \(\Delta S O I_{\text {post }}\) is indicated mean effective pressure post inject start of inject timing centroid, in degATDC.
- \(F_{\text {post }}\) is indicated mean effective pressure post inject mass sum, in mg per injection.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Indicated mean effective pressure post inject mass sum breakpoints, f_tqs_f_post_sum_bpt - Breakpoints vector

Indicated mean effective pressure post inject mass sum breakpoints, in mg per injection.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Indicated mean effective pressure post inject start of inject timing centroid breakpoints, f_tqs_soi_post_cent_bpt - Breakpoints vector

Indicated mean effective pressure post inject start of inject timing centroid breakpoints, in degATDC.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
Maximum start of injection angle for burned fuel, f_tqs_f_burned_soi_limit - Maximum SOI angle for burned fuel vector

Maximum start of injection angle for burned fuel, in degATDC.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Exhaust}

Exhaust Temperature - Simple Torque Lookup
Exhaust temperature table, f_t_exh - Lookup table array

The lookup table for the exhaust temperature is a function of injected fuel mass and engine speed
\[
T_{e x h}=f_{T e x h}(F, N)
\]
where:
- \(T_{\text {exh }}\) is exhaust temperature, in K.
- \(F\) is injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Simple Torque Lookup.

\section*{Fuel mass per injection breakpoints, f_t_exh_f_bpt - Breakpoints array}

Engine load breakpoints used for exhaust temperature lookup table, in mg per injection.

\section*{Dependencies}

To enable this parameter, for Torque model, select Simple Torque Lookup.

\section*{Speed breakpoints, f_t_exh_n_bpt - Breakpoints array}

Engine speed breakpoints used for exhaust temperature lookup table, in rpm.

\section*{Dependencies}

To enable this parameter, for Torque model, select Simple Torque Lookup.

\section*{Exhaust Temperature - Torque Structure}

Optimal exhaust manifold gas temperature, f_tqs_exht - Optimal exhaust manifold gas temperature
array
The optimal exhaust manifold gas temperature lookup table, \(f_{\text {Texh }}\), is a function of the engine speed engine speed and injected fuel mass, \(\operatorname{Texh}_{\text {opt }}=f_{\text {Texh }}(F, N)\), where:
- \(T_{e x h}^{\text {opt }}\) is optimal exhaust manifold gas temperature, in K.
- \(F\) is compression stroke injected fuel mass, in mg per injection.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Main start of injection timing exhaust temperature efficiency multiplier, f_tqs_exht_mainsoi_eff - Main SOI timing efficiency multiplier array}

The main start of injection (SOI) timing exhaust temperature efficiency multiplier lookup table, \(f_{\text {SOIexhteff, }}\) is a function of the engine speed engine speed and injected fuel mass, \(S O I_{\text {exhteff }}=f_{\text {SOIexhteff }}(\Delta S O I, N)\), where:
- SOI \(_{\text {exhteff }}\) is main SOI exhaust temperature efficiency multiplier, dimensionless.
- \(\triangle\) SOI is main SOI timing relative to optimal timing, in degBTDC.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Intake manifold gas pressure exhaust temperature efficiency multiplier, f_tqs_exht_map_eff - Intake manifold efficiency multiplier array}

The intake manifold gas pressure exhaust temperature efficiency multiplier lookup table, \(f_{\text {MAPexheff, }}\) is a function of the intake manifold gas pressure ratio relative to optimal pressure ratio and lambda, \(M A P_{\text {exheff }}=f_{\text {MAPexheff }}\left(M A P_{\text {ratio }}, \lambda\right)\), where:
- \(M A P_{\text {exheff }}\) is intake manifold gas pressure exhaust temperature efficiency multiplier, dimensionless.
- \(M A P_{\text {ratio }}\) is intake manifold gas pressure ratio relative to optimal pressure ratio, dimensionless.
- \(\lambda\) is intake manifold gas lambda, dimensionless.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Intake manifold gas temperature exhaust temperature efficiency multiplier, f_tqs_exht_mat_eff - Intake manifold efficiency multiplier array}

The intake manifold gas temperature exhaust temperature efficiency multiplier lookup table, \(f_{\text {MATexheff }}\), is a function of the engine speed and intake manifold gas temperature relative to optimal temperature, \(M A T_{\text {exheff }}=f_{\text {MATexheff }}(\triangle M A T, N)\), where:
- \(M A T_{\text {exheff }}\) is intake manifold gas temperature exhaust temperature efficiency multiplier, dimensionless.
- \(\triangle M A T\) is intake manifold gas temperature relative to optimal temperature, in K .
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Intake manifold gas oxygen exhaust temperature efficiency multiplier, f_tqs_exht_o2pct_eff - Intake manifold efficiency multiplier array}

The intake manifold gas oxygen exhaust temperature efficiency multiplier lookup table, \(f_{\text {O2Pexheff, }}\) is a function of the engine speed and intake manifold gas oxygen percent relative to optimal, \(O 2 P_{\text {exheff }}=f_{\text {O2Pexheff }}(\Delta O 2 P, N)\), where:
- \(O 2 P_{\text {exheff }}\) is intake manifold gas oxygen exhaust temperature efficiency multiplier, dimensionless.
- \(\triangle O 2 P\) is intake gas oxygen percent relative to optimal, in percent.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.
```

Fuel rail pressure exhaust temperature efficiency multiplier,
f_tqs_exht_fuelpress_eff - Fuel rail pressure exhaust temperature efficiency
multiplier
array

```

The fuel rail pressure efficiency exhaust temperature multiplier lookup table, \(f_{\text {FUELPexheff, }}\) is a function of the engine speed and fuel rail pressure relative to optimal breakpoints, \(F U E L P_{\text {exheff }}=f_{\text {FUELPexheff }}(\triangle F U E L P, N)\), where:
- FUELP \(P_{\text {exheff }}\) is fuel rail pressure exhaust temperature efficiency multiplier, dimensionless.
- \(\triangle F U E L P\) is fuel rail pressure relative to optimal, in MPa.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Post-injection cylinder wall heat loss transfer coefficient,} f_tqs_exht_post_inj_wall_htc - Post-injection offset scalar

Post-injection cylinder wall heat loss transfer coefficient, in W/K.

\section*{Dependencies}

To enable this parameter, for Torque model, select Torque Structure.

\section*{Emissions}

\section*{CO2 mass fraction table, f_CO2_frac - Carbon dioxide ( \(\mathrm{CO}_{2}\) ) emission lookup table \\ array}

The CI Core Engine \(\mathrm{CO}_{2}\) emission mass fraction lookup table is a function of engine torque and engine speed, CO2 Mass Fraction = f(Speed, Torque), where:
- CO2 Mass Fraction is the \(\mathrm{CO}_{2}\) emission mass fraction, dimensionless.
- Speed is engine speed, in rpm.
- Torque is engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).


\section*{Dependencies}

To enable this parameter, on the Exhaust tab, select CO2.

\section*{CO mass fraction table, f_CO_frac - Carbon monoxide (CO) emission lookup table}
array
The CI Core Engine CO emission mass fraction lookup table is a function of engine torque and engine speed, CO Mass Fraction = f(Speed, Torque), where:
- CO Mass Fraction is the CO emission mass fraction, dimensionless.
- Speed is engine speed, in rpm.
- Torque is engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).


\section*{Dependencies}

To enable this parameter, on the Exhaust tab, select CO.

\section*{HC mass fraction table, f_HC_frac - Hydrocarbon (HC) emission lookup table}
array
The CI Core Engine HC emission mass fraction lookup table is a function of engine torque and engine speed, HC Mass Fraction \(=\) f(Speed, Torque), where:
- HC Mass Fraction is the HC emission mass fraction, dimensionless.
- Speed is engine speed, in rpm.
- Torque is engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).


\section*{Dependencies}

To enable this parameter, on the Exhaust tab, select HC.

\section*{NOx mass fraction table, f_NOx_frac - Nitric oxide and nitrogen dioxide (NOx) emission lookup table array}

The CI Core Engine NOx emission mass fraction lookup table is a function of engine torque and engine speed, NOx Mass Fraction = f(Speed, Torque), where:
- NOx Mass Fraction is the NOx emission mass fraction, dimensionless.
- Speed is engine speed, in rpm.
- Torque is engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).


\section*{Dependencies}

To enable this parameter, on the Exhaust tab, select NOx.

\section*{PM mass fraction table, f_PM_frac - Particulate matter (PM) emission lookup table}
array
The CI Core Engine PM emission mass fraction lookup table is a function of engine torque and engine speed where:
- \(\quad P M\) is the \(P M\) emission mass fraction, dimensionless.
- Speed is engine speed, in rpm.
- Torque is engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, on the Exhaust tab, select PM.

\section*{Engine speed breakpoints, f_exhfrac_n_bpt - Breakpoints vector}

Engine speed breakpoints used for the emission mass fractions lookup tables, in rpm.

\section*{Dependencies}

To enable this parameter, on the Exhaust tab, select CO2, CO, NOx, HC, or PM.
Engine torque breakpoints, f_exhfrac_trq_bpt - Breakpoints vector

Engine torque breakpoints used for the emission mass fractions lookup tables, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, on the Exhaust tab, select CO2, CO, NOx, HC, or PM.
Exhaust gas specific heat at constant pressure, cp_exh - Specific heat scalar

Exhaust gas-specific heat, \(C p_{e x h}\), in \(\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})\).

\section*{Fuel}

Stoichiometric air-fuel ratio, afr_stoich - Air-fuel ratio scalar

Air-fuel ratio, \(A F R\).
Fuel lower heating value, fuel_lhv - Heating value scalar

Fuel lower heating value, \(L H V\), in J/kg.
Fuel specific gravity, fuel_sg - Specific gravity scalar

Specific gravity of fuel, \(S g_{\text {fuel }}\), dimensionless.

\section*{References}
[1] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.

\section*{Extended Capabilities}

\author{
C/C++ Code Generation \\ Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\text {TM }}\).
}

\section*{See Also}

CI Controller | Mapped CI Engine

\section*{Topics}
"CI Core Engine Air Mass Flow and Torque Production"
"Engine Calibration Maps"

\section*{Introduced in R2017a}

\section*{Compressor}

Compressor for boosted engines
Library: Powertrain Blockset / Propulsion / Combustion Engine Components / Boost


\section*{Description}

The Compressor block simulates engine boost by using the drive shaft energy to increase the intake manifold pressure. The block is a component of supercharger and turbocharger models. The block uses two-way ports to connect to the inlet and outlet control volumes and the drive shaft. The control volumes provide the pressure, temperature, and specific enthalpy for the compressor to calculate the mass and energy flow rates. To calculate the torque and flow rates, the drive shaft provides the speed to the compressor. Typically, compressor manufacturers provide the mass flow rate and efficiency tables as a function of corrected speed and pressure ratio. You can specify the lookup tables to calculate the mass flow rate and efficiency. The block does not support reverse mass flow.

If you have Model-Based Calibration Toolbox, click Calibrate Performance Maps to virtually calibrate the mass flow rate and turbine efficiency lookup tables using measured data.

The mass flows from the inlet control volume to the outlet control volume.


\section*{Virtual Calibration}

If you have Model-Based Calibration Toolbox, click Calibrate Performance Maps to virtually calibrate the mass flow rate and turbine efficiency lookup tables using measured data. The dialog box steps through these tasks.
\begin{tabular}{|c|c|}
\hline Task & Description \\
\hline Import compressor data & \begin{tabular}{l}
Import this compressor data from a file. For more information, see "Using Data" (Model-Based Calibration Toolbox). \\
- Pressure ratio, dimensionless \\
- Speed, rad/s \\
- Mass flow rate, kg/s \\
- Efficiency, dimensionless \\
Model-Based Calibration Toolbox limits the speed and pressure ratio breakpoint values to the maximum values in the file. \\
To filter or edit the data, select Edit in Application. The ModelBased Calibration Toolbox Data Editor opens.
\end{tabular} \\
\hline \multirow[t]{5}{*}{Generate response models} & Model-Based Calibration Toolbox fits the imported data to the response models. \\
\hline & \begin{tabular}{|l|l|}
\hline Data & Response Model \\
\hline
\end{tabular} \\
\hline & \begin{tabular}{|l|l|}
\hline Mass flow rate & \begin{tabular}{l} 
Extended ellipse response model described in \\
Modeling and Control of Engines and Drivelines \({ }^{2}\)
\end{tabular} \\
\hline
\end{tabular} \\
\hline & Efficiency \(\quad\) Polynomial \\
\hline & To assess or adjust the response model fit, select Edit in Application. The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox). \\
\hline Generate calibration & \begin{tabular}{l}
Model-Based Calibration Toolbox calibrates the response model and generates calibrated tables. \\
To assess or adjust the calibration, select Edit in Application. The Model-Based Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Tables" (Model-Based Calibration Toolbox).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Task & Description \\
\hline Update block & \begin{tabular}{l} 
Update these mass flow rate and efficiency parameters with the \\
parameters
\end{tabular} \\
& calibration. \\
& - Corrected mass flow rate table, mdot_corr_tbl \\
& - Efficiency table, eta_comp_tbl \\
& - Corrected speed breakpoints, w_corr_bpts1 \\
& Pressure ratio breakpoints, Pr_bpts2 \\
\hline
\end{tabular}

\section*{Thermodynamics}

The block uses these equations to model the thermodynamics.
\begin{tabular}{|l|l|}
\hline Calculation & Equations \\
\hline Forward mass flow & \(\dot{m}_{\text {comp }}>0\) \\
& \(p_{01}=p_{\text {inlet }}\) \\
\(p_{02}=p_{\text {outlet }}\) \\
\(T_{01}=T_{\text {inlet }}\) \\
& \(h_{01}=h_{\text {inlet }}\) \\
\hline First law of thermodynamics & \(\dot{W}_{\text {comp }}=\dot{m}_{\text {comp }} c_{p}\left(T_{01}-T_{02}\right)\) \\
\hline Isentropic efficiency & \(\eta_{c o m p}=\frac{h_{02 s}-h_{01}}{h_{02}-h_{01}}=\frac{T_{02 s}-T_{01}}{T_{02}-T_{01}}\) \\
\hline \begin{tabular}{l} 
Isentropic outlet temperature, \\
assuming ideal gas and \\
constant specific heats
\end{tabular} & \(T_{02 s}=T_{01}\left(\frac{p_{02}}{p_{01}}\right)^{\frac{\gamma-1}{\gamma}}\) \\
\hline Specific heat ratio & \(\gamma=\frac{c_{p}}{c_{p}-R}\) \\
\hline Outlet temperature & \(T_{02}=T_{01}+\frac{T_{01}}{\eta_{c o m b}}\left\{\left(\frac{p_{02}}{p_{01}}\right)^{\frac{\gamma-1}{\gamma}}-1\right\}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Calculation & Equations \\
\hline Heat flows & \(q_{\text {inlet }}=\dot{m}_{\text {comp }} h_{01}\) \\
& \(q_{\text {outlet }}=\dot{m}_{c o m p} h_{02}=\dot{m}_{c o m p} c_{p} T_{02}\) \\
\hline Corrected mass flow rate & \(\dot{m}_{c o r r}=\dot{m}_{c o m p} \frac{\sqrt{T_{01} / T_{r e f}}}{p_{01} / p_{r e f}}\) \\
\hline Corrected speed & \(\omega_{\text {corr }}=\frac{\omega}{\sqrt{T_{01} / T_{r e f}}}\) \\
\hline Pressure ratio & \(p_{r}=\frac{p_{01}}{p_{02}}\) \\
\hline
\end{tabular}

The equations use these variables.
\(p_{\text {inlet }}, p_{01} \quad\) Inlet control volume total pressure
\(T_{\text {inlet }}, T_{01}\) Inlet control volume total temperature
\(h_{\text {inlet }}, h_{01}\) Inlet control volume total specific enthalpy
\(p_{\text {outlet }}, p_{02}\) Outlet control volume total pressure
\(T_{\text {outlet }} \quad\) Outlet control volume total temperature
\(h_{\text {outlet }} \quad\) Outlet control volume total specific enthalpy
\(\dot{W}_{\text {comp }} \quad\) Drive shaft power
\(T_{02} \quad\) Outlet total temperature
\(h_{02} \quad\) Outlet total specific enthalpy
\(\dot{m}_{\text {comp }} \quad\) Mass flow rate through compressor
\(q_{\text {inlet }} \quad\) Inlet heat flow rate
\(q_{\text {outlet }} \quad\) Outlet heat flow rate
\(\eta_{\text {comp }} \quad\) Compressor isentropic efficiency
\(T_{02 s} \quad\) Isentropic outlet total temperature
\(h_{02 s} \quad\) Isentropic outlet total specific enthalpy
\(R \quad\) Ideal gas constant
\(c_{p} \quad\) Specific heat at constant pressure
\begin{tabular}{ll}
\(\gamma\) & Specific heat ratio \\
\(\dot{m}_{c o r r}\) & Corrected mass flow rate \\
\(\omega\) & Drive shaft speed \\
\(\omega_{\text {corr }}\) & Corrected drive shaft speed \\
\(T_{r e f}\) & Lookup table reference temperature \\
\(P_{r e f}\) & Lookup table reference pressure \\
\(\tau_{c o m p}\) & Compressor drive shaft torque \\
\(p_{r}\) & Pressure ratio \\
\(\eta_{\text {comb,tbl }}\) & Compressor efficiency 3-D lookup table \\
\(\dot{m}_{c o r r, t b l}\) & Corrected mass flow rate 3-D lookup table \\
\(\omega_{c o r r, b p t s 1}\) & Corrected speed breakpoints \\
\(p_{r, b p t s 2}\) & Pressure ratio breakpoints
\end{tabular}

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Descriptio & Equations \\
\hline \multirow[t]{3}{*}{PwrIn fo} & \multirow[t]{3}{*}{\begin{tabular}{l}
PwrTrnsfrd - Power transferred between blocks \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block
\end{tabular}} & PwrDrivesh ft & Power transmitted from the shaft & \(-\dot{W}_{\text {turb }}\) \\
\hline & & PwrHeatFlw
In & Heat flow rate at port A & \(q_{\text {outlet }}\) \\
\hline & & PwrHeatFlw Out & Heat flow rate at port B & \(q_{\text {outlet }}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Bus Signal} & Descriptio & Equations \\
\hline \begin{tabular}{l}
PwrNotTrnsfrd - Power crossing the block boundary, but not transferred \\
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular} & PwrLoss & Power loss & \[
-q_{\text {inlet }}
\]
\[
+\dot{W}_{\text {turb }}
\] \\
\hline \begin{tabular}{l}
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular} & Not used & & \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(\dot{W}_{\text {turb }}\) & Drive shaft power \\
\(q_{\text {outlet }}\) & Total outlet heat flow rate \\
\(q_{\text {inlet }}\) & Total inlet heat flow rate
\end{tabular}

\section*{Ports}

\section*{Input}

\section*{Ds - Drive shaft speed}
two-way connector port
ShftSpd - Signal containing the drive shaft angular speed, \(\omega\), in rad/s.

\section*{A - Inlet pressure, temperature, enthalpy, mass fractions}
two-way connector port
Bus containing the inlet control volume:
- InPrs - Pressure, \(p_{\text {inlet }}\) in Pa
- InTemp - Temperature, \(T_{\text {inlet }}\), in K
- InEnth - Specific enthalpy, \(h_{\text {inlet }}\), in J/kg

\section*{B - Outlet pressure, temperature, enthalpy, mass fractions}
two-way connector port
Bus containing the outlet control volume:
- OutPrs - Pressure, \(p_{\text {outlet, }}\) in Pa
- OutTemp - Temperature, \(T_{\text {outlet }}\), in K
- OutEnth - Specific enthalpy, \(h_{\text {outlet }}\), in J/kg

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|}
\hline Signal & Description & Units \\
\hline CmprsOutletTemp & Temperature exiting the compressor & K \\
\hline DriveshftPwr & Drive shaft power & W \\
\hline DriveshftTrq & Drive shaft torque & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline CmprsMassFlw & Mass flow rate through compressor & \(\mathrm{kg} / \mathrm{s}\) \\
\hline PrsRatio & Pressure ratio & \(\mathrm{N} / \mathrm{A}\) \\
\hline DriveshftCorrSpd & Corrected drive shaft speed & \(\mathrm{rad} / \mathrm{s}\) \\
\hline CmprsEff & Compressor isentropic efficiency & \(\mathrm{N} / \mathrm{A}\) \\
\hline CorrMassFlw & Corrected mass flow rate & \(\mathrm{kg} / \mathrm{s}\) \\
\hline \begin{tabular}{l} 
PwrInf \\
o
\end{tabular} & \begin{tabular}{l} 
PwrTrn \\
sfrd
\end{tabular} & PwrDriveshft
\end{tabular} Power transmitted from the shaft \begin{tabular}{l}
W \\
\cline { 2 - 5 }
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|l|}{ Signal } & Description & Units \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
PwrNot \\
Trnsfr \\
d
\end{tabular}} & PwrLoss & Power loss & W \\
\cline { 2 - 4 } & PwrStored & Not used & W \\
\hline
\end{tabular}

\section*{Ds - Drive shaft torque}
two-way connector port
Trq - Signal containing the drive shaft torque, \(\tau_{\text {comp }}\), in \(N \cdot m\).

\section*{A - Inlet mass flow rate, heat flow rate, temperature, mass fractions}
two-way connector port
Bus containing:
- MassFlwRate - Mass flow rate through inlet, \(\dot{m}_{\text {comp }}\), in \(\mathrm{kg} / \mathrm{s}\)
- HeatFlwRate - Inlet heat flow rate, \(q_{\text {inlet }}\), in J/s
- Temp - Inlet temperature, in K
- MassFrac - Inlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H20MassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- N02MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

\section*{B - Outlet mass flow rate, heat flow rate, temperature, mass fractions two-way connector port}

Bus containing:
- MassFlwRate - Outlet mass flow rate, \(\dot{m}_{\text {comp }}\), in \(\mathrm{kg} / \mathrm{s}\)
- HeatFlwRate - Outlet heat flow rate, \(q_{\text {outlet, }}\) in J/s
- Temp - Outlet temperature, in K
- MassFrac - Outlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H20MassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- NO2MassFrac - Nitrogen dioxide
- N0xMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

\section*{Parameters}

\section*{Performance Tables}

Calibrate Performance Maps - Calibrate tables with measured data selection

If you have Model-Based Calibration Toolbox, click Calibrate Performance Maps to virtually calibrate the mass flow rate and turbine efficiency lookup tables using measured data. The dialog box steps through these tasks.
\begin{tabular}{|c|c|c|}
\hline Task & \multicolumn{2}{|l|}{Description} \\
\hline Import compressor data & \multicolumn{2}{|l|}{\begin{tabular}{l}
Import this compressor data from a file. For more information, see "Using Data" (Model-Based Calibration Toolbox). \\
- Pressure ratio, dimensionless \\
- Speed, rad/s \\
- Mass flow rate, kg/s \\
- Efficiency, dimensionless \\
Model-Based Calibration Toolbox limits the speed and pressure ratio breakpoint values to the maximum values in the file. \\
To filter or edit the data, select Edit in Application. The ModelBased Calibration Toolbox Data Editor opens.
\end{tabular}} \\
\hline \multirow[t]{5}{*}{Generate response models} & \multicolumn{2}{|l|}{Model-Based Calibration Toolbox fits the imported data to the response models.} \\
\hline & Data & Response Model \\
\hline & Mass flow rate & Extended ellipse response model described in Modeling and Control of Engines and Drivelines \({ }^{2}\) \\
\hline & Efficiency & Polynomial \\
\hline & \multicolumn{2}{|l|}{To assess or adjust the response model fit, select Edit in Application. The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).} \\
\hline Generate calibration & \multicolumn{2}{|l|}{\begin{tabular}{l}
Model-Based Calibration Toolbox calibrates the response model and generates calibrated tables. \\
To assess or adjust the calibration, select Edit in Application. The Model-Based Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Tables" (Model-Based Calibration Toolbox).
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Task & Description \\
\hline Update block & \begin{tabular}{l} 
Update these mass flow rate and efficiency parameters with the \\
parameters
\end{tabular} \\
& calibration. \\
& - Corrected mass flow rate table, mdot_corr_tbl \\
& - Efficiency table, eta_comp_tbl \\
& - Corrected speed breakpoints, w_corr_bpts1 \\
& Pressure ratio breakpoints, Pr_bpts2 \\
\hline
\end{tabular}

\section*{Corrected mass flow rate table, mdot_corr_tbl - Lookup table array}

Corrected mass flow rate lookup table, \(\dot{m}_{c o r r, t b l}\), as a function of corrected driveshaft speed, \(\omega_{\text {corr, }}\), and pressure ratio, \(p_{r}\), in \(\mathrm{kg} / \mathrm{s}\).


Efficiency table, eta_comp_tbl - Lookup table array

Efficiency lookup table, \(\eta_{\text {comb, tbl }}\), as a function of corrected driveshaft speed, \(\omega_{\text {corr }}\), and pressure ratio, \(p_{r}\), dimensionless.


\section*{Corrected speed breakpoints, w_corr_bpts1 - Breakpoints vector}

Corrected drive shaft speed breakpoints, \(\omega_{\text {corr, } b p t s 1}\), in rad/s.

\section*{Pressure ratio breakpoints, Pr_bpts2 - Breakpoints}
vector
Pressure ratio breakpoints, \(p_{r, b p t s 2}\).
Reference temperature, T_ref - Reference scalar

Lookup table reference temperature, \(T_{r e f}\), in K.

\section*{Reference pressure, P_ref - Reference scalar}

Lookup table reference pressure, \(P_{r e f}\), in Pa.

\section*{Gas Properties}

\section*{Ideal gas constant, R - Constant scalar}

Ideal gas constant, \(R\), in \(\mathrm{J} /(\mathrm{kg} * \mathrm{~K})\).

\section*{Specific heat at constant pressure, cp - Specific heat scalar}

Specific heat at constant pressure, \(c_{p}\), in \(\mathrm{J} /(\mathrm{kg} * \mathrm{~K})\).

\section*{References}
[1] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.
[2] Eriksson, Lars and Lars Nielsen. Modeling and Control of Engines and Drivelines. Chichester, West Sussex, United Kingdom: John Wiley \& Sons Ltd, 2014.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

Two-Way Connection | Boost Drive Shaft | Turbine

\section*{Topics}
"Model-Based Calibration Toolbox"

\section*{Introduced in R2017a}

\section*{Control Volume System}

Constant volume open thermodynamic system with heat transfer
Library: Powertrain Blockset / Propulsion / Combustion Engine Components / Fundamental Flow


\section*{Description}

The Control Volume System block models a constant volume open thermodynamic system with heat transfer. The block uses the conservation of mass and energy, assuming an ideal gas, to determine the pressure and temperature. The block implements an automotivespecific Constant Volume Pneumatic Chamber block that includes thermal effects related to the under hood of passenger vehicles. You can specify heat transfer models:
- Constant
- External input
- External wall convection

You can use the Control Volume System block to represent engine components that contain volume, including pipes and manifolds.

\section*{Thermodynamics}

The Control Volume System block implements a constant volume chamber containing an ideal gas. To determine the rate changes in temperature and pressure, the block uses the continuity equation and the first law of thermodynamics.
\[
\begin{aligned}
\frac{d T_{v o l}}{d t} & =\frac{R T_{v o l}}{C_{v} V_{c h} P_{v o l}}\left(\sum\left(q_{i}-T_{v o l} c_{v} \dot{m}_{i}\right)-Q_{\text {wall }}\right) \\
\frac{d P_{v o l}}{d t} & =\frac{P_{v o l}}{T_{v o l}} \frac{d T_{v o l}}{d t}+\frac{R T_{v o l}}{V_{c h}} \sum \dot{m}_{i}
\end{aligned}
\]

The block uses this equation for the volume-specific enthalpy.
\[
h_{v o l}=c_{p} T_{\text {vol }}
\]

The equations use these variables.
\begin{tabular}{ll}
\(\dot{m}_{i}\) & Mass flow rate at port \\
\(q_{i}\) & Heat flow rate at port \\
\(V_{c h}\) & Chamber volume \\
\(P_{v o l}\) & Absolute pressure in the chamber \\
\(R\) & Ideal gas constant \\
\(c_{v}\) & Specific heat at constant volume \\
\(T_{\text {vol }}\) & Absolute gas temperature \\
\(Q_{\text {wall }}\) & Wall heat transfer rate \\
\(h_{v o l}\) & Volume-specific enthalpy \\
\(c_{p}\) & Specific heat capacity
\end{tabular}

\section*{Mass Fractions}

The Control Volume Source block is part of a flow network. Blocks in the network determine the mass fractions that the block will track during simulation. The block can track these mass fractions:
- 02 - Oxygen
- N2 - Nitrogen
- UnburnedFuel - Unburned fuel
- CO2 - Carbon dioxide
- H2O - Water
- CO - Carbon monoxide
- NO - Nitric oxide
- NO2 - Nitrogen dioxide
- PM - Particulate matter
- Air - Air
- BurnedGas - Burned gas

Using the conservation of mass for each gas constituent, this equation determines the rate change:
\[
\frac{d y_{v o l}, j}{d t}=\frac{R T_{v o l}}{P_{v o l} V_{c h}}\left(\sum \dot{m}_{i} y_{i, j}+y_{v o l, j} \sum \dot{m}_{i}\right)
\]

The equations use these variables.
\begin{tabular}{ll}
\(V_{c h}\) & Chamber volume \\
\(P_{\text {vol }}\) & Absolute pressure in the chamber
\end{tabular}
\(R \quad\) Ideal gas constant
\(T_{\text {vol }} \quad\) Absolute gas temperature
\(y_{i, j} \quad\) I-th port mass fraction for \(\mathrm{j}=\mathrm{O}_{2}, \mathrm{~N}_{2}\), unburned fuel, \(\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CO}, \mathrm{NO}, \mathrm{NO}_{2}\), PM, air, and burned gas
\(y_{\text {vol }, \mathrm{j}} \quad\) Control volume mass fraction for \(\mathrm{j}=\mathrm{O}_{2}, \mathrm{~N}_{2}\), unburned fuel, \(\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CO}, \mathrm{NO}\), \(\mathrm{NO}_{2}, \mathrm{PM}\), air, and burned gas
\(\dot{m}_{i} \quad\) Mass flow rate for \(\mathrm{i}=\mathrm{O}_{2}, \mathrm{~N}_{2}\), unburned fuel, \(\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CO}, \mathrm{NO}, \mathrm{NO}_{2}, \mathrm{PM}\), air, and burned gas

\section*{External Wall Convection Heat Transfer Model}

To calculate the heat transfer, you can configure the Control Volume Source block to calculate the heat transfer across the wall of the control volume.


The block implements these equations to calculate the heat transfer, \(Q_{1}\), from the internal control volume gas to the internal wall depth, \(D_{\text {int_cond }}\).
\[
\begin{aligned}
& Q_{1}=Q_{1, \text { conv }}=Q_{1, \text { cond }} \\
& Q_{1, \text { conv }}=h_{\text {int }}\left(x_{\text {int }}\right) \cdot A_{\text {int_conv }} \cdot\left(T_{\text {int_gas }}-T_{w_{-} \text {int }}\right) \\
& Q_{1, \text { cond }}=k_{\text {int }} \cdot \frac{A_{\text {int_cond }}}{D_{\text {int_cond }}} \cdot\left(T_{w_{-} \text {int }}-T_{\text {mass }}\right)
\end{aligned}
\]

The block implements these equations to calculate the heat transfer, \(Q_{2}\), from the external wall depth, \(D_{\text {ext_cond }}\) to the external gas.
\[
\begin{aligned}
& Q_{2}=Q_{2, c o n v}=h_{\text {ext }}\left(x_{\text {ext }}\right) \cdot A_{\text {ext_conv }} \bullet\left(T_{w_{-} e x t}-T_{\text {ext_gas }}\right) \\
& Q_{2, \text { cond }}=k_{\text {ext }} \cdot \frac{A_{\text {ext_cond }}}{D_{\text {ext_cond }}} \cdot\left(T_{\text {mass }}-T_{w_{-} e x t}\right)
\end{aligned}
\]

This equation expresses the heat stored in the thermal mass.
\[
\frac{d T_{\text {mass }}}{d t}=\frac{Q_{1}-Q_{2}}{c_{p_{\text {wall }}}{ }^{m_{\text {wall }}}}
\]

The block determines the interior convection heat transfer coefficient using a lookup table that is a function of the average mass flow rate.
\[
\dot{m}_{\text {int_gas }}=\frac{1}{2} \sum\left|\dot{m}_{i}\right|
\]

The equations use these variables.
\begin{tabular}{ll}
\(Q_{1}\) & Heat flow from the internal gas to a specified wall depth \\
\(Q_{1, \text { conv }}\) & Heat flow convection from the internal gas to the internal wall \\
\(Q_{1, \text { cond }}\) & Conduction heat transfer rate \\
\(Q_{2}\) & Heat transfer rate \\
\(Q_{2, \text { conv }}\) & Convection heat transfer \\
\(Q_{2, \text { cond }}\) & \begin{tabular}{l} 
Heat flow conduction from the external middle portion of the wall to the \\
external wall
\end{tabular} \\
\(Q_{\text {mass }}\) & Heat stored in thermal mass \\
\(h_{\text {int }}\) & Internal convection heat transfer coefficient \\
\(x_{\text {int }}\) & Internal mass flow rate breakpoints \\
\(A_{\text {int_conv }}\) & Internal flow convection area \\
\(T_{\text {int_gas }}\) & Temperature of the gas inside the chamber \\
\(T_{w \_i n t ~}\) & Temperature of the inside wall of the chamber \\
\(k_{\text {int }}\) & Internal wall thermal conductivity \\
\(A_{\text {int_cond }}\) & Internal conduction area
\end{tabular}
\begin{tabular}{ll}
\(D_{\text {int_cond }}\) & Internal wall thickness \\
\(h_{\text {ext }}\) & External convection heat transfer coefficient \\
\(x_{\text {ext }}\) & External velocity breakpoints \\
\(A_{\text {ext_conv }}\) & External convection area \\
\(T_{\text {ext_gas }}\) & External gas temperature \\
\(T_{w_{\_} \text {ext }}\) & Temperature of the external wall of the chamber \\
\(k_{\text {ext }}\) & External wall thermal conductivity \\
\(A_{\text {ext_cond }}\) & External conduction area \\
\(D_{\text {ext_cond }}\) & External wall thickness \\
\(T_{\text {mass }}\) & Temperature of the thermal mass \\
\(C_{p_{-} \text {wall }}\) & Wall heat capacity \\
\(m_{\text {wall }}\) & Thermal mass \\
\(F l w_{\text {spd }}\) & External flow velocity \\
\(\dot{m}_{\text {int_gas }}\) & Average internal mass flow rate
\end{tabular}

\section*{Power Accounting}

For the power accounting, the block implements these equation based on the number of inlet and outlet ports.
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{2}{|l|}{ Bus Signal } & Description & Equations \\
\hline \begin{tabular}{ll} 
PwrI \\
nfo
\end{tabular} & \begin{tabular}{ll} 
PwrTrnsfrd - Power \\
transferred between blocks \\
- & \begin{tabular}{l} 
Positive signals indicate flow \\
into block \\
- Negative signals indicate \\
flow out of block
\end{tabular}
\end{tabular} & \begin{tabular}{l} 
PwrHeatF \\
lwi
\end{tabular} & Port i heat flow & \(q_{i}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{2}{|l|}{ Bus Signal } & Description & Equations \\
\hline & \begin{tabular}{l} 
PwrNotTrnsfrd - Power \\
crossing the block boundary, \\
but not transferred
\end{tabular} & \begin{tabular}{l} 
PwrHeatT \\
rnsfr
\end{tabular} & \begin{tabular}{l} 
Heat transfer rate \\
from wall to control \\
input \\
volume
\end{tabular} & \begin{tabular}{l} 
Negatignals indicate an \\
loss
\end{tabular}
\end{tabular}

For example, if you configure your block with 3 input ports and 2 outlet ports, the block implements these equations
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Equations \\
\hline \multirow[t]{5}{*}{PwrI nfo} & \multirow[t]{5}{*}{\begin{tabular}{l}
PwrTrnsfrd - Power transferred between blocks \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block
\end{tabular}} & PwrHeatF lw1 & Inlet port 1 heat flow & \(q_{1}\) \\
\hline & & PwrHeatF lw2 & Inlet port 2 heat flow & \(q_{2}\) \\
\hline & & PwrHeatF lw3 & Inlet port 3 heat flow & \(q_{3}\) \\
\hline & & PwrHeatF lw4 & Outlet port 4 heat flow & \(q_{4}\) \\
\hline & & PwrHeatF lw5 & Outlet port 5 heat flow & \(q_{5}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Bus Signal & & Description & Equations \\
\hline \begin{tabular}{l}
PwrNotTrnsfrd - Power crossing the block boundary, but not transferred \\
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular} & PwrHeatT rnsfr & Heat transfer rate from wall to control volume & - \(Q_{\text {wall }}\) \\
\hline \begin{tabular}{l}
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular} & PwrHeatS tored & Rate of heat stored in the control volume & \[
\binom{\sum_{\left(q_{i}\right)}}{-Q_{\text {wall }}}
\] \\
\hline
\end{tabular}

\section*{Ports}

\section*{Input}

\section*{C - Inlet mass flow rate, heat flow rate, mass fractions}
two-way connector port
Bus containing:
- MassFlw - Mass flow rate through inlet, in kg/s
- HeatFlw - Inlet heat flow rate, in J/s
- MassFrac - Inlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H2OMassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- N02MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

\section*{Dependencies}

To create input ports, specify the Number of inlet ports parameter.

\section*{HeatTrnsfrRate - Heat transfer scalar}

External heat transfer input to control volume, \(q_{h e}\), in \(\mathrm{Kg} / \mathrm{s}\).

\section*{Dependencies}

To create this port, select External input for the Heat transfer model parameter.

\section*{ExtnlFlwVel - External flow velocity \\ scalar}

External flow velocity, \(F l w_{s p d}\), in \(\mathrm{m} / \mathrm{s}\).

\section*{Dependencies}

To create this port, select External wall convection for the Heat transfer model parameter.

\section*{ExtnlTemp - Ambient temperature, K scalar}

\section*{Dependencies}

To create this port, select External wall convection for the Heat transfer model parameter.

\section*{Output}

\section*{Info - Bus signal}
bus

Bus signal containing these block calculations.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Signal} & Description & Units \\
\hline \multirow[t]{15}{*}{Vol} & \multicolumn{2}{|l|}{Prs} & Volume pressure & Pa \\
\hline & \multicolumn{2}{|l|}{Temp} & Volume temperature & K \\
\hline & \multicolumn{2}{|l|}{Enth} & Volume specific enthalpy & J/kg \\
\hline & \multirow[t]{12}{*}{Species} & 02MassFrac & Oxygen mass fraction & NA \\
\hline & & N2MassFrac & Nitrogen mass fraction & NA \\
\hline & & UnbrndFuelMassFr ac & Unburned gas mass fraction & NA \\
\hline & & C02MassFrac & Carbon dioxide mass fraction & NA \\
\hline & & H20MassFrac & Water mass fraction & NA \\
\hline & & COMassFrac & Carbon monoxide mass fraction & NA \\
\hline & & NOMassFrac & Nitric oxide mass fraction & NA \\
\hline & & N02MassFrac & Nitrogen dioxide mass fraction & NA \\
\hline & & NOxMassFrac & Nitric oxide and nitrogen dioxide mass fraction & NA \\
\hline & & PmMassFrac & Particulate matter mass fraction & NA \\
\hline & & AirMassFrac & Air mass fraction & NA \\
\hline & & BrndGasMassFrac & Burned gas mass fraction & NA \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Signal} & Description & Units \\
\hline \multirow[t]{3}{*}{HeatTrnsfr} & \multicolumn{2}{|l|}{HeatTrnsfrRate} & Wall heat transfer rate & J/s \\
\hline & \multicolumn{2}{|l|}{MassFlw} & Average internal mass flow rate & kg/s \\
\hline & \multicolumn{2}{|l|}{IntrnTemp} & Temperature of gas inside chamber & K \\
\hline \multirow[t]{3}{*}{PwrInfo} & PwrTrnsfrd & PwrHeatFlwi & Port \(i\) heat flow & W \\
\hline & PwrNotTrnsfr d & PwrHeatTrnsfr & Heat transfer rate from wall to control volume & W \\
\hline & PwrStored & PwrHeatStored & Rate of heat stored in the control volume & W \\
\hline
\end{tabular}

\section*{C - Outlet pressure, temperature, enthalpy, mass fractions}
two-way connector port
Bus containing the outlet control volume:
- Prs - Chamber pressure, in Pa
- Temp - Gas temperature, in K
- Enth - Specific enthalpy, in J/kg
- MassFrac - Mass fractions, dimensionless.

Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H20MassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- N02MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

\section*{Dependencies}

To create outlet ports, specify the Number of outlet ports parameter.

\section*{Parameters}

\section*{Block Options}

\section*{Number of inlet ports - Number of ports}

\section*{1 (default) | \(0 \mid 2\) | 3 | 4}

Number of inlet ports.

\section*{Dependencies}

To create inlet ports, specify the number.

\section*{Number of outlet ports - Number of ports}

\section*{1 (default)| 0 | 2 | 3 | 4}

Number of outlet ports.

\section*{Dependencies}

To create outlet ports, specify the number.

\section*{Heat transfer model - Select model}

Constant (default)|External input|External wall convection

\section*{Dependencies}

Selecting Constant or External wall convection enables the Heat Transfer parameters.

\section*{Image type - Icon color}

Cold (default) | Hot

Select color for block icon:
- Cold for blue
- Hot for red

General
Chamber volume, Vch - Volume
scalar
Chamber volume, \(V_{c h}\), in m^3.

\section*{Initial chamber pressure, Pinit - Pressure scalar}

Initial chamber pressure, \(P_{\text {vol }}\), in Pa .

\section*{Initial chamber temperature, Tinit - Temperature scalar}

Initial chamber temperature, \(T_{\text {vol }}\), in \(K\).
Ideal gas constant, R - Ideal gas constant scalar

Ideal gas constant, \(R\), in \(\mathrm{J} /(\mathrm{kg} * \mathrm{~K})\).
```

Specific heat capacity, cp - Specific heat
scalar

```

Specific heat capacity, \(c_{p}\), in \(\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})\).

\section*{Heat Transfer}

\section*{Heat transfer rate, q_he - Rate} scalar

Constant heat transfer rate, \(q_{h e}\), in J/s.

\section*{Dependencies}

To enable this parameter, select Constant for the Heat transfer model parameter.

\section*{External convection heat transfer coefficient, ext_tbl - Manifold external air \\ vector}

External convection heat transfer coefficient, \(h_{\text {ext }}\), in \(\mathrm{W} /\left(\mathrm{m}^{\wedge} 2 \mathrm{~K}\right)\).

\section*{Dependencies}

To enable this parameter, select External wall convection for the Heat transfer model parameter.

External velocity breakpoints, ext_bpts - Manifold external air linspace (0,180,4) (default)

External velocity breakpoints, \(x_{\text {ext }}\), in \(\mathrm{m} / \mathrm{s}\).

\section*{Dependencies}

To enable this parameter, select External wall convection for the Heat transfer model parameter.

\section*{External convection area, Aext_conv - Manifold external air scalar}

External convection area, \(A_{\text {ext_conv, }}\) in \(\mathrm{m}^{\wedge} 2\).

\section*{Dependencies}

To enable this parameter, select External wall convection for the Heat transfer model parameter.

\section*{Thermal mass, m_wall - Manifold wall general scalar}

Thermal mass, \(m_{\text {wall, }}\), in kg .

\section*{Dependencies}

To enable this parameter, select External wall convection for the Heat transfer model parameter.

Wall heat capacity, cp_wall - Manifold wall general scalar

Wall heat capacity, \(c_{p \_ \text {wall }}\) in \(\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})\).

\section*{Dependencies}

To enable this parameter, select External wall convection for the Heat transfer model parameter.

\section*{Initial mass temperature, Tmass - Manifold wall general scalar}

Initial mass temperature, \(T_{\text {mass }}\), in K .

\section*{Dependencies}

To enable this parameter, select External wall convection for the Heat transfer model parameter.

\section*{External wall thickness, Dext_cond - Manifold wall external scalar}

External wall thickness, \(D_{\text {ext_cond, }}\) in \(m\).

\section*{Dependencies}

To enable this parameter, select External wall convection for the Heat transfer model parameter.

External conduction area, Aext_cond - Manifold wall external scalar

External conduction area, \(A_{\text {ext_cond }}\), in \(\mathrm{m}^{\wedge} 2\).

\section*{Dependencies}

To enable this parameter, select External wall convection for the Heat transfer model parameter.

\section*{External wall thermal conductivity, kint - Manifold wall external scalar}

External wall thermal conductivity, \(k_{\text {ext }}\), in \(\mathrm{W} /(\mathrm{m} \cdot \mathrm{K})\).

\section*{Dependencies}

To enable this parameter, select External wall convection for the Heat transfer model parameter.

\section*{Internal wall thickness, Dint_cond - Manifold wall internal scalar \\ Internal wall thickness, \(D_{\text {int_cond }}\), in m. \\ Dependencies}

To enable this parameter, select External wall convection for the Heat transfer model parameter.

\section*{Internal conduction area, Aint_cond - Manifold wall internal scalar}

Internal conduction area, \(A_{\text {int_cond, }}\) in \(\mathrm{m}^{\wedge} 2\).

\section*{Dependencies}

To enable this parameter, select External wall convection for the Heat transfer model parameter.

\section*{Internal wall thermal conductivity, kint - Manifold wall internal scalar}

Internal wall thermal conductivity, \(k_{\text {int }}\), in \(\mathrm{W} /(\mathrm{m} \cdot \mathrm{K})\).

\section*{Dependencies}

To enable this parameter, select External wall convection for the Heat transfer model parameter.
```

Internal convection heat transfer coefficient, int_tbl - Manifold
internal air
vector

```

Internal convection heat transfer coefficient, \(h_{\text {int, }}\) in \(\mathrm{W} /\left(\mathrm{m}^{\wedge} 2 \mathrm{~K}\right)\).

\section*{Dependencies}

To enable this parameter, select External wall convection for the Heat transfer model parameter.

Internal mass flow rate breakpoints, int_bpts - Manifold internal air vector

Internal velocity breakpoints, \(x_{i n t}\), in \(\mathrm{kg} / \mathrm{s}\).

\section*{Dependencies}

To enable this parameter, select External wall convection for the Heat transfer model parameter.

Internal flow convection area, Aint_conv - Manifold internal air scalar

Internal convection area, \(A_{\text {int_conv, }}\) in \(\mathrm{m}^{\wedge} 2\).

\section*{Dependencies}

To enable this parameter, select External wall convection for the Heat transfer model parameter.

\section*{References}
[1] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\author{
See Also \\ Constant Volume Pneumatic Chamber | Two-Way Connection | Flow Restriction | Heat Exchanger \\ Introduced in R2017a
}

\section*{Flow Boundary}

Flow boundary for ambient temperature and pressure
Library: Powertrain Blockset / Propulsion / Combustion Engine Components / Fundamental Flow


\section*{Description}

The Flow Boundary block implements a flow boundary that typically represents ambient temperature and pressure. Engine models require flow boundaries at the intake inlet and exhaust outlet. In dynamic engine models, flow-modifying components (for example, flow restriction, turbines, and compressors) connect to control volumes and flow boundaries.

You can specify these block configurations:
- Constant pressure and temperature
- Externally input pressure and temperature

The Flow Boundary block outputs pressure, temperature, and specific enthalpy:
\(h=c_{p} T\)
The block models the mass fractions as dry air, resulting in these mass fractions:
- \(y_{N 2}=0.767\)
- \(y_{02}=.233\)

The equation uses these variables.
\begin{tabular}{ll}
\(T\) & Temperature \\
\(h\) & Specific enthalpy \\
\(c_{p}\) & Specific heat at constant pressure \\
\(y_{N 2}\) & Nitrogen mass fraction \\
\(y_{O 2}\) & Oxygen mass fraction
\end{tabular}

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Equations \\
\hline \multirow[t]{3}{*}{PwrI nfo} & \begin{tabular}{l}
PwrTrnsfrd - Power transferred between blocks \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block
\end{tabular} & PwrBndrF lw & Heat flow rate to flow restriction & \(q_{\text {orf }}\) \\
\hline & \begin{tabular}{l}
PwrNotTrnsfrd - Power crossing the block boundary, but not transferred \\
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular} & PwrEnv & Heat flow rate to environment & - \(q_{\text {orf }}\) \\
\hline & \begin{tabular}{l}
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular} & Not used & & \\
\hline
\end{tabular}

\section*{Ports}

\section*{Input}

\section*{Prs - Pressure}
scalar
External input pressure, \(P\), in Pa.

\section*{Dependencies}

To create this port, select External input for the Pressure and temperature source parameter.

\section*{Temp - Temperature \\ scalar}

External input temperature, \(T\), in K .

\section*{Dependencies}

To create this port, select External input for the Pressure and temperature source parameter.

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|l|}
\hline Signal & Description & Units \\
\hline BndryPrs & & Boundary pressure & Pa \\
\hline BndryTemp & Boundary temperature & K \\
\hline BndryEnth & \begin{tabular}{l} 
Boundary specific \\
enthalpy
\end{tabular} & \(\mathrm{J} / \mathrm{kg}\) \\
\hline PwrInfo & PwrTrnsfrd & PwrBndryFlw & \begin{tabular}{l} 
Heat flow rate to flow \\
restriction
\end{tabular} \\
\hline
\end{tabular}

\section*{C - Boundary pressure, temperature, enthalpy, mass fractions}
two-way connector port
Bus containing the flow boundary:
- Prs - Pressure, \(P\), in Pa
- Temp - Temperature, \(T\), in K
- Enth - Specific enthalpy, h, in J/kg
- MassFrac - Mass fractions, dimensionless.

Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H20MassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- N02MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

\section*{Parameters}

\section*{Block Options}

\section*{Pressure and temperature source - Select source} External input (default)|Constant

Pressure and temperature source.

\section*{Dependencies}

The table summarizes the parameter and port dependencies.
\begin{tabular}{|l|l|l|}
\hline Value & Enables Parameters & Creates Ports \\
\hline Constant & Pressure, Pcnst \\
Temperature, Tcnst
\end{tabular}\(\quad\) None \(\quad\) External input \(\quad\) None \begin{tabular}{l} 
Prs \\
\hline
\end{tabular}

\section*{Image type - Icon color}

Cold (default) | Hot
Select color for block icon:
- Cold for blue
- Hot for red

\section*{Pressure, Pcnst - Constant \\ scalar}

Constant pressure, \(P\), in Pa.

\section*{Dependencies}

To enable this parameter, select Constant for the Pressure and temperature source parameter.

\section*{Temperature, Tcnst - Constant \\ scalar}

Constant temperature, \(T\), in K .

\section*{Dependencies}

To enable this parameter, select Constant for the Pressure and temperature source parameter.
```

Specific heat at constant pressure, cp - Constant, J/(kg(K)
scalar

```

Specific heat at constant pressure, in J/(kg•K).

\section*{References}
[1] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

Compressor | Flow Restriction | Turbine

Introduced in R2017a

\section*{Flow Restriction}

Isentropic ideal gas flow through an orifice
Library:
Powertrain Blockset / Propulsion / Combustion Engine Components / Fundamental Flow


\section*{Description}

The Flow Restriction block models isentropic ideal gas flow through an orifice. The block uses the conservation of mass and energy to determine the mass flow rate. The flow velocity is limited by choked flow.

You can specify these orifice area models:
- Constant
- External input
- Throttle body geometry

\section*{Equations}

The Flow Restriction block implements these equations.
\begin{tabular}{|c|c|}
\hline Calculation & Equations \\
\hline Standard orifice & \[
\begin{aligned}
& \dot{m}_{\text {orf }}=\Gamma \cdot \Psi\left(P_{\text {ratio }}\right) \\
& P_{\text {ratio }}=\frac{P_{\text {downstr }}}{P_{\text {upstr }}} \\
& \Gamma=\frac{A_{\text {eff }} \cdot P_{\text {upstr }}}{\sqrt{R \cdot T_{\text {upstr }}}} \\
& P_{\text {cr }}=\left(\frac{2}{\gamma+1}\right)^{\frac{\gamma}{\gamma-1}} \\
& \Psi= \begin{cases}\sqrt{\frac{2 \gamma}{\gamma-1}}\left(P_{\text {ratio }} \frac{2}{\gamma}-P_{\text {ratio }} \frac{\gamma+1}{\gamma}\right) & P_{\text {cr }} \leq P_{\text {ratio }} \leq P_{\text {lim }} \\
\frac{P_{\text {ratio }}-1}{P_{\text {lim }}-1} \sqrt{\frac{2 \gamma}{\gamma-1}\left(P_{\text {lim }} \frac{2}{\gamma}-P_{\text {lim }} \frac{\gamma+1}{\gamma}\right)} & P_{\text {lim }}<P_{\text {ratio }}\end{cases}
\end{aligned}
\] \\
\hline Constituent mass flow rates & \(\dot{m}_{i}=\dot{m}_{\text {orf }} y_{u p s t r, i}\) \\
\hline Constant orifice area & \(A_{\text {eff }}=A_{\text {orf_cnst }} \cdot C d_{\text {cnst }}\) \\
\hline External input orifice area & \(A_{\text {eff }}=A_{\text {orf_ext }} \cdot C d_{\text {ext }}\) \\
\hline Throttle body geometry & \[
\begin{aligned}
& \theta_{t h r}=P c t_{t h r} \cdot \frac{90}{100} \\
& A_{\text {eff_thr }}=\frac{\pi}{4} D_{t h r} C_{d_{-} t h r}\left(\theta_{t h r}\right)
\end{aligned}
\] \\
\hline Heat flow rate & \(q_{\text {orf }}=\dot{m}_{\text {orf }} h_{\text {upstr }}\) \\
\hline
\end{tabular}

The equations use these variables.
\(A_{e f f}, A_{\text {eff_thr }} \quad\) Effective orifice cross-sectional area
\(A_{\text {orf_cnst }}, A_{\text {orf_ext }} \quad\) Orifice area
\(C d_{\text {cnst }}, C d_{\text {ext }} \quad\) Discharge coefficient
\begin{tabular}{|c|c|}
\hline \(R\) & Ideal gas constant \\
\hline \(P_{\text {cr }}\) & Critical pressure at which choked flow occurs \\
\hline \(\gamma\) & Ratio of specific heats \\
\hline \(\Gamma\) & Flow function based on pressure ratio \\
\hline \(P_{\text {ratio }}\) & Pressure ratio \\
\hline \(P_{\text {upstr }}\) & Upstream orifice pressure \\
\hline \(P_{\text {downstr }}\) & Downstream orifice pressure \\
\hline \(P_{\text {lim }}\) & Pressure ratio limit to avoid singularities as the pressure ratio approaches 1 \\
\hline \(y_{\text {upstri }}\) & Upstream species mass fraction for \(\mathrm{i}=\mathrm{O}_{2}, \mathrm{~N}_{2}\), unburned fuel, \(\mathrm{CO}_{2}\), \(\mathrm{H}_{2} \mathrm{O}, \mathrm{CO}, \mathrm{NO}, \mathrm{NO}_{2}, \mathrm{PM}\), air, and burned gas \\
\hline \(\dot{m}_{i}\) & Mass flow rate for \(\mathrm{i}=\mathrm{O}_{2}, \mathrm{~N}_{2}\), unburned fuel, \(\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CO}, \mathrm{NO}, \mathrm{NO}_{2}\), PM, air, and burned gas \\
\hline \(\theta_{t h r}\) & Throttle angle \\
\hline Pct \({ }_{\text {thr }}\) & Percentage of throttle body that is open \\
\hline \(C_{\text {d_thr }}\) & Throttle discharge coefficient \\
\hline \(D_{t h r}\) & Throttle body diameter at opening \\
\hline \(\dot{m}_{\text {orf }}\) & Orifice mass flow \\
\hline \(h_{\text {upstr }}\) & Upstream specific enthalpy \\
\hline \(q_{\text {orf }}\) & Heat flow rate \\
\hline
\end{tabular}

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Descript & Equation \\
\hline \begin{tabular}{l}
PwrInf \\
0
\end{tabular} & \begin{tabular}{l}
PwrTrnsfrd - Power transferred between blocks \\
- Positive signals indicate flow into block
\end{tabular} & PwrHeatFlw In & Heat flow rate at port A & \(q_{\text {orf }}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Descript & Equation \\
\hline & - Negative signals indicate flow out of block & PwrHeatFlw Out & Heat flow rate at port B & - \(q_{\text {orf }}\) \\
\hline & \begin{tabular}{l}
PwrNotTrnsfrd - Power crossing the block boundary, but not transferred \\
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular} & \multicolumn{3}{|l|}{Not used} \\
\hline & \begin{tabular}{l}
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular} & \multicolumn{3}{|l|}{Not used} \\
\hline
\end{tabular}

\section*{Ports}

\section*{Input}

A - Inlet orifice pressure, temperature, enthalpy, mass fractions
two-way connector port
Bus containing orifice:
- Prs - Pressure, in Pa
- Temp - Temperature, in K
- Enth - Specific enthalpy, in J/kg
- MassFrac - Inlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H20MassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- N02MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

\section*{B - Outlet orifice pressure, temperature, enthalpy, mass fractions}
two-way connector port
Bus containing orifice:
- Prs - Pressure, in Pa
- Temp - Temperature, in K
- Enth - Specific enthalpy, in J/kg
- MassFrac - Outlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H20MassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- N02MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

\section*{Area - Orifice area}

\section*{scalar}

External area input for orifice area, \(A_{\text {orf_ext }}\), in m^2.

\section*{Dependencies}

To create this port, select External input for the Orifice area model parameter.

\section*{ThrPct - Throttle body percent open}
scalar
Percentage of throttle body that is open, \(P c t_{t h r}\).

\section*{Dependencies}

To create this port, select Throttle body geometry for the Orifice area model parameter.

\section*{Output}

\section*{A - Inlet mass flow rate, heat flow rate, temperature two-way connector port}

Bus containing:
- MassFlw - Mass flow rate through inlet, in kg/s
- HeatFlw - Inlet heat flow rate, in J/s
- Temp - Inlet temperature, in K
- MassFrac - Inlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H2OMassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- N02MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

\section*{B - Outlet mass flow rate, heat flow rate, temperature}
two-way connector port
Bus containing:
- MassFlw - Outlet mass flow rate, in kg/s
- HeatFlw - Outlet heat flow rate, in J/s
- Temp - Outlet temperature, in K
- MassFrac - Outlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H2OMassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- NO2MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Signal} & Description & Units \\
\hline \multirow[t]{18}{*}{Flw} & \multirow[t]{5}{*}{PrsAdj} & DwnstrmPrs & Downstream pressure & Pa \\
\hline & & UpstrmPrs & Upstream pressure & Pa \\
\hline & & PrsRatio & Pressure ratio & NA \\
\hline & & DwnstrmTemp & Downstream temperature & K \\
\hline & & UpstrmTemp & Upstream temperature & K \\
\hline & \multicolumn{2}{|l|}{OrfMassFlw} & Mass flow rate through orifice & kg/s \\
\hline & \multirow[t]{12}{*}{Species} & 02MassFlw & Oxygen mass flow rate & kg/s \\
\hline & & N2MassFlw & Nitrogen mass flow rate & kg/s \\
\hline & & UnbrndFuelM assFlw & Unburned gas mass flow rate & kg/s \\
\hline & & C02MassFlw & Carbon dioxide mass flow rate & kg/s \\
\hline & & H20MassFlw & Water mass flow rate & kg/s \\
\hline & & COMassFlw & Carbon monoxide mass flow rate & kg/s \\
\hline & & NOMassFlw & Nitric oxide mass flow rate & kg/s \\
\hline & & N02MassFlw & Nitrogen dioxide mass flow rate & kg/s \\
\hline & & N0xMassFlw & Nitric oxide and nitrogen dioxide mass flow rate & kg/s \\
\hline & & PmMassFlw & Particulate matter mass flow rate & kg/s \\
\hline & & AirMassFlw & Air mass flow rate & kg/s \\
\hline & & BrnedGasMas sFlw & Burned gas mass flow rate & kg/s \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Signal} & \multirow[t]{2}{*}{\begin{tabular}{l}
Description \\
Heat flow rate at port A
\end{tabular}} & \multirow[t]{2}{*}{Units
W} \\
\hline & \multirow[t]{4}{*}{PwrInf 0} & \multirow[t]{2}{*}{PwrTrnsf rd} & \begin{tabular}{l}
PwrHeatFlwI \\
n
\end{tabular} & & \\
\hline & & & PwrHeatFlw0 ut & Heat flow rate at port B & W \\
\hline & & \multicolumn{2}{|l|}{PwrNotTrnsfrd} & \multicolumn{2}{|l|}{Not used} \\
\hline & & \multicolumn{2}{|l|}{PwrStored} & \multicolumn{2}{|l|}{Not used} \\
\hline \multirow[t]{3}{*}{Area} & \multicolumn{3}{|l|}{FlwArea} & Cross-sectional flow area & m^2 \\
\hline & \multicolumn{3}{|l|}{EffctArea} & Effective orifice crosssectional area & \(\mathrm{m}^{\wedge} 2\) \\
\hline & \multicolumn{3}{|l|}{ThrAng} & Throttle area, if applicable & deg \\
\hline
\end{tabular}

\section*{Parameters}

\section*{Block Options}

\section*{Orifice area model - Select model}

Constant (default)|External input|Throttle body geometry
Orifice area model.

\section*{Dependencies}

The orifice area model enables the parameters on the Area Parameters tab.

\section*{Image type - Icon color}

Cold (default) | Hot
Block icon color:
- Cold for blue.
- Hot for red.

\section*{General}

Ratio of specific heats, gamma - Ratio
scalar

Ratio of specific heats, \(\gamma\).

\section*{Ideal gas constant, R-Constant scalar}

Ideal gas constant, \(R\), in \(\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})\).

\section*{Pressure ratio linearize limit, Plim - Limit scalar}

Pressure ratio limit to avoid singularities as the pressure ratio approaches \(1, P_{\text {lim }}\).

\section*{Area}

Constant area value, Aorf_cnst - Area
scalar
Constant area value, \(A_{\text {orf_cnst }}\), in \(\mathrm{m}^{\wedge} 2\).

\section*{Dependencies}

To enable this parameter, select Constant for the Orifice area model parameter.

\section*{Discharge coefficient, Cd_cnst - Coefficient}

\section*{scalar}

Discharge coefficient for constant area, \(C d_{\text {cnst }}\).

\section*{Dependencies}

To enable this parameter, select Constant for the Orifice area model parameter.
Discharge coefficient, Cd_ext - Coefficient scalar

Discharge coefficient for external area input, \(C d_{\text {ext }}\).

\section*{Dependencies}

To enable this parameter, select External input for the Orifice area model parameter.
```

Throttle diameter, Dthr - Diameter
scalar

```

Throttle body diameter at opening, \(D_{t h r}\), in mm .

\section*{Dependencies}

To enable this parameter, select Throttle body geometry for the Orifice area model parameter.

\section*{Discharge coefficient table, ThrCd - Coefficient} array

Discharge coefficient table, \(C_{d_{-}}\). .

\section*{Dependencies}

To enable this parameter, select Throttle body geometry for the Orifice area model parameter.
```

Angle breakpoints, ThrAngBpts - Angle
array

```

Angle breakpoints, \(T h r_{\text {ang_bpts }}\), in deg.

\section*{Dependencies}

To enable this parameter, select Throttle body geometry for the Orifice area model parameter.

\section*{References}
[1] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\author{
See Also \\ Control Volume System | Heat Exchanger \\ Introduced in R2017a
}

\section*{Heat Exchanger}

Intercooler or exhaust gas recirculation (EGR) cooler
Library: Powertrain Blockset / Propulsion / Combustion Engine Components / Fundamental Flow


\section*{Description}

The Heat Exchanger block models a heat exchanger, for example, an intercooler or exhaust gas recirculation (EGR) cooler. The inlet (port C) connects to an engine flow component (flow restriction, compressor, turbine, or engine block). The outlet (port B) connects to a volume (control volume or environment). Based on the upstream temperature, heat exchanger effectiveness, and cooling medium temperature, the block determines the heat transfer rate and downstream temperature.

For the heat exchanger effectiveness and cooling medium temperature, you can specify either a constant value or an external input. For example, if you specify a heat exchanger effectiveness that is:
- Equal to 1, the downstream temperature is equal to the cooling medium temperature.
- Equal to 0 , there is no heat transfer to the cooling medium. The downstream temperature is equal to the upstream temperature.

The block assumes no pressure drop. To model pressure losses, use a Flow Restriction block.

\section*{Equations}

The Heat Exchanger block implements equations that use these variables.
\begin{tabular}{ll}
\(T_{\text {upstr }}\) & Upstream temperature \\
\(T_{\text {dnstr }}\) & Downstream temperature \\
\(T_{\text {cool }}\) & Cooling medium temperature \\
\(T_{\text {cool, cnst }}\) & Constant cooling medium temperature
\end{tabular}
\begin{tabular}{ll}
\(T_{\text {cool, input }}\) & External input cooling medium temperature \\
\(\varepsilon\) & Heat exchanger effectiveness \\
\(\varepsilon_{\text {cnst }}\) & Constant heat exchanger effectiveness \\
\(\varepsilon_{\text {input }}\) & Input heat exchanger effectiveness \\
\(c_{p}\) & Specific heat at constant pressure \\
\(q_{h t}\) & Heat exchanger heat transfer rate \\
\(p_{f l w, \text { in }}\) & Pressure at inlet \\
\(p_{\text {vol, out }}\) & Pressure at outlet \\
\(T_{\text {vol, out }}\) & Temperature at outlet \\
\(h_{v o l, \text { out }}\) & Specific enthalpy at outlet \\
\(q_{\text {in }}\) & Heat flow rate at inlet \\
\(q_{\text {out }}\) & Heat flow rate at outlet \\
\(\dot{m}\) & Heat exchanger mass flow rate \\
\(T_{f l w, \text { in }}\) & Temperature at inlet \\
\(T_{\text {in }}\) & Heat exchanger inlet temperature \\
\(T_{\text {out }}\) & Heat exchanger outlet temperature \\
\(h_{\text {in }}\) & Inlet specific enthalpy
\end{tabular}

\section*{Heat Exchanger Effectiveness}

Heat exchanger effectiveness measures the effectiveness of heat transfer from the incoming hot fluid to the cooling medium:
\[
\varepsilon=\frac{T_{\text {upstr }}-T_{\text {dnstr }}}{T_{\text {upstr }}-T_{\text {cool }}}
\]

In an ideal heat exchanger, the downstream temperature equals the cooling temperature. The effectiveness is equal to 1 .
\[
\begin{aligned}
& T_{\text {dnstr }}=T_{\text {cool }} \\
& \varepsilon=1
\end{aligned}
\]

The Heat Exchanger block uses the effectiveness to determine the downstream temperature and heat transfer rate.
\[
\begin{aligned}
& T_{d n s t r}=T_{u p s t r}-\varepsilon\left(T_{u p s t r}-T_{\text {cool }}\right) \\
& q_{h t}=\dot{m} c_{p}\left(T_{u p s t r}-T_{\text {dnstr }}\right)
\end{aligned}
\]

\section*{Fluid Flow}

Since the block assumes no pressure drop, \(P_{f l w, \text { in }}=P_{\text {vol, out }}\).
The flow component connection to the heat exchanger inlet determines the direction of the mass flow. Based on the mass flow rate direction, these temperature and heat flow equations apply.
\begin{tabular}{|l|l|l|}
\hline Fluid Flow & Mass Flow Rate & Temperatures and Heat Flow \\
\hline Forward - From & \(\dot{m} \geq 0\) & \(T_{\text {upstr }}=T_{f l w, \text { in }}\) \\
engine flow & & \(T_{\text {in }}=T_{\text {upstr }}\) \\
component to outlet & & \(T_{\text {out }}=T_{\text {dnstr }}\) \\
volume & & \(q_{\text {out }}=\dot{m} c_{p} T_{\text {dnstr }}\) \\
\hline Reverse - From & \(\dot{m}<0\) & \(T_{\text {upstr }}=T_{\text {vol, out }}\) \\
outlet volume to & & \(T_{\text {in }}=T_{\text {dnstr }}\) \\
engine flow & & \(T_{\text {out }}=T_{\text {vol }, \text { out }}\) \\
component & & \(h_{\text {in }}=c_{p} T_{\text {dnstr }}\) \\
& & \(q_{\text {out }}=\dot{m} h_{\text {vol, out }}\) \\
\hline
\end{tabular}

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Equations \\
\hline \begin{tabular}{l}
PwrI \\
nfo
\end{tabular} & PwrTrnsfrd - Power transferred between blocks & PwrHeatF lwIn & Heat flow rate at port C & \(q_{\text {in }}\) \\
\hline & \begin{tabular}{l}
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block
\end{tabular} & PwrHeatF lwOut & Heat flow rate at port B & \(-q_{\text {out }}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|l|}{ Bus Signal } & Description & Equations \\
\hline & \begin{tabular}{l} 
PwrNotTrnsfrd - Power \\
crossing the block boundary, \\
but not transferred
\end{tabular} & \begin{tabular}{l} 
PwrHeatT \\
rnsfr
\end{tabular} & \begin{tabular}{l} 
Heat transfer rate to \\
cooling medium
\end{tabular} \\
\begin{tabular}{l} 
Positive signals indicate an \\
input \\
- \\
Negative signals indicate a \\
loss
\end{tabular} & & \\
\hline & \begin{tabular}{l} 
PwrStored - Stored energy rate of change \\
-
\end{tabular} & Not used & \\
\hline
\end{tabular}

\section*{Ports}

\section*{Input}

\section*{C - Inlet mass flow rate, heat flow rate, temperature, mass fractions}
two-way connector port
Bus containing the heat exchanger:
- MassFlwRate - Mass flow rate at inlet, \(\dot{m}\), in \(\mathrm{kg} / \mathrm{s}\)
- HeatFlwRate - Heat flow rate at inlet, \(q_{i n}\), in J/s
- Temp - Temperature at inlet, \(T_{f l w, i n}\), in K
- MassFrac - Inlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H20MassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- N02MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

\section*{B - Outlet volume pressure, temperature, enthalpy, mass fractions} two-way connector port

Bus containing the heat exchanger:
- Prs - Pressure at outlet, \(p_{\text {vol, out }}\), in Pa
- Temp - Temperature at outlet, \(T_{\text {vol, out, }}\) in K
- Enth - Specific enthalpy at outlet, \(h_{\text {vol, out }}\), in J/kg
- MassFrac - Outlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H20MassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- N02MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

\section*{Effct - Heat exchanger effectiveness}
scalar

Heat exchanger effectiveness, \(\varepsilon_{\text {input }}\).

\section*{Dependencies}

To create this port, select External input for the Effectiveness model parameter.

\section*{CoolTemp - Cooling medium temperature} scalar

Cooling medium temperature, \(T_{\text {cool, input }}\).

\section*{Dependencies}

To create this port, select External input for the Cooling medium temperature input parameter.

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|l|}
\hline Signal & & Description & Units \\
\hline InletTemp & & \begin{tabular}{l} 
Heat exchanger inlet \\
temperature
\end{tabular} & K \\
\hline OutletTemp & \begin{tabular}{l} 
Heat exchanger outlet \\
temperature
\end{tabular} & K \\
\hline HeatTrnsfrRate & \begin{tabular}{l} 
Heat exchanger heat \\
transfer rate
\end{tabular} & \(\mathrm{J} / \mathrm{s}\) \\
\hline \multirow{3}{*}{ PwrInfo } & PwrTrnsfrd & PwrHeatFlwIn & \begin{tabular}{l} 
Heat flow rate at port \\
C
\end{tabular} \\
\cline { 3 - 5 } & PwrHeatFlwOut & \begin{tabular}{l} 
Weat flow rate at port \\
B
\end{tabular} & W \\
\cline { 3 - 5 } & PwrNotTrnsfrd & PwrHeatTrnsfr & \begin{tabular}{l} 
Heat transfer rate to \\
cooling medium
\end{tabular} \\
\hline
\end{tabular}

\section*{C - Inlet flow pressure, temperature, enthalpy, mass fractions}
two-way connector port
Bus containing the heat exchanger:
- Prs - Pressure at inlet, \(p_{f l w, \text { in, }}\) in Pa
- Temp - Temperature at inlet, \(T_{i n}\), in K
- Enth - Specific enthalpy at inlet, \(h_{i n}\), in J/kg
- MassFrac - Inlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H20MassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- N02MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

B - Outlet volume mass flow rate, heat flow rate, temperature, mass fractions two-way connector port

Bus containing the heat exchanger:
- MassFlwRate - Mass flow rate at outlet, \(\dot{m}\), in \(\mathrm{kg} / \mathrm{s}\)
- HeatFlwRate - Heat flow rate at outlet, \(q_{\text {out }}\), in J/s
- Temp - Temperature at outlet, \(T_{\text {out }}\), in K
- MassFrac - Outlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H2OMassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- N02MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

\section*{Parameters}

\section*{Block Options}

\section*{Effectiveness model - Model type for heat effectiveness} Constant (default)|External input

Type of model to calculate the heat exchanger effectiveness.

\section*{Dependencies}
- Selecting External input creates the Effct port.
- Selecting Constant enables the Heat exchanger effectiveness, ep_cnst parameter.

\section*{Cooling medium temperature input - Specify type}

Constant (default) | External input
Cooling medium temperature input.

\section*{Dependencies}
- Selecting External input creates the CoolTemp port.
- Selecting Constant enables the Cooling medium temperature, T_cool_cnst parameter.

\section*{Image type - Icon color \\ Intercooler (default) |EGR cooler}

Block icon color:
- Intercooler for blue, to indicate an intercooler
- EGR cooler for red, to indicate exhaust-gas-recirculation (EGR) cooling

\section*{Heat exchanger effectiveness, ep_cnst - Effectiveness}

\section*{scalar}

Constant heat exchanger effectiveness, \(\varepsilon_{\text {cnst }}\).

\section*{Dependencies}

To enable this parameter, select Constant for the Effectiveness model parameter.

\section*{Cooling medium temperature, T_cool_cnst - Temperature scalar}

Constant cooling medium temperature, \(T_{\text {cool, cnst }}\), in K.

\section*{Dependencies}

To enable this parameter, select Constant for the Cooling medium temperature input parameter.
```

Specific heat at constant pressure, cp - Specific heat
scalar

```

Specific heat at constant pressure, \(c_{p}\), in \(\mathrm{J} /(\mathrm{kg} * \mathrm{~K})\).

\section*{References}
[1] Eriksson, Lars and Nielsen, Lars. Modeling and Control of Engines and Drivelines. Chichester, West Sussex, United Kingdom: John Wiley \& Sons Ltd, 2014.

\title{
Extended Capabilities
}

\author{
C/C++ Code Generation \\ Generate \(C\) and \(C++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\text {TM }}\).
}

\author{
See Also \\ Control Volume System | Flow Restriction \\ Introduced in R2017a
}

\section*{SI Controller}

Spark-ignition engine controller that uses the driver torque request
Library: Powertrain Blockset / Propulsion / Combustion Engine Controllers


\section*{Description}

The SI Controller block implements a spark-ignition (SI) controller that uses the driver torque request to calculate the open-loop air, fuel, and spark actuator commands that are required to meet the driver demand.

You can use the SI Controller block in engine control design or performance, fuel economy, and emission tradeoff studies. The core engine, throttle, and turbocharger wastegate subsystems require the commands that are output from the SI Controller block.

The block uses the commanded torque and engine speed to determine these open-loop actuator commands:
- Throttle position percent
- Wastegate area percent
- Injector pulse-width
- Spark advance
- Intake cam phaser angle
- Exhaust cam phaser angle
- Exhaust gas recirculation (EGR) valve area percent

The SI Controller block has two subsystems:
- The Controller subsystem - Determines the commands based on the commanded torque, measured engine speed, and estimated cylinder air mass.
- The Estimator subsystem - Determines the estimated air mass flow, torque, and exhaust gas temperature from intake manifold gas pressure, intake manifold gas temperature, engine speed, and cam phaser positions.

The figure illustrates the signal flow.


The figure uses these variables.
\(N \quad\) Engine speed
MAP Cycle average intake manifold pressure
IAT Intake air temperature
\(T_{\text {in,EGR }} \quad\) Temperature at EGR valve inlet
MAT Cycle average intake manifold gas absolute temperature
\(\varphi_{\text {ICP }}, \varphi_{\text {ICPCMD }}\) Intake cam phaser angle and intake cam phaser angle command, respectively
\begin{tabular}{ll}
\(\varphi_{E C P}, \varphi_{E C P C M D}\) & \begin{tabular}{l} 
Exhaust cam phaser angle and exhaust cam phaser angle command, \\
respectively
\end{tabular} \\
\(E G R a p\), & EGR valve area percent and EGR valve area percent command, \\
EGRap \\
\(\Delta P_{\text {EGR }}\) & respectively \\
\(W A P_{c m d}\) & Pressure difference at EGR valve inlet and outlet \\
\(S A\) & Turbocharger wastegate area percent command \\
\(P w_{i n j}\) & Spark advance \\
\(T P P_{c m d}\) & Fuel injector pulse-width \\
& Throttle position percent command
\end{tabular}

The Model-Based Calibration Toolbox was used to develop the tables that are available with the Powertrain Blockset.

\section*{Controller}

\section*{Air}

The block determines the commanded engine load (that is, normalized cylinder air mass) from a lookup table that is a function of commanded torque and measured engine speed.
\[
L_{c m d}=f_{L c m d}\left(T_{c m d}, N\right)
\]

To achieve the commanded load, the controller sets the throttle position percent and turbocharger wastegate area percent using feed forward lookup tables. The lookup tables are functions of the commanded load and measured engine speed.
\[
\begin{aligned}
& T A P_{c m d}=f_{T A P c m d}\left(L_{c m d}, N\right) \\
& T P P_{c m d}=f_{T P P c m d}\left(T A P_{c m d}\right) \\
& W A P_{c m d}=f_{W A P c m d}\left(L_{c m d}, N\right)
\end{aligned}
\]

To determine the cam phaser angle commands, the block uses lookup tables that are functions of estimated engine load and measured engine speed.
\[
\begin{aligned}
& \varphi_{I C P C M D}=f_{I C P C M D}\left(L_{e s t}, N\right) \\
& \varphi_{E C P C M D}=f_{E C P C M D}\left(L_{e s t}, N\right)
\end{aligned}
\]

The block calculates the desired engine load using this equation.
\[
L_{\text {est }}=\frac{C p s R_{\text {air }} T_{\text {std }} \dot{m}_{\text {air }, \text { est }}}{P_{s t d} V_{d} N}
\]

The equations use these variables.
\begin{tabular}{ll}
\(L_{e s t}\) & Estimated engine load \\
\(L_{c m d}\) & Commanded engine load \\
\(N\) & Engine speed \\
\(T_{c m d}\) & Commanded engine torque \\
\(T A P_{c m d}\) & Throttle area percent command \\
\(T P P_{c m d}\) & Throttle position percent command \\
\(W A P_{c m d}\) & Turbocharger wastegate area percent command \\
\(C p s\) & Crankshaft revolutions per power stroke \\
\(P_{s t d}\) & Standard pressure \\
\(T_{s t d}\) & Standard temperature \\
\(R_{a i r}\) & Ideal gas constant for air and burned gas mixture \\
\(V_{d}\) & Displaced volume \\
\(\dot{m}_{a i r, e s t}\) & Estimated engine air mass flow
\end{tabular}

The controller subsystem uses these lookup tables for the air calculations.
- The throttle area percent command lookup table, \(f_{\text {TAPcmd }}\), is a function of commanded load and engine speed
\[
T A P_{c m d}=f_{T A P c m d}\left(L_{c m d}, N\right)
\]
where:
- \(T A P_{\text {cmd }}\) is throttle area percentage command, in percent.
- \(L_{c m d}=L\) is commanded engine load, dimensionless.
- \(N\) is engine speed, in rpm.

- To account for the non-linearity of the throttle position to throttle area, the throttle position percent lookup table linearizes the open-loop air mass flow control.

The throttle position percent command lookup table, \(f_{\text {TPPcmd }}\), is a function of the throttle area percentage command
\[
T P P_{c m d}=f_{T P P_{c m d}}\left(T A P_{c m d}\right)
\]
where:
- \(T P P_{c m d}\) is throttle position percentage command, in percent.
- \(T A P_{\text {cmd }}\) is throttle area percentage command, in percent.

- The wastegate area percent command lookup table, \(f_{\text {WAPcmd }}\), is a function of the commanded engine load and engine speed
```

$W A P_{c m d}=f_{W A P c m d}\left(L_{c m d}, N\right)$

```
where:
- \(W A P_{c m d}\) is wastegate area percentage command, in percent.
- \(L_{c m d}=L\) is commanded engine load, dimensionless.
- \(N\) is engine speed, in rpm.

- The commanded engine load lookup table, \(f_{\text {Lcmd }}\), is a function of the commanded torque and engine speed
\[
L_{c m d}=f_{L c m d}\left(T_{c m d}, N\right)
\]
where:
- \(L_{c m d}=L\) is commanded engine load, dimensionless.
- \(T_{\text {cmd }}\) is commanded torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.

- The intake cam phaser angle command lookup table, \(f_{\text {ICPCMD }}\), is a function of the engine load and engine speed
\[
\varphi_{I C P C M D}=f_{I C P C M D}\left(L_{e s t}, N\right)
\]
where:
- \(\varphi_{\text {ICPCMD }}\) is commanded intake cam phaser angle, in degrees crank advance.
- \(L_{e s t}=L\) is estimated engine load, dimensionless.
- \(N\) is engine speed, in rpm.

- The exhaust cam phaser angle command lookup table, \(f_{E C P C M D}\), is a function of the engine load and engine speed
\[
\varphi_{E C P C M D}=f_{E C P C M D}\left(L_{e s t}, N\right)
\]
where:
- \(\varphi_{E C P C M D}\) is commanded exhaust cam phaser angle, in degrees crank retard.
- \(L_{e s t}=L\) is estimated engine load, dimensionless.
- \(N\) is engine speed, in rpm.


\section*{EGR}

EGR is typically expressed as a percent of total intake port flow.
\[
E G R_{p c t}=100 \frac{\dot{m}_{E G R}}{\dot{m}_{E G R}+\dot{m}_{a i r}}
\]

To calculate the EGR area percent command, the block uses equations and a lookup table.
\begin{tabular}{|l|l}
\hline Equations & \(\dot{m}_{E G R s t d, c m d}=\dot{m}_{E G R, c m d} \frac{P_{s t d}}{P_{\text {in }, E G R}} \sqrt{\frac{T_{\text {in, } E G R}}{T_{s t d}}}\) \\
& \(\dot{m}_{E G R s t d, \max }=f_{E G R s t d, \max }\left(\frac{P_{\text {out }, E G R}}{P_{\text {in }, E G R}}\right)\) \\
& \(\dot{m}_{E G R, c m d}=E G R_{p c t, c m d} \dot{m}_{\text {intk, est }}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Lookup table & \begin{tabular}{l}
The EGR area percent command, EGRap \(_{\text {cmd }}\), lookup table is a function of the normalized mass flow and pressure ratio
\[
E G R a p_{c m d}=f_{E G R a p, c m d}\left(\frac{\dot{m}_{E G R s t d, c m d}}{\dot{m}_{E G R s t d, \max }}, \frac{P_{\text {out }, E G R}}{P_{\text {in, }, G R}}\right)
\] \\
where: \\
- \(E G R a p_{\text {cmd }}\) is commanded EGR area percent, dimensionless. \\
- \(\frac{\dot{m}_{E G R s t d, c m d}}{\dot{m}_{E G R s t d, m a x}}\) is the normalized mass flow, dimensionless. \\
- \(\frac{P_{\text {out }, E G R}}{P_{\text {in, EGR }}}\) is the pressure ratio, dimensionless.
\end{tabular} \\
\hline
\end{tabular}

The equations and table use these variables.
EGRap, EGR valve area percent and EGR valve area percent command, respectively
\(E G R a p_{\text {cmd }}\)
\(E G R_{\text {pct,cmd }} \quad\) EGR percent command
\(\dot{m}_{E G R s t d, c m d}\)
Commanded standard mass flow
\(\dot{m}_{E G R s t d, \max }\) Maximum standard mass flow
\(\dot{m}_{E G R, \text { cmd }}\) Commanded mass flow
\(\dot{m}_{\text {intk, est }} \quad\) Estimated intake port mass flow
\(T_{\text {std }}, P_{\text {std }} \quad\) Standard temperature and pressure
\(T_{\text {in,EGR }} \quad\) Temperature at EGR valve inlet
\(P_{\text {out,EGR, }} \quad\) Pressure at EGR valve inlet and outlet, respectively
\(P_{i n, E G R}\)

\section*{Fuel}

The air-fuel ratio (AFR) impacts three-way-catalyst (TWC) conversion efficiency, torque production, and combustion temperature. The engine controller manages AFR by commanding injector pulse-width from a desired relative AFR. The relative AFR, \(\lambda_{\text {cmd }}\), is the ratio between the commanded AFR and the stoichiometric AFR of the fuel.
\[
\begin{aligned}
& \lambda_{\text {cmd }}=\frac{A F R_{\text {cmd }}}{A F R_{\text {stoich }}} \\
& A F R_{\text {cmd }}=\frac{\dot{m}_{\text {air }, \text { est }}}{\dot{m}_{\text {fuel }, \text { cmd }}}
\end{aligned}
\]

The SI Controller block accounts for the extra fuel delivered to the SI engine during startup. If the engine speed is greater than the startup engine cranking speed, the SI Controller block enriches the optimal AFR, lambda, with an exponentially decaying delta lambda. To initialize the delta lambda, the block uses the engine coolant temperature at startup. The delta lambda exponentially decays to zero based on a time constant that is a function of the engine coolant temperature.

You can configure the block for open-loop and closed-loop AFR control.
\begin{tabular}{|l|l|l|}
\hline To & Use & \begin{tabular}{l} 
Controls > Fuel > \\
Closed-loop feedback \\
Parameter Setting
\end{tabular} \\
\hline - \begin{tabular}{l} 
Assess the dynamic and steady- \\
state accuracy of the controller \\
airflow estimation and fuel delivery.
\end{tabular} & \begin{tabular}{l} 
(default) Open-loop \\
control
\end{tabular} & off \\
\hline - \begin{tabular}{l} 
Hold the average AFR close to \\
stoichiometric AFR to maintain a \\
high TWC conversion efficiency.
\end{tabular} & Closed-loop control & on \\
\hline
\end{tabular}

\section*{Open-Loop Control}

To create an input port for the commanded AFR (lambda), on the Controls > Fuel > Open-loop fuel pane, select Input lambda.

You can manually tune the catalyst for maximum efficiency during open-loop AFR control with or without dither. If you want to implement dither during open-loop control, on the Fuel tab, on the Closed-loop fuel pane, select Dither.

By default, the block is configured to use a lookup table for the commanded AFR.
The commanded lambda, \(\lambda_{c m d}\), lookup table is a function of estimated engine load and measured engine speed
\[
\lambda_{c m d}=f_{\lambda c m d}\left(L_{e s t}, N\right)
\]
where:
- \(\lambda_{\text {cmd }}\) is commanded relative AFR , dimensionless.
- \(L_{\text {est }}=L\) is estimated engine load, dimensionless.
- \(N\) is engine speed, in rpm.


The block calculates the estimated fuel mass flow rate using the commanded lambda, \(\lambda_{\text {cmd }}\), stoichiometric AFR, and estimated air mass flow rate.
\[
\dot{m}_{f u e l, c m d}=\frac{\dot{m}_{\text {air }, \text { est }}}{A F R_{c m d}}=\frac{\dot{m}_{\text {air }, \text { est }}}{\lambda_{c m d} A F R_{\text {stoich }}}
\]

The block assumes that the battery voltage and fuel pressure are at nominal settings where pulse-width correction is not necessary. The commanded fuel injector pulse-width
is proportional to the fuel mass per injection. The fuel mass per injection is calculated from the commanded fuel mass flow rate, engine speed, and the number of cylinders.
\[
P w_{i n j}=\left\{\begin{array}{cc}
\frac{\dot{m}_{f u e l, c m d} C p s\left(\frac{60 s}{m i n}\right)\left(\frac{1000 \mathrm{mg}}{g}\right)\left(\frac{1000 g}{\mathrm{~kg}}\right)}{N S_{i n j} N_{c y l}} & \text { when } \operatorname{Tr} q_{c m d}>0 \\
0 & \text { when } \operatorname{Tr} q_{c m d} \leq 0
\end{array}\right.
\]

\section*{Closed-Loop Control}

TWC converters are most efficient when the exhaust AFR is near the stoichiometric AFR, where the air and fuel burn most completely. Around this ideal point, the AFR is within the catalyst window in which the catalyst is most efficient at converting carbon monoxide, hydrocarbons, and nitrogen oxides to non-harmful exhaust products. Empirical studies show that oscillating the AFR around stoichiometry at an optimized AFR frequency, amplitude, and bias widens the TWC window, increasing catalyst conversion efficiency in the presence of unavoidable disturbances.

To keep production hardware costs down, AFR control systems include inexpensive switching oxygen sensors positioned in the engine exhaust stream upstream and downstream of the catalyst. The oxygen sensors have a narrow range. Essentially, they switch between too lean (i.e., more air is available than is required to burn the available fuel) and too rich (i.e., more air is available than is required to burn the available fuel).

The block implements a period-based method to control the average AFR at a value within the catalyst window for maximum conversion efficiency. Period-based AFR control is independent of the transport delay across the engine from the fuel injection point to the sensor measurement point. For more information about the method, see Developing a Period-Based Air-Fuel Ratio Controller Using a Low-Cost Switching Sensor.

\section*{Spark}

Spark advance is the crank angle before top dead center (BTDC) of the power stroke when the spark is delivered. The spark advance has an impact on engine efficiency, torque, exhaust temperature, knock, and emissions.

The spark advance lookup table is a function of estimated load and engine speed.
\[
S A=f_{S A}\left(L_{e s t}, N\right)
\]
where:
- \(S A\) is spark advance, in crank advance degrees.
- \(L_{\text {est }}=L\) is estimated engine load, dimensionless.
- \(N\) is engine speed, in rpm.


The equations use these variables.
\begin{tabular}{ll}
\(L_{\text {est }}\) & Estimated engine load, based on normalized cylinder air mass \\
\(N\) & Engine speed \\
\(f_{S A}\) & Lookup table for spark advance \\
\(N\) & Spark advance
\end{tabular}

\section*{Idle Speed}

When the commanded torque is below a threshold value, the idle speed controller regulates the engine speed.
\begin{tabular}{|l|l|}
\hline If & Idle Speed Controller \\
\hline\(T r q_{\text {cmd,input }}<\operatorname{Tr} q_{\text {idlecmd,enable }}\) & Enabled \\
\hline \(\operatorname{Tr} q_{\text {idlecmd,enable }} \leq \operatorname{Tr} q_{\text {cmd, input }}\) & Not enabled \\
\hline
\end{tabular}

The idle speed controller uses a discrete PI controller to regulate the target idle speed by commanding a torque.

The PI controller uses this transfer function:
\[
C_{i d l e}(z)=K_{p, \text { idle }}+K_{i, \text { idle }} \frac{t_{s}}{z-1}
\]

The idle speed commanded torque must be less than the maximum commanded torque:
\(0 \leq \operatorname{Tr} q_{\text {idlecomd }} \leq T r q_{\text {idlecmd, } \max }\)
Idle speed control is active under these conditions. If the commanded input torque drops below the threshold for enabling the idle speed controller ( \(\operatorname{Tr} q_{\text {cmd,input }}<\operatorname{Tr} q_{\text {idlecmd,enable }}\) ), the commanded engine torque is given by:
\[
\operatorname{Tr} q_{c m d}=\max \left(\operatorname{Tr} q_{\text {cmd,input }} \operatorname{Tr} q_{\text {idlecmd }}\right) .
\]

The equations use these variables.
\begin{tabular}{ll}
\(\operatorname{Tr} q_{\text {cmd }}\) & Commanded engine torque \\
\(\operatorname{Tr} q_{\text {cmd,input }}\) & Input commanded engine torque \\
\(\operatorname{Tr} q_{\text {idlecmd,enable }}\) & Threshold for enabling idle speed controller \\
\(\operatorname{Tr} q_{\text {idlecmd }}\) & Idle speed controller commanded torque \\
\(\operatorname{Tr} q_{\text {idlecmd,max }}\) & Maximum commanded torque \\
\(N_{\text {idle }}\) & Base idle speed \\
\(K_{p, \text { idle }}\) & Idle speed controller proportional gain \\
\(K_{i, \text { idle }}\) & Idle speed controller integral gain
\end{tabular}

\section*{Speed Limiter}

To prevent over revving the engine, the block implements an engine speed limit controller that limits the engine speed to the value specified by the Rev-limiter speed threshold parameter on the Controls > Idle Speed tab.

If the engine speed, \(N\), exceeds the engine speed limit, \(N_{\text {lim }}\), the block sets the commanded engine torque to 0 .

To smoothly transition the torque command to 0 as the engine speed approaches the speed limit, the block implements a lookup table multiplier. The lookup table multiplies the torque command by a value that ranges from 0 (engine speed exceeds limit) to 1 (engine speed does not exceed the limit).

\section*{Estimator}

The estimator subsystem determines the estimated air mass flow, torque, EGR mass flow, and exhaust temperature based on sensor feedback and calibration parameters.
\begin{tabular}{ll}
\(\dot{m}_{\text {air, est }}\) & Estimated engine air mass flow \\
\(\operatorname{Tr} q_{\text {est }}\) & Estimated engine torque \\
\(T_{\text {exh,est }}\) & Estimated engine exhaust temperature \\
\(\dot{m}_{\text {EGR, est }}\) & Estimated low-pressure EGR mass flow
\end{tabular}

\section*{Air Mass Flow}

To calculate engine air mass flow, configure the SI engine to use either of these air mass flow models.
\begin{tabular}{|l|l|}
\hline Air Mass Flow Model & Description \\
\hline "SI Engine Speed-Density Air & \begin{tabular}{l} 
Uses the speed-density equation to calculate the \\
engine air mass flow, relating the engine air mass \\
flow to the intake manifold pressure and engine \\
speed. Consider using this air mass flow model in \\
engines with fixed valvetrain designs.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Air Mass Flow Model & Description \\
\hline "SI Engine Dual-Independent Cam Phaser Air Mass Flow Model" & \begin{tabular}{l}
To calculate the engine air mass flow, the dualindependent cam phaser model uses: \\
- Empirical calibration parameters developed from engine mapping measurements \\
- Desktop calibration parameters derived from engine computer-aided design (CAD) data \\
In contrast to typical embedded air mass flow calculations based on direct air mass flow measurement with an air mass flow (MAF) sensor, this air mass flow model offers: \\
- Elimination of MAF sensors in dual cam-phased valvetrain applications \\
- Reasonable accuracy with changes in altitude \\
- Semiphysical modeling approach \\
- Bounded behavior \\
- Suitable execution time for electronic control unit (ECU) implementation \\
- Systematic development of a relatively small number of calibration parameters
\end{tabular} \\
\hline
\end{tabular}

To determine the estimated air mass flow, the block uses the intake air mass fraction. The EGR mass fraction at the intake port lags the mass fraction near the EGR valve outlet. To model the lag, the block uses a first order system with a time constant.
\[
y_{\text {intk, } E G R, \text { est }}=\frac{\dot{m}_{E G R, \text { est }}}{\dot{m}_{\text {intk, est }}} \frac{t_{s} z}{\tau_{E G R} z+t_{s}-\tau_{E G R}}
\]

The remainder of the gas is air.
Yintk, air, est \(=1-Y_{\text {intk }}, E G R\), est
The equations use these variables.
\(y_{\text {intk,EGR,est }} \quad\) Estimated intake manifold EGR mass fraction
\begin{tabular}{ll}
\(y_{\text {intk,airest }}\) & Estimated intake manifold air mass fraction \\
\(\dot{m}_{E G R, e s t}\) & Estimated low-pressure EGR mass flow \\
\(\dot{m}_{\text {intk,est }}\) & Estimated intake port mass flow \\
\(\tau_{E G R}\) & EGR time constant
\end{tabular}

\section*{Torque}

To calculate the brake torque, configure the SI engine to use either of these torque models.
\begin{tabular}{|l|l|}
\hline Brake Torque Model & Description \\
\hline "SI Engine Torque Structure & \begin{tabular}{l} 
For the structured brake torque calculation, the SI \\
engine uses tables for the inner torque, friction \\
Model" \\
torque, optimal spark, spark efficiency, and lambda \\
efficiency.
\end{tabular} \\
\hline "SI Engine Simple Torque Model" & \begin{tabular}{l} 
For the simple brake torque calculation, the SI \\
engine block uses a torque lookup table map that is \\
a function of engine speed and load.
\end{tabular} \\
\hline
\end{tabular}

\section*{EGR}

The controller estimates low-pressure mass flow, EGR valve inlet pressure, and EGR valve outlet pressure using an algorithm developed by F. Liu and J. Pfeiffer. The estimator requires measured EGR valve differential pressure, EGR valve area percent, intake air temperature, and EGR valve inlet temperature.

To estimate the EGR valve commands, the block uses:
- Equations
\[
\begin{aligned}
& \dot{m}_{\text {air, std }}=\dot{m}_{\text {air, est }} \frac{P_{\text {std }}}{P_{a m b}} \sqrt{\frac{I A T}{T_{s t d}}} \\
& P_{\text {in, } E G R}=P_{\text {out, }, E G R}+\Delta P_{E G R} \\
& \dot{m}_{E G R, \text { est }}=\dot{m}_{E G R, s t d} \frac{P_{\text {in, } E G R}}{P_{\text {std }}} \sqrt{\frac{T_{\text {std }}}{T_{i n, E G R}}}
\end{aligned}
\]
- Tables
- The EGR valve standard mass flow lookup table is a function of EGR valve area percent and the pressure ratio
\(\dot{m}_{E G R, s t d}=f_{E G R, s t d}\left(E G R a p, \frac{P_{\text {out }, E G R}}{P_{\text {in }, E G R}}\right)\)
where:
- \(\dot{m}_{E G R, s t d}\) is EGR valve standard mass flow, dimensionless.
- EGRap is EGR valve flow area percent, in percent.
- \(\frac{P_{\text {out, EGR }}}{P_{\text {in, EGR }}}\) is the pressure ratio, dimensionless.

- The pressure ratio is a function of the standard mass flow
\(\frac{P_{\text {out }, E G R}}{P_{a m b}}=f_{\text {intksys, } p r}\left(\dot{m}_{\text {air }, s t d}\right)\)
where:
- \(\dot{m}_{\text {air, std }}\) is standard mass flow, in g/s.
- \(\frac{P_{\text {out }, E G R}}{P_{a m b}}\) is pressure ratio, dimensionless.


The equations use these variables.
\begin{tabular}{ll} 
EGRap & EGR valve area percent command \\
IAT & Intake air temperature \\
\(\dot{m}_{\text {air, std }}, \dot{m}_{E G R, s t d}\) & Standard air and EGR valve mass flow, respectively \\
\(\dot{m}_{\text {air, est }}, \dot{m}_{E G R, \text { est }}\) & Estimated air and EGR valve mass flow, respectively \\
\(T_{\text {std }}, P_{\text {std }}\) & Standard temperature and pressure \\
\(T_{a m b}, P_{\text {amb }}\) & Ambient temperature and pressure \\
\(\Delta P_{\text {EGR }}\) & Pressure difference at EGR valve inlet and outlet \\
\(T_{\text {in, EGR }}, T_{\text {out,EGR }}\) & Temperature at EGR valve inlet and outlet, respectively \\
\(P_{\text {in,EGR }}, P_{\text {out,EGR }}\) & Pressure at EGR valve inlet and outlet, respectively
\end{tabular}

\section*{Exhaust Temperature}

The exhaust temperature lookup table, \(f_{T e x h}\), is a function of engine load and engine speed
\[
T_{e x h}=f_{\text {Texh }}(L, N)
\]
where:
- \(T_{e x h}\) is engine exhaust temperature, in K.
- \(L\) is normalized cylinder air mass or engine load, dimensionless.
- \(N\) is engine speed, in rpm.


\section*{Ports}

\section*{Input}

\section*{TrqCmd - Commanded engine torque scalar}

Commanded engine torque, \(\operatorname{Tr} q_{\text {cmd,input }}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{EngSpd - Measured engine speed}
scalar
Measured engine speed, \(N\), in rpm.

\section*{AmbPrs - Measured absolute ambient pressure} scalar

Measured ambient pressure, \(P_{A m b}\), in Pa.
Map - Measured intake manifold absolute pressure scalar

Measured intake manifold absolute pressureMAP, in Pa.

\section*{Mat - Measured intake manifold absolute temperature}

\section*{scalar}

Measured intake manifold absolute temperature, MAT, in K.

\section*{IntkCamPhase - Intake cam phaser angle scalar}

Intake cam phaser angle, \(\varphi_{I C P}\), in degCrkAdv, or degrees crank advance.

\section*{ExhCamPhase - Exhaust cam phaser angle scalar}

Exhaust cam phaser angle, \(\varphi_{E C P}\), in degCrkRet, or degrees crank retard.

\section*{Iat - Intake air temperature scalar}

Intake air temperature, IAT, in K.

\section*{Ect - Engine cooling temperature scalar}

Engine cooling temperature, \(T_{\text {coolant }}\), in K.
EgrVlvInTemp - EGR valve inlet temperature scalar

EGR valve inlet temperature, \(T_{i n, E G R}\), in K .
EgrVlvAreaPct - EGR valve area percent scalar

EGR valve area percent, EGRap, in \%.
EgrVlvDeltaPrs - EGR valve delta pressure scalar

EGR valve delta pressure, \(\Delta P_{\text {EGR }}\), in Pa .

\section*{02VoltSen - Oxygen sensor voltage \\ scalar}

Oxygen sensor voltage for closed-loop air-fuel-ratio (lambda) control, in mV.
To configure the block to use closed-loop air-fuel-ratio control, on the Fuel tab, on the Closed-loop fuel pane, select Closed-loop feedback.

\section*{LambdaCmd - Commanded AFR, lambda}
scalar
Commanded air-fuel-ratio (lambda), \(\lambda_{\text {cmd }}\), dimensionless.

\section*{Dependencies}

To create this port, on the Fuel tab, on the Open-loop fuel pane, select Input lambda.

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|l|}
\hline Signal & Description & Variable & Units \\
\hline TrqCmd & Engine torque & \(\operatorname{Trq}_{c m d}\) & \(\mathrm{~N} \cdot \mathrm{~m}\) \\
\hline LdCmd & Commanded load & \(L_{c m d}\) & \(\mathrm{~N} / \mathrm{A}\) \\
\hline ThrPosCmd & Throttle area percent command & \(T A P_{c m d}\) & \(\%\) \\
\hline WgAreaPctCmd & Wastegate area percent command & \(W A P_{c m d}\) & \(\%\) \\
\hline Inj Pw & Fuel injector pulse-width & \(P w_{\text {inj }}\) & ms \\
\hline SpkAdv & Spark advance & \(S A\) & degBTDC \\
\hline IntkCamPhaseCmd & Intake cam phaser angle command & \(\varphi_{\text {ICPCMD }}\) & degCrkAdv \\
\hline ExhCamPhaseCmd & \begin{tabular}{l} 
Exhaust cam phaser angle \\
command
\end{tabular} & \(\varphi_{E C P C M D}\) & degCrkRet \\
\hline EgrVlvAreaPctCmd & \begin{tabular}{l} 
Exhaust cam phaser angle \\
command
\end{tabular} & \(E_{\text {ERap }}\) cmd & \(\%\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Signal & Description & Variable & Units \\
\hline FuelMassFlwCmd & EGR valve area percent command & \(\dot{m}_{\text {fuel, cmd }}\) & \(\mathrm{kg} / \mathrm{s}\) \\
\hline AfrCmd & Commanded air-fuel ratio & \(A F R_{\text {cmd }}\) & \(\mathrm{N} / \mathrm{A}\) \\
\hline EstEngTrq & Estimated engine torque & \(\operatorname{Trq}_{\text {est }}\) & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline EstNrmlzdAirCharg & \begin{tabular}{l} 
Estimated normalized cylinder air \\
mass
\end{tabular} & \(\mathrm{N} / \mathrm{A}\) & \(\mathrm{N} / \mathrm{A}\) \\
\hline \begin{tabular}{l} 
EstIntkPortMassFl \\
w
\end{tabular} & \begin{tabular}{l} 
Estimated intake port air mass flow \\
rate
\end{tabular} & \(\dot{m}_{\text {intk,est }}\) & \(\mathrm{kg} / \mathrm{s}\) \\
\hline EstIntkAirMassFlw & Estimated air mass flow rate & \(\dot{m}_{\text {air, est }}\) & \(\mathrm{kg} / \mathrm{s}\) \\
\hline EstEgrMassFlw & \begin{tabular}{l} 
Estimated low-pressure EGR mass \\
flow rate
\end{tabular} & \(\dot{m}_{\text {EGR,est }}\) & \(\mathrm{kg} / \mathrm{s}\) \\
\hline EstExhManGasTemp & \begin{tabular}{l} 
Estimated exhaust manifold gas \\
temperature
\end{tabular} & \(T_{\text {exh,est }}\) & K \\
\hline EngRevLimAct & \begin{tabular}{l} 
Flag that indicates if rev-limiter \\
control is active
\end{tabular} & \(\mathrm{N} / \mathrm{A}\) & \(\mathrm{N} / \mathrm{A}\) \\
\hline ClsdLpFuelMult & \begin{tabular}{l} 
Fuel injector pulse-width multiplier \\
for closed-loop AFR control
\end{tabular} & Pwinj_mult & \(\mathrm{N} / \mathrm{A}\) \\
\hline
\end{tabular}

\section*{ThrPosPctCmd - Throttle area percent command \\ scalar}

Throttle area percent command, \(T A P_{\text {cmd }}\).

\section*{WgAreaPctCmd - Wastegate area percent command}

\section*{scalar}

Wastegate area percent command, \(W A P_{\text {cmd }}\).

\section*{InjPw - Fuel injector pulse-width}
scalar
Fuel injector pulse-width, \(P w_{i n j}\), in ms .

\section*{SpkAdv - Spark advance \\ scalar}

Spark advance, \(S A\), in degrees crank angle before top dead center (degBTDC).

\section*{IntkCamPhaseCmd - Intake cam phaser angle command scalar}

Intake cam phaser angle command, \(\varphi_{\text {ICPCMD }}\).

\section*{ExhCamPhaseCmd - Exhaust cam phaser angle command scalar}

Exhaust cam phaser angle command, \(\varphi_{E C P C M D}\).

\section*{EgrVlvAreaPctCmd - EGR valve area percent command} scalar

EGR valve area percent command, \(E^{\prime} R_{\text {ap }}^{\text {cmd }}\), in \%.

\section*{Parameters}

\section*{Configuration}

Air mass flow estimation model - Select air mass flow estimation model Dual Variable Cam Phasing (default)|Simple Speed-Density

To calculate engine air mass flow, configure the SI engine to use either of these air mass flow models.
\begin{tabular}{|l|l|}
\hline Air Mass Flow Model & Description \\
\hline "SI Engine Speed-Density Air & \begin{tabular}{l} 
Uses the speed-density equation to calculate the \\
engine air mass flow, relating the engine air mass \\
Mass Flow Model"
\end{tabular} \\
\begin{tabular}{l} 
flow to the intake manifold pressure and engine \\
speed. Consider using this air mass flow model in \\
engines with fixed valvetrain designs.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Air Mass Flow Model & Description \\
\hline "SI Engine Dual-Independent Cam Phaser Air Mass Flow Model" & \begin{tabular}{l}
To calculate the engine air mass flow, the dualindependent cam phaser model uses: \\
- Empirical calibration parameters developed from engine mapping measurements \\
- Desktop calibration parameters derived from engine computer-aided design (CAD) data \\
In contrast to typical embedded air mass flow calculations based on direct air mass flow measurement with an air mass flow (MAF) sensor, this air mass flow model offers: \\
- Elimination of MAF sensors in dual cam-phased valvetrain applications \\
- Reasonable accuracy with changes in altitude \\
- Semiphysical modeling approach \\
- Bounded behavior \\
- Suitable execution time for electronic control unit (ECU) implementation \\
- Systematic development of a relatively small number of calibration parameters
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

The table summarizes the parameter dependencies.
\begin{tabular}{|c|c|}
\hline Air Mass Flow Estimation Model & Enables Parameters on Estimation > Air Tab \\
\hline Dual Variable Cam Phasing & \begin{tabular}{l}
Cylinder volume at intake valve close table, f_vivc \\
Cylinder volume intake cam phase breakpoints, f_vivc_icp_bpt \\
Cylinder trapped mass correction factor, f_tm_corr \\
Normalized density breakpoints, f_tm_corr_nd_bpt \\
Engine speed breakpoints, f_tm_corr_n_bpt \\
Air mass flow, f_mdot_air \\
Exhaust cam phase breakpoints, f_mdot_air_ecp_bpt \\
Trapped mass flow breakpoints, f_mdot_trpd_bpt \\
Air mass flow correction factor, f_mdot_air_corr \\
Engine load breakpoints for air mass flow correction, f_mdot_air_corr_ld_bpt \\
Engine speed breakpoints for air mass flow correction, f_mdot_air_n_bpt
\end{tabular} \\
\hline Simple SpeedDensity & \begin{tabular}{l}
Speed-density volumetric efficiency, f_nv \\
Speed-density intake manifold pressure breakpoints, f_nv_prs_bpt \\
Speed-density engine speed breakpoints, f_nv_n_bpt
\end{tabular} \\
\hline
\end{tabular}

\section*{Torque estimation model - Select torque estimation model \\ Torque Structure (default)|Simple Torque Lookup}

To calculate the brake torque, configure the SI engine to use either of these torque models.
\begin{tabular}{|l|l|}
\hline Brake Torque Model & Description \\
\hline "SI Engine Torque Structure & \begin{tabular}{l} 
For the structured brake torque calculation, the SI \\
engine uses tables for the inner torque, friction \\
torque, optimal spark, spark efficiency, and lambda \\
efficiency.
\end{tabular} \\
\hline "SI Engine Simple Torque Model" & \begin{tabular}{l} 
For the simple brake torque calculation, the SI \\
engine block uses a torque lookup table map that is \\
a function of engine speed and load.
\end{tabular} \\
\hline
\end{tabular}
Dependencies

The table summarizes the parameter dependencies.
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Torque Estimation \\
Model
\end{tabular} & Enables Parameters on Estimation > Torque Tab \\
\hline Torque Structure & Inner torque table, f_tq_inr \\
& Friction torque table, f_tq_fric \\
& \begin{tabular}{l} 
Engine temperature modifier on friction torque, \\
f_fric_temp_mod \\
Engine temperature modifier breakpoints, \\
f_fric_temp_bpt \\
Pumping torque table, f_tq_pump \\
Optimal spark table, f_sa_opt \\
Inner torque load breakpoints, f_tq_inr_l_bpt \\
Inner torque speed breakpoints, f_tq_inr_n_bpt \\
Spark efficiency table, f_m_sa \\
Spark retard from optimal, f_del_sa_bpt \\
\\
\\
\\
\\
Lambda efficiency, f_m_lam \\
Lambda breakpoints, f_m_lam_bpt \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Torque Estimation \\
Model
\end{tabular} & Enables Parameters on Estimation > Torque Tab \\
\hline \begin{tabular}{ll} 
Simple Torque \\
Lookup
\end{tabular} & Torque table, f_tq_nl \\
& Torque table load breakpoints, f_tq_nl_l_bpt \\
& Torque table speed breakpoints, f_tq_nl_n_bpt \\
\hline
\end{tabular}

\section*{Controls}

Air
Engine commanded load table, f_lcmd - Lookup table array

The commanded engine load lookup table, \(f_{\text {Lcmd }}\), is a function of the commanded torque and engine speed
\[
L_{c m d}=f_{L c m d}\left(T_{c m d}, N\right)
\]
where:
- \(L_{c m d}=L\) is commanded engine load, dimensionless.
- \(T_{c m d}\) is commanded torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.


\footnotetext{
Torque command breakpoints, f_lcmd_tq_bpt - Breakpoints array
}

Torque command breakpoints, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Speed breakpoints, f_lcmd_n_bpt - Breakpoints array}

Speed breakpoints, in rpm.
Throttle area percent, f_tap - Lookup table, \% array

The throttle area percent command lookup table, \(f_{\text {TAPcmd }}\), is a function of commanded load and engine speed
\[
T A P_{c m d}=f_{T A P c m d}\left(L_{c m d}, N\right)
\]
where:
- \(T A P_{c m d}\) is throttle area percentage command, in percent.
- \(L_{c m d}=L\) is commanded engine load, dimensionless.
- \(N\) is engine speed, in rpm.


Throttle area percent load breakpoints, f_tap_ld_bpt - Breakpoints array

Throttle area percent load breakpoints, dimensionless.
Throttle area percent speed breakpoints, f_tap_n_bpt - Breakpoints array

Throttle area percent speed breakpoints, in rpm.

\section*{Throttle area percent to position percent table, f_tpp - Lookup table array}

The throttle position percent command lookup table, \(f_{\text {TPPcmd }}\), is a function of the throttle area percentage command
\[
T P P_{c m d}=f_{T P P_{c m d}}\left(T A P_{c m d}\right)
\]
where:
- \(T P P_{\text {cmd }}\) is throttle position percentage command, in percent.
- \(T A P_{c m d}\) is throttle area percentage command, in percent.


\section*{Throttle area percent to position percent area breakpoints, f_tpp_tap_bpt - Breakpoints \\ array}

Throttle area percent to position percent area breakpoints, dimensionless.

\section*{Wastegate area percent, f_wap - Lookup table, \%}
array
The wastegate area percent command lookup table, \(f_{\text {WAPcmd }}\), is a function of the commanded engine load and engine speed
\[
W A P_{c m d}=f_{W A P c m d}\left(L_{c m d}, N\right)
\]
where:
- \(W A P_{c m d}\) is wastegate area percentage command, in percent.
- \(L_{c m d}=L\) is commanded engine load, dimensionless.
- \(N\) is engine speed, in rpm.


\section*{Load breakpoints, f_wap_ld_bpt - Breakpoints array}

Load breakpoints, dimensionless.

\section*{Speed breakpoints, f_wap_n_bpt - Breakpoints, rpm}
array
Speed breakpoints, in rpm.

\section*{Intake cam phaser angle, f_icp - Lookup table}
array
The intake cam phaser angle command lookup table, \(f_{\text {ICPCMD }}\), is a function of the engine load and engine speed
\[
\varphi_{I C P C M D}=f_{I C P C M D}\left(L_{e s t}, N\right)
\]
where:
- \(\varphi_{\text {ICPCMD }}\) is commanded intake cam phaser angle, in degrees crank advance.
- \(L_{\text {est }}=L\) is estimated engine load, dimensionless.
- \(N\) is engine speed, in rpm.


Exhaust cam phaser angle, f_ecp - Lookup table
array
The exhaust cam phaser angle command lookup table, \(f_{E C P C M D}\), is a function of the engine load and engine speed
\[
\varphi_{E C P C M D}=f_{E C P C M D}\left(L_{e s t}, N\right)
\]
where:
- \(\varphi_{E C P C M D}\) is commanded exhaust cam phaser angle, in degrees crank retard.
- \(L_{\text {est }}=L\) is estimated engine load, dimensionless.
- \(N\) is engine speed, in rpm.


\section*{Load breakpoints, f_cp_ld_bpt - Breakpoints array}

Load breakpoints, dimensionless.
```

Speed breakpoints, f_cp_n_bpt - Breakpoints
array

```

Speed breakpoints, in rpm.

\section*{Commanded EGR percent, f_egrpct_cmd - Lookup table array}

The EGR percent command, \(E G R_{p c t, c m d}\), lookup table is a function of estimated engine load and engine speed
\[
E G R_{p c t, c m d}=f_{E G R p c t, c m d}\left(L_{e s t}, N\right)
\]
where:
- \(E G R_{p c t, c m d}\) is commanded EGR percent, dimensionless.
- \(L_{\text {est }}=L\) is estimated engine load, dimensionless.
- \(N\) is engine speed, in rpm.


\section*{Load breakpoints, f_egrpct_ld_bpt - Breakpoints vector}

Engine load breakpoints, \(L\), dimensionless.

\author{
Speed breakpoints, f_egrpct_n_bpt - Breakpoints vector
}

Engine speed breakpoints, \(N\), in rpm.

\section*{EGR valve area percent, f_egr_areapct_cmd - Lookup table array}

The EGR area percent command, \(E G R a p_{\text {cmd }}\), lookup table is a function of the normalized mass flow and pressure ratio
\[
E G R a p_{c m d}=f_{E G R a p, c m d}\left(\frac{\dot{m}_{E G R s t d, c m d}}{\dot{m}_{E G R s t d, \max }}, \frac{P_{\text {out }, E G R}}{P_{\text {in, }, G R}}\right)
\]
where:
- EGRap \({ }_{c m d}\) is commanded EGR area percent, dimensionless.
- \(\frac{\dot{m}_{E G R s t d, c m d}}{\dot{m}_{E G R s t d, m a x}}\) is the normalized mass flow, dimensionless.
- \(\frac{P_{\text {out }, E G R}}{P_{\text {in, EGR }}}\) is the pressure ratio, dimensionless.


Open EGR valve standard flow, f_egr_max_stdflow - Breakpoints vector

Maximum standard EGR valve mass flow breakpoints, \(\dot{m}_{E G R s t d, ~ m a x, ~ i n ~}^{N} \cdot \mathrm{~m}\).

\section*{Normalized EGR valve standard flow breakpoints, f_egr_areapct_nrmlzdflow_bpt - Breakpoints vector}

Normalized mass flow breakpoints, \(\frac{\dot{m}_{E G R s t d, c m d}}{\dot{m}_{E G R s t d, m a x}}\), dimensionless.

\section*{EGR valve pressure ratio breakpoints, f_egr_areapct_pr_bpt Breakpoints}

\section*{vector}

Pressure ratio breakpoints, \(\frac{P_{\text {out }, E G R}}{P_{\text {in, EGR }}}\), dimensionless.

\section*{Fuel}

\section*{Injector slope, Sinj - Slope scalar}

Fuel injector slope, \(S_{i n j}\), in \(\mathrm{mg} / \mathrm{ms}\).

\section*{Stoichiometric air-fuel ratio, afr_stoich - Ratio scalar}

Stoichiometric air-fuel ratio, \(A F R_{\text {stoich }}\).
Relative air-fuel ratio lambda, f_lamcmd - Air-fuel-ratio (AFR) lookup table
array
The commanded lambda, \(\lambda_{c m d}\), lookup table is a function of estimated engine load and measured engine speed
\[
\lambda_{c m d}=f_{\lambda c m d}\left(L_{e s t}, N\right)
\]
where:
- \(\lambda_{\text {cmd }}\) is commanded relative AFR, dimensionless.
- \(L_{\text {est }}=L\) is estimated engine load, dimensionless.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To create this parameter, on the Fuel tab, on the Open-loop fuel pane, clear Input lambda.

\section*{Load breakpoints, f_lamcmd_ld_bpt - Breakpoints \\ vector}

Load breakpoints, dimensionless.
Dependencies
To create this parameter, on the Fuel tab, on the Open-loop fuel pane, clear Input lambda.
```

Speed breakpoints, f_lamcmd_n_bpt - Breakpoints
vector

```

Speed breakpoints, in rpm.

\section*{Dependencies}

To create this parameter, on the Fuel tab, on the Open-loop fuel pane, clear Input lambda.

\section*{Engine startup lambda enrichment delta vs coolant temperature, f_startup_lambda_delta - Lookup table vector}

Engine startup lambda enrichment delta as a function of coolant temperature, dimensionless.

The SI Controller block uses this parameter to account for the extra fuel delivered to the spark-ignition (SI) engine during startup. If the engine speed is greater than the Engine cranking speed parameter, the SI Controller block enriches the optimal relative air-fuel ratio (lambda) with an exponentially decaying delta lambda. To initialize the delta lambda, the block uses the Engine startup lambda enrichment delta vs coolant temperature parameter to create a lambda enrichment table that is a function of the engine coolant temperature. The delta lambda exponentially decays to zero based on a time constant specified with the Engine startup lambda enrichment delta time constant vs coolant temperature parameter.
Dependencies
To create this parameter, on the Fuel tab, on the Open-loop fuel pane, clear Input lambda.
```

Engine startup lambda enrichment delta time constant vs coolant
temperature, f_startup_lambda_delta_timecnst - Lambda time constant
vector

```

Engine startup lambda enrichment delta time constant versus coolant temperature, in s.
The SI Controller block uses this parameter to account for the extra fuel delivered to the spark-ignition (SI) engine during startup. If the engine speed is greater than the Engine cranking speed parameter, the SI Controller block enriches the optimal relative air-fuel ratio (lambda) with an exponentially decaying delta lambda. To initialize the delta lambda, the block uses the Engine startup lambda enrichment delta vs coolant temperature parameter to create a lambda enrichment table that is a function of the engine coolant temperature. The delta lambda exponentially decays to zero based on a time constant specified with the Engine startup lambda enrichment delta time constant vs coolant temperature parameter.

\section*{Dependencies}

To create this parameter, on the Fuel tab, on the Open-loop fuel pane, clear Input lambda.

Engine startup coolant temperature breakpoints, f_startup_ect_bpt Breakpoints
vector
Engine startup coolant temperature breakpoints, in C.
The SI Controller block uses this parameter to account for the extra fuel delivered to the spark-ignition (SI) engine during startup. If the engine speed is greater than the Engine
cranking speed parameter, the SI Controller block enriches the optimal relative air-fuel ratio (lambda) with an exponentially decaying delta lambda. To initialize the delta lambda, the block uses the Engine startup lambda enrichment delta vs coolant temperature parameter to create a lambda enrichment table that is a function of the engine coolant temperature. The delta lambda exponentially decays to zero based on a time constant specified with the Engine startup lambda enrichment delta time constant vs coolant temperature parameter.

\section*{Dependencies}

To create this parameter, on the Fuel tab, on the Open-loop fuel pane, clear Input lambda.

\section*{Closed-loop feedback - Minimize commanded AFR error off (default) | on}

Select option to minimize the commanded air-fuel-ratio (lambda), \(\lambda_{\text {cmd }}\) error.

\section*{Dependencies}

Selecting this parameter enables these parameters:
- Closed-loop fuel proportional gain, ClsdLpFuelPGain
- Closed-loop fuel integral gain, ClsdLpFueliGain
- Closed-loop fuel integrator limit, ClsdLpFuelIntgLmt
- Lambda dither amplitude, LambdaDitherAmp
- Lambda dither frequency, LambdaDitherFrq
- Oxygen sensor stoichiometric reset voltage, O2ResetStoichVoltSen
- Oxygen sensor minimum voltage reset, O2ResetMinVoltSen
- Oxygen sensor maximum voltage reset, O2ResetMaxVoltSen
- Oxygen sensor voltage learn update period, O2LearnUpdatePerSen
- Oxygen sensor voltage amplitude minimum, O2AmpMinVoltSen
- Oxygen sensor ready voltage, O2ReadyVoltSen
- Oxygen sensor not ready voltage, O2NotReadyVoltSen

\section*{Dither - Model catalytic conversion efficiency}
off (default) | on

Configure the block to model dither. For open-loop analysis, select this option to tune for maximum catalytic conversion efficiency.

\section*{Dependencies}

By default, selecting Closed-loop feedback configures the block to model dither.
To enable this parameter for open-loop air-fuel-ratio (lambda) commands, clear Closedloop feedback.

Selecting this parameter enables these parameters:
- Lambda dither amplitude, LambdaDitherAmp
- Lambda dither frequency, LambdaDitherFrq

\section*{Closed-loop fuel proportional gain, ClsdLpFuelPGain - Proportional gain scalar}

Closed-loop fuel proportional gain, dimensionless.

\section*{Dependencies}

To enable this parameter, on the Fuel tab, on the Closed-loop fuel pane, select Closedloop feedback.

Closed-loop fuel integral gain, ClsdLpFuelIGain - Integral gain scalar

Closed-loop fuel integral gain, dimensionless.

\section*{Dependencies}

To enable this parameter, on the Fuel tab, on the Closed-loop fuel pane, select Closedloop feedback.

\section*{Closed-loop fuel integrator limit, ClsdLpFuelIntgLmt - Integrator limit scalar}

Closed-loop fuel integrator limit, dimensionless.

\section*{Dependencies}

To enable this parameter, on the Fuel tab, on the Closed-loop fuel pane, select Closedloop feedback.

\section*{Lambda dither amplitude, LambdaDitherAmp - Amplitude scalar}

Lambda dither amplitude, dimensionless.

\section*{Dependencies}

To enable this parameter, on the Fuel tab, on the Closed-loop fuel pane, select either Closed-loop feedback or Dither.

Lambda dither frequency, LambdaDitherFrq - Frequency scalar

Lambda dither frequency, in Hz .

\section*{Dependencies}

To enable this parameter, on the Fuel tab, on the Closed-loop fuel pane, select either Closed-loop feedback or Dither.

Oxygen sensor stoichiometric reset voltage, O2ResetStoichVoltSen -Closed-loop AFR control
scalar
Oxygen sensor stoichiometric reset voltage, O2ResetStoichVoltSen, in mV.

\section*{Dependencies}

To enable this parameter, on the Fuel tab, on the Closed-loop fuel pane, select Closedloop feedback.

Oxygen sensor minimum voltage reset, O2ResetMinVoltSen - Closed-loop AFR control
scalar
Oxygen sensor minimum voltage reset, O2ResetMinVoltSen, in mV.

\section*{Dependencies}

To enable this parameter, on the Fuel tab, on the Closed-loop fuel pane, select Closedloop feedback.

Oxygen sensor maximum voltage reset, 02ResetMaxVoltSen - Closed-loop AFR control
scalar

Oxygen sensor maximum voltage reset, O2ResetMaxVoltSen, in mV.

\section*{Dependencies}

To enable this parameter, on the Fuel tab, on the Closed-loop fuel pane, select Closedloop feedback.

Oxygen sensor voltage learn update period, 02LearnUpdatePerSen -Closed-loop AFR control
scalar
Oxygen sensor voltage learn update period, O2LearnUpdatePerSen, in mV.

\section*{Dependencies}

To enable this parameter, on the Fuel tab, on the Closed-loop fuel pane, select Closedloop feedback.

Oxygen sensor voltage amplitude minimum, 02AmpMinVoltSen - Closed-loop AFR control

Oxygen sensor voltage amplitude minimum, O2AmpMinVoltSen, in mV.

\section*{Dependencies}

To enable this parameter, on the Fuel tab, on the Closed-loop fuel pane, select Closedloop feedback.
```

Oxygen sensor ready voltage, O2ReadyVoltSen - Closed-loop AFR control
scalar

```

Oxygen sensor ready voltage, O2ReadyVoltSen, in mV.

\section*{Dependencies}

To enable this parameter, on the Fuel tab, on the Closed-loop fuel pane, select Closedloop feedback.
```

Oxygen sensor not ready voltage, 02NotReadyVoltSen - Closed-loop AFR
control
scalar

```

Oxygen sensor not ready voltage, O2NotReadyVoltSen, in mV.

\section*{Dependencies}

To enable this parameter, on the Fuel tab, on the Closed-loop fuel pane, select Closedloop feedback.

\section*{Spark}
```

Spark advance table, f_sa - Lookup table
array

```

The spark advance lookup table is a function of estimated load and engine speed.
\[
S A=f_{S A}\left(L_{e s t}, N\right)
\]
where:
- \(S A\) is spark advance, in crank advance degrees.
- \(L_{\text {est }}=L\) is estimated engine load, dimensionless.
- \(N\) is engine speed, in rpm.

```

Load breakpoints, f_sa_ld_bpt - Breakpoints
array

```

Load breakpoints, dimensionless.
```

Speed breakpoints, f_sa_n_bpt - Breakpoints
array

```

Speed breakpoints, in rpm.

\section*{Idle Speed}

\section*{Target idle speed, N_idle - Speed scalar}

Target idle speed, \(N_{\text {idle }}\), in rpm.

\section*{Enable torque command limit, Trq_idlecmd_enable - Torque scalar}

Torque to enable the idle speed controller, \(\operatorname{Tr}_{\text {idlecmd,enable }}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Maximum torque command, Trq_idlecmd_max - Torque scalar}


\section*{Proportional gain, Kp_idle - PI Controller scalar}

Proportional gain for idle speed control, \(K_{p, i d l e}\), in \(\mathrm{N} \cdot \mathrm{m} / \mathrm{rpm}\).

\section*{Integral gain, Ki_idle - PI Controller scalar}

Integral gain for idle speed control, \(K_{i, i d l e}\), in \(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rpm} \cdot \mathrm{s})\).

\section*{Rev-limiter speed threshold - Engine speed limit scalar}

Engine speed limit, \(N_{\text {lim }}\), in rpm.
If the engine speed, \(N\), exceeds the engine speed limit, \(N_{\text {lim }}\), the block sets the commanded engine torque to 0 .

To smoothly transition the torque command to 0 as the engine speed approaches the speed limit, the block implements a lookup table multiplier. The lookup table multiplies the torque command by a value that ranges from 0 (engine speed exceeds limit) to 1 (engine speed does not exceed the limit).

\section*{Estimation}

\section*{Air}

Number of cylinders, NCyl - Engine cylinders
scalar
Number of engine cylinders, \(N_{\text {cyl }}\).

\section*{Crank revolutions per power stroke, Cps - Revolutions per stroke} scalar

Crankshaft revolutions per power stroke, \(C p s\), in rev/stroke.
```

Total displaced volume, Vd - Volume
scalar

```

Displaced volume, \(V_{d}\), in m^3.
Ideal gas constant air, Rair - Constant scalar

Ideal gas constant, \(R_{\text {air }}\), in J/(kg•K).
Air standard pressure, Pstd - Pressure

\section*{scalar}

Standard air pressure, \(P_{s t d}\), in Pa.
Air standard temperature, Tstd - Temperature
scalar
Standard air temperature, \(T_{s t d}\), in K.
```

Speed-density volumetric efficiency, f_nv - Lookup table
array

```

The engine volumetric efficiency lookup table, \(f_{\eta_{\nu^{\prime}}}\) is a function of intake manifold absolute pressure and engine speed
\[
\eta_{\nu}=f_{\eta_{v}}(M A P, N)
\]
where:
- \(\eta_{v}\) is engine volumetric efficiency, dimensionless.
- MAP is intake manifold absolute pressure, in KPa.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for the Air mass flow estimation model parameter, select Simple Speed-Density.

\section*{Speed-density intake manifold pressure breakpoints, f_nv_prs_bpt Breakpoints}
array
Intake manifold pressure breakpoints for speed-density volumetric efficiency lookup table, in KPa.

\section*{Dependencies}

To enable this parameter, for the Air mass flow estimation model parameter, select Simple Speed-Density.
```

Speed-density engine speed breakpoints, f_nv_n_bpt - Breakpoints
array

```

Engine speed breakpoints for speed-density volumetric efficiency lookup table, in rpm.

\section*{Dependencies}

To enable this parameter, for the Air mass flow estimation model parameter, select Simple Speed-Density.

Cylinder volume at intake valve close table, f_vivc - 2-D lookup table array

The cylinder volume at intake valve close table (IVC), \(f_{V i v c}\) is a function of the intake cam phaser angle
\[
V_{I V C}=f_{V i v c}\left(\varphi_{I C P}\right)
\]
where:
- \(V_{\text {IVC }}\) is cylinder volume at IVC, in L .
- \(\varphi_{I C P}\) is intake cam phaser angle, in crank advance degrees.


\section*{Dependencies}

To enable this parameter, for the Air mass flow estimation model parameter, select Dual Variable Cam Phasing.

\section*{Engine speed breakpoints, f_tm_corr_n_bpt - Breakpoints array}

Engine speed breakpoints, in rpm.

\section*{Dependencies}

To enable this parameter, for the Air mass flow estimation model parameter, select Dual Variable Cam Phasing.

Cylinder volume intake cam phase breakpoints, f_vivc_icp_bpt Breakpoints
array
Cylinder volume at intake valve close table breakpoints.

\section*{Dependencies}

To enable this parameter, for the Air mass flow estimation model parameter, select Dual Variable Cam Phasing.

Cylinder trapped mass correction factor, f_tm_corr - Lookup table array

The trapped mass correction factor table, \(f_{T M c o r r}\), is a function of the normalized density and engine speed
\[
T M_{\text {corr }}=f_{\text {TMcorr }}\left(\rho_{\text {norm }}, \quad N\right)
\]
where:
- \(T M_{\text {corr, }}\), is trapped mass correction multiplier, dimensionless.
- \(\rho_{\text {norm }}\) is normalized density, dimensionless.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for the Air mass flow estimation model parameter, select Dual Variable Cam Phasing.

\section*{Normalized density breakpoints, f_tm_corr_nd_bpt - Breakpoints} array

Normalized density breakpoints.

\section*{Dependencies}

To enable this parameter, for the Air mass flow estimation model parameter, select Dual Variable Cam Phasing.

Intake mass flow, f_mdot_intk - Lookup table array

The phaser intake mass flow model lookup table is a function of exhaust cam phaser angles and trapped air mass flow
\[
\dot{m}_{\text {intkideal }}=f_{\text {intkideal }}\left(\varphi_{E C P}, T M_{\text {flow }}\right)
\]
where:
- \(\dot{m}_{\text {intkideal }}\) is engine intake port mass flow at arbitrary cam phaser angles, in \(\mathrm{g} / \mathrm{s}\).
- \(\varphi_{E C P}\) is exhaust cam phaser angle, in degrees crank retard.
- \(T M_{\text {flow }}\) is flow rate equivalent to corrected trapped mass at the current engine speed, in \(\mathrm{g} / \mathrm{s}\).


\section*{Dependencies}

To enable this parameter, for the Air mass flow estimation model parameter, select Dual Variable Cam Phasing.

Exhaust cam phase breakpoints, f_mdot_air_ecp_bpt - Breakpoints array

Exhaust cam phaser breakpoints for air mass flow lookup table.

\section*{Dependencies}

To enable this parameter, for the Air mass flow estimation model parameter, select Dual Variable Cam Phasing.
```

Trapped mass flow breakpoints, f_mdot_trpd_bpt - Breakpoints
array

```

Trapped mass flow breakpoints for air mass flow lookup table.

\section*{Dependencies}

To enable this parameter, for the Air mass flow estimation model parameter, select Dual Variable Cam Phasing.

\section*{Air mass flow correction factor, f_mdot_air_corr - Lookup table array}

The intake air mass flow correction lookup table, \(f_{\text {aircorr }}\), is a function of ideal load and engine speed
\[
\dot{m}_{\text {air }}=\dot{m}_{\text {intkideal }} f_{\text {aircorr }}\left(L_{\text {ideal }}, N\right)
\]
where:
- \(L_{i d e a l}\) is engine load (normalized cylinder air mass) at arbitrary cam phaser angles, uncorrected for final steady-state cam phaser angles, dimensionless.
- \(N\) is engine speed, in rpm.
- \(\dot{m}_{\text {air }}\) is engine intake air mass flow final correction at steady-state cam phaser angles, in \(\mathrm{g} / \mathrm{s}\).
- \(\dot{m}_{\text {intkideal }}\) is engine intake port mass flow at arbitrary cam phaser angles, in \(\mathrm{g} / \mathrm{s}\).


\section*{Dependencies}

To enable this parameter, for the Air mass flow estimation model parameter, select Dual Variable Cam Phasing.
```

Engine load breakpoints for air mass flow correction,
f_mdot_air_corr_ld_bpt - Breakpoints
array

```

Engine load breakpoints for air mass flow final correction.

\section*{Dependencies}

To enable this parameter, for the Air mass flow estimation model parameter, select Dual Variable Cam Phasing.

Engine speed breakpoints for air mass flow correction, f_mdot_air_n_bpt - Breakpoints

\section*{vector}

Engine speed breakpoints for air mass flow final correction.

\section*{Dependencies}

To enable this parameter, for the Air mass flow estimation model parameter, select Dual Variable Cam Phasing.

\section*{EGR flow time constant, tau_egr - Constant}

\section*{scalar}

EGR flow time constant, \(\tau_{E G R}\), in s.

\section*{Intake system pressure ratio table, f_intksys_stdflow_pr - Table array}

The pressure ratio is a function of the standard mass flow
\[
\frac{P_{o u t, E G R}}{P_{a m b}}=f_{\text {intksys, pr }}\left(\dot{m}_{a i r, s t d}\right)
\]
where:
- \(\dot{m}_{\text {air, std }}\) is standard mass flow, in \(\mathrm{g} / \mathrm{s}\).
- \(\frac{P_{\text {out }, E G R}}{P_{\text {amb }}}\) is pressure ratio, dimensionless.


\section*{Standard mass flow rate breakpoints for intake pressure ratio, f_intksys_stdflow_bpt - Breakpoints \\ vector}

Standard mass flow, \(\dot{m}_{\text {air, std, }}\) in \(\mathrm{g} / \mathrm{s}\).
EGR valve standard mass flow rate, f_egr_stdflow - Table array

The EGR valve standard mass flow lookup table is a function of EGR valve area percent and the pressure ratio
\[
\dot{m}_{E G R, s t d}=f_{E G R, s t d}\left(E G R a p, \frac{P_{\text {out }, E G R}}{P_{\text {in }, E G R}}\right)
\]
where:
- \(\dot{m}_{E G R, ~ s t d}\) is EGR valve standard mass flow, dimensionless.
- EGRap is EGR valve flow area percent, in percent.
- \(\frac{P_{\text {out }, E G R}}{P_{\text {in, EGR }}}\) is the pressure ratio, dimensionless.


\section*{EGR valve standard flow pressure ratio breakpoints, f_egr_stdflow_pr_bpt - Breakpoints \\ vector}

EGR valve standard flow pressure ratio, \(\frac{P_{\text {out }, E G R}}{P_{i n, E G R}}\), dimensionless.

\section*{EGR valve standard flow area percent breakpoints, f_egr_stdflow_egrap_bpt - Breakpoints \\ vector}

EGR valve flow area percent, EGRap, in percent.

\section*{Torque}

\section*{Torque table, f_tq_nl - Lookup table \\ [L x N] array}

For the simple torque lookup table model, the SI engine uses a lookup table map that is a function of engine speed and load, \(T_{\text {brake }}=f_{T n L}(L, N)\), where:
- \(T_{\text {brake }}\) is engine brake torque after accounting for spark advance, AFR, and friction effects, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(L\) is engine load, as a normalized cylinder air mass, dimensionless.
- \(N\) is engine speed, in rpm.


The simple torque lookup model assumes that the calibration has negative torque values to indicate the non-firing engine load (L) versus speed (N) condition. The calibrated table (L-by-N) contains the non-firing data in the first table row (1-by-N). When the fuel delivered to the engine is zero, the model uses the data in the first table row (1-by-N) at or above 100 AFR. 100 AFR results from fuel cutoff or very lean operation where combustion cannot occur.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Simple Torque Lookup.

\section*{Torque table load breakpoints, f_tq_nl_l_bpt - Breakpoints}
[1 x L] vector
Engine load breakpoints, \(L\), dimensionless.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Simple Torque Lookup.

\section*{Torque table speed breakpoints, f_tq_nl_n_bpt - Breakpoints}
[1 x N] vector
Engine speed breakpoints, \(N\), in rpm.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Simple Torque Lookup.

\section*{Inner torque table, f_tq_inr - Lookup table array}

The inner torque lookup table, \(f_{\text {Tqinr }}\), is a function of engine speed and engine load, \(T q_{i n r}=f_{T q i n r}(L, N)\), where:
- \(T q_{i n r}\) is inner torque based on gross indicated mean effective pressure, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(L\) is engine load at arbitrary cam phaser angles, corrected for final steady-state cam phaser angles, dimensionless.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.

\section*{Friction torque table, f_tq_fric - Lookup table array}

The friction torque lookup table, \(f_{T f r i c}\), is a function of engine speed and engine load, \(T_{\text {fric }}=f_{\text {Tfric }}(L, N)\), where:
- \(T_{f r i c}\) is friction torque offset to inner torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(L\) is engine load at arbitrary cam phaser angles, corrected for final steady-state cam phaser angles, dimensionless.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.

\section*{Engine temperature modifier on friction torque, f_fric_temp_mod Lookup table}
vector
Engine temperature modifier on friction torque, \(f_{\text {fric,temp }}\), dimensionless.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.

\section*{Engine temperature modifier breakpoints, f_fric_temp_bpt Breakpoints}
vector
Engine temperature modifier breakpoints, in K.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.

\section*{Pumping torque table, f_tq_pump - Lookup table array}

The pumping torque lookup table, \(f_{\text {Tpump }}\), is a function of engine speed and injected fuel mass, \(T_{\text {pump }}=\mathrm{f}_{\text {Tpump }}(\mathrm{L}, \mathrm{N})\), where:
- \(T_{\text {pump }}\) is pumping torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(L\) is engine load, as a normalized cylinder air mass, dimensionless.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.

\section*{Optimal spark table, f_sa_opt - Lookup table array}

The optimal spark lookup table, \(f_{\text {SAopt }}\), is a function of engine speed and engine load, \(S A_{o p t}=f_{\text {SAopt }}(L, N)\), where:
- \(S A_{\text {opt }}\) is optimal spark advance timing for maximum inner torque at stoichiometric airfuel ratio (AFR), in deg.
- L is engine load at arbitrary cam phaser angles, corrected for final steady-state cam phaser angles, dimensionless.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.
```

Inner torque load breakpoints, f_tq_inr_l_bpt - Breakpoints
array

```

Inner torque load breakpoints, dimensionless.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.

\section*{Inner torque speed breakpoints, f_tq_inr_n_bpt - Breakpoints array}

Inner torque speed breakpoints, in rpm.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.

\section*{Spark efficiency table, f_m_sa - Lookup table array}

The spark efficiency lookup table, \(f_{M s a}\), is a function of the spark retard from optimal
\[
\begin{aligned}
& M_{s a}=f_{M s a}(\Delta S A) \\
& \Delta S A=S A_{o p t}-S A
\end{aligned}
\]
where:
- \(M_{S a}\) is the spark retard efficiency multiplier, dimensionless.
- \(\Delta\) SAis the spark retard timing distance from optimal spark advance, in deg.


\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.

\section*{Spark retard from optimal, f_del_sa_bpt - Breakpoints} scalar

Spark retard from optimal inner torque timing breakpoints, in deg.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.
Lambda efficiency, f_m_lam - Lookup table
array
The lambda efficiency lookup table, \(f_{M \lambda}\), is a function of lambda, \(M_{\lambda}=f_{M \lambda}(\lambda)\), where:
- \(M_{\lambda}\) is the lambda multiplier on inner torque to account for the air-fuel ratio (AFR) effect, dimensionless.
- \(\lambda\) is lambda, AFR normalized to stoichiometric fuel AFR, dimensionless.


\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.

\section*{Lambda breakpoints, f_m_lam_bpt - Breakpoints array}

Lambda effect on inner torque lambda breakpoints, dimensionless.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.

\section*{Exhaust}

Exhaust temperature table, f_t_exh - Lookup table array

The exhaust temperature lookup table, \(f_{T e x h}\), is a function of engine load and engine speed
\[
T_{e x h}=f_{T e x h}(L, N)
\]
where:
- \(T_{\text {exh }}\) is engine exhaust temperature, in K .
- \(L\) is normalized cylinder air mass or engine load, dimensionless.
- \(N\) is engine speed, in rpm.


\section*{Load breakpoints, f_t_exh_l_bpt - Breakpoints \\ array}

Engine load breakpoints used for exhaust temperature lookup table.

\section*{Speed breakpoints, f_t_exh_n_bpt - Breakpoints array}

Engine speed breakpoints used for exhaust temperature lookup table, in rpm.

\section*{References}
[1] Gerhardt, J., Hönninger, H., and Bischof, H., A New Approach to Functional and Software Structure for Engine Management Systems - BOSCH ME7. SAE Technical Paper 980801, 1998.
[2] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.
[3] Leone, T. Christenson, E., Stein, R., Comparison of Variable Camshaft Timing Strategies at Part Load. SAE Technical Paper 960584, 1996, doi:10.4271/960584.
[4] Liu, F. and Pfeiffer, J., Estimation Algorithms for Low Pressure Cooled EGR in SparkIgnition Engines. SAE Int. J. Engines 8(4):2015, doi:10.4271/2015-01-1620.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

Mapped SI Engine | SI Core Engine

\section*{Topics}
"Engine Calibration Maps"

\section*{External Websites}

Developing a Period-Based Air-Fuel Ratio Controller Using a Low-Cost Switching Sensor
Introduced in R2017a

\section*{SI Core Engine}

Spark-ignition engine from intake to exhaust port
Library: Powertrain Blockset / Propulsion / Combustion Engine Components / Core Engine


\section*{Description}

The SI Core Engine block implements a spark-ignition (SI) engine from intake to exhaust port. You can use the block in larger vehicle models, hardware-in-the-loop (HIL) engine control design, or vehicle-level fuel economy and performance simulations.

The SI Core Engine block calculates:
- Brake torque
- Fuel flow
- Port gas mass flow, including exhaust gas recirculation (EGR)
- Air-fuel ratio (AFR)
- Exhaust temperature and exhaust mass flow rate
- Engine-out (EO) exhaust emissions
- Hydrocarbon (HC)
- Carbon monoxide (CO)
- Nitric oxide and nitrogen dioxide (NOx)
- Carbon dioxide \(\left(\mathrm{CO}_{2}\right)\)
- Particulate matter (PM)

\section*{Air Mass Flow}

To calculate engine air mass flow, configure the SI engine to use either of these air mass flow models.
\begin{tabular}{|c|c|}
\hline Air Mass Flow Model & Description \\
\hline "SI Engine Speed-Density Air Mass Flow Model" & Uses the speed-density equation to calculate the engine air mass flow, relating the engine air mass flow to the intake manifold pressure and engine speed. Consider using this air mass flow model in engines with fixed valvetrain designs. \\
\hline "SI Engine Dual-Independent Cam Phaser Air Mass Flow Model" & \begin{tabular}{l}
To calculate the engine air mass flow, the dualindependent cam phaser model uses: \\
- Empirical calibration parameters developed from engine mapping measurements \\
- Desktop calibration parameters derived from engine computer-aided design (CAD) data \\
In contrast to typical embedded air mass flow calculations based on direct air mass flow measurement with an air mass flow (MAF) sensor, this air mass flow model offers: \\
- Elimination of MAF sensors in dual cam-phased valvetrain applications \\
- Reasonable accuracy with changes in altitude \\
- Semiphysical modeling approach \\
- Bounded behavior \\
- Suitable execution time for electronic control unit (ECU) implementation \\
- Systematic development of a relatively small number of calibration parameters
\end{tabular} \\
\hline
\end{tabular}

\section*{Brake Torque}

To calculate the brake torque, configure the SI engine to use either of these torque models.
\begin{tabular}{|l|l|}
\hline Brake Torque Model & Description \\
\hline \begin{tabular}{l} 
"SI Engine Torque Structure \\
Model"
\end{tabular} & \begin{tabular}{l} 
For the structured brake torque calculation, the SI \\
engine uses tables for the inner torque, friction \\
torque, optimal spark, spark efficiency, and lambda \\
efficiency.
\end{tabular} \\
\hline "SI Engine Simple Torque Model" & \begin{tabular}{l} 
For the simple brake torque calculation, the SI \\
engine block uses a torque lookup table map that is \\
a function of engine speed and load.
\end{tabular} \\
\hline
\end{tabular}

\section*{Fuel Flow}

To calculate the fuel flow, the SI Core Engine block uses fuel injector characteristics and fuel injector pulse-width.
\[
\dot{m}_{f u e l}=\frac{N S_{i n j} P w_{i n j} N_{c y l}}{\operatorname{Cps}\left(\frac{60 s}{\min }\right)\left(\frac{1000 \mathrm{mg}}{g}\right)}
\]

To calculate the fuel economy for high-fidelity models, the block uses the volumetric fuel flow.
\[
Q_{\text {fuel }}=\frac{\dot{m}_{\text {fuel }}}{\left(\frac{100 \mathrm{~kg}}{\mathrm{~m}^{3}}\right) S g_{\text {fuel }}}
\]

The equation uses these variables.
\(\dot{m}_{\text {fuel }} \quad\) Fuel mass flow, g/s
\(\omega \quad\) Engine rotational speed, rad/s
Cps Crankshaft revolutions per power stroke, rev/stroke
\(S_{i n j} \quad\) Fuel injector slope, \(\mathrm{mg} / \mathrm{ms}\)
\(P w_{i n j} \quad\) Fuel injector pulse-width, ms
\(N_{\text {cyl }} \quad\) Number of engine cylinders
\(N \quad\) Engine speed, rpm
\(S g_{\text {fuel }} \quad\) Specific gravity of fuel
\(Q_{\text {fuel }} \quad\) Volumetric fuel flow

\section*{Air-Fuel Ratio}

To calculate the air-fuel (AFR) ratio, the CI Core Engine and SI Core Engine blocks implement this equation.
\[
A F R=\frac{\dot{m}_{a i r}}{\dot{m}_{\text {fuel }}}
\]

The CI Core Engine uses this equation to calculate the relative AFR.
\[
\lambda=\frac{A F R}{A F R_{S}}
\]

To calculate the exhaust gas recirculation (EGR), the blocks implement this equation. The calculation expresses the EGR as a percent of the total intake port flow.
\[
E G R_{p c t}=100 \frac{\dot{m}_{i n t k, b}}{\dot{m}_{\text {intk }}}=100 y_{i n t k, b}
\]

The equations use these variables.
AFR Air-fuel ratio
\(A F R_{s} \quad\) Stoichiometric air-fuel ratio
\(\dot{m}_{\text {intk }} \quad\) Engine air mass flow
\(\dot{m}_{\text {fuel }} \quad\) Fuel mass flow
\(\lambda \quad\) Relative AFR
\(y_{\text {intk,b }} \quad\) Intake burned mass fraction
\(E G R_{\text {pct }}\) EGR percent
\(\dot{m}_{\text {intk, } b}\) Recirculated burned gas mass flow rate

\section*{Exhaust}

The block calculates the:
- Exhaust gas temperature
- Exhaust gas-specific enthalpy
- Exhaust gas mass flow rate
- Engine-out (EO) exhaust emissions:
- Hydrocarbon (HC)
- Carbon monoxide (CO)
- Nitric oxide and nitrogen dioxide (NOx)
- Carbon dioxide \(\left(\mathrm{CO}_{2}\right)\)
- Particulate matter (PM)

The exhaust temperature determines the specific enthalpy.
\[
h_{e x h}=C p_{e x h} T_{e x h}
\]

The exhaust mass flow rate is the sum of the intake port air mass flow and the fuel mass flow.
\[
\dot{m}_{\text {exh }}=\dot{m}_{\text {intake }}+\dot{m}_{\text {fuel }}
\]

To calculate the exhaust emissions, the block multiplies the emission mass fraction by the exhaust mass flow rate. To determine the emission mass fractions, the block uses lookup tables that are functions of the engine torque and speed.
\[
\begin{aligned}
& y_{e x h, i}=f_{i_{\text {_ frac }}}\left(T_{\text {brake }}, N\right) \\
& \dot{m}_{\text {exh }, i}=\dot{m}_{\text {exh }} y_{\text {exh }, i}
\end{aligned}
\]

The fraction of air and fuel entering the intake port, injected fuel, and stoichiometric AFR determine the air mass fraction that exits the exhaust.
\[
y_{e x h, \text { air }}=\max \left[y_{\text {in, air }}-\frac{\dot{m}_{\text {fuel }}+y_{\text {in, fuel }} \dot{m}_{\text {intake }}}{\dot{m}_{\text {fuel }}+\dot{m}_{\text {intake }}} A F R_{S}\right]
\]

If the engine is operating at the stoichiometric or fuel rich AFR, no air exits the exhaust. Unburned hydrocarbons and burned gas comprise the remainder of the exhaust gas. This equation determines the exhaust burned gas mass fraction.
\[
y_{e x h, b}=\max \left[\left(1-y_{e x h, a i r}-y_{e x h, H C}\right), 0\right]
\]

The equations use these variables.
\(T_{e x h} \quad\) Engine exhaust temperature
\begin{tabular}{ll}
\(h_{\text {exh }}\) & Exhaust manifold inlet-specific enthalpy \\
\(C p_{\text {exh }}\) & Exhaust gas specific heat \\
\(\dot{m}_{\text {intk }}\) & Intake port air mass flow rate \\
\(\dot{m}_{\text {fuel }}\) & Fuel mass flow rate \\
\(\dot{m}_{\text {exh }}\) & Exhaust mass flow rate \\
\(y_{\text {in, fuel }}\) & Intake fuel mass fraction \\
\(y_{\text {exh,i }}\) & Exhaust mass fraction for \(\mathrm{i}=\mathrm{CO}_{2}, \mathrm{CO}, \mathrm{HC}, \mathrm{NOx}\), air, burned gas, and PM \\
\(\dot{m}_{\text {exh,i }}\) & Exhaust mass flow rate for \(\mathrm{i}=\mathrm{CO}_{2}, \mathrm{CO}, \mathrm{HC}, \mathrm{NOx}\), air, burned gas, and PM \\
\(T_{\text {brake }}\) & Engine brake torque \\
\(N\) & Engine speed \\
\(y_{\text {exh,air }}\) & Exhaust air mass fraction \\
\(y_{\text {exh,b }}\) & Exhaust air burned mass fraction
\end{tabular}

\section*{Power Accounting}

For the power accounting, the block implements equations that depend on Torque model.

When you set Torque model to Simple Torque Lookup, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Equations \\
\hline \multirow[t]{2}{*}{PwrInf 0} & PwrTrnsfr d - Power transferred & PwrInt kHeatF lw & Intake heat flow & \(\dot{m}_{\text {intk }} h_{\text {intk }}\) \\
\hline & \begin{tabular}{l}
between blocks \\
- Positive signals indicate flow into block
\end{tabular} & PwrExh HeatFl w & Exhaust heat flow & \(-\dot{m}_{\text {exh }} h_{\text {exh }}\) \\
\hline
\end{tabular}


When you set Torque model to Torque Structure, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Equations \\
\hline \multirow[t]{7}{*}{PwrInf 0} & \multirow[t]{7}{*}{} & PwrInt kHeatF lw & Intake heat flow & \(\dot{m}_{\text {intk }} h_{\text {intk }}\) \\
\hline & & PwrExh HeatFl w & Exhaust heat flow & \(-\dot{m}_{\text {exh }} h_{\text {exh }}\) \\
\hline & & PwrCrk shft & Crankshaft power & \(-T_{\text {brake }} \omega\) \\
\hline & & PwrFue \(l\) & Fuel input power & \(\dot{m}_{\text {fuel }} L H V\) \\
\hline & & PwrFri cLoss & Friction loss & \(-T_{\text {fric }} \omega\) \\
\hline & & PwrPum pLoss & Pumping loss & \(-T_{\text {pump }} \omega\) \\
\hline & & PwrHea tTrnsf rLoss & Heat transfer loss & \[
\begin{aligned}
& T_{\text {brake }} \omega-\dot{m}_{\text {fuel }} L H V-\dot{m}_{\text {intk }} h_{\text {intk }} \\
& +\dot{m}_{\text {exh }} h_{\text {exh }}+T_{\text {fric }} \omega+T_{\text {pump }} \omega
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Bus Signal} & Description & Equations \\
\hline & \begin{tabular}{l}
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular} & Not used & \\
\hline \(h_{\text {exh }}\) & \multicolumn{3}{|l|}{Exhaust manifold inlet-specific enthalpy} \\
\hline \(h_{\text {intk }}\) & \multicolumn{3}{|l|}{Intake port specific enthalpy} \\
\hline \(\dot{m}_{\text {int }}\) & \multicolumn{3}{|l|}{Intake port air mass flow rate} \\
\hline \(\dot{m}_{\text {fuel }}\) & \multicolumn{3}{|l|}{Fuel mass flow rate} \\
\hline \(\dot{m}_{\text {exh }}\) & \multicolumn{3}{|l|}{Exhaust mass flow rate} \\
\hline \(\omega\) & \multicolumn{3}{|l|}{Engine speed} \\
\hline \(T_{\text {brake }}\) & \multicolumn{3}{|l|}{Brake torque} \\
\hline \(T_{\text {pump }}\) & \multicolumn{3}{|l|}{Engine pumping torque offset to inner torque} \\
\hline \(T_{\text {fric }}\) & \multicolumn{3}{|l|}{Engine friction torque} \\
\hline LHV & \multicolumn{3}{|l|}{Fuel lower heating value} \\
\hline
\end{tabular}

\section*{Ports}

Input

\section*{InjPw - Fuel injector pulse-width \\ scalar}

Fuel injector pulse-width, \(P w_{i n j}\), in ms.

\section*{SpkAdv - Spark advance}

\section*{scalar}

Spark advance, \(S A\), in degrees crank angle before top dead center (degBTDC).

\section*{Dependencies}

To create this port, for the Torque model parameter, select Torque Structure.

\section*{ICP - Intake cam phase angle command scalar}

Intake cam phase angle command, \(\varphi_{I C P C M D}\), in degCrkAdv, or degrees crank advance.

\section*{Dependencies}

To create this port, for the Air mass flow model parameter, select Dual - Independent Variable Cam Phasing.

\section*{ECP - Exhaust cam phase angle command}

\section*{scalar}

Exhaust cam phase angle command, \(\varphi_{E C P C M D}\), in degCrkRet, or degrees crank retard.

\section*{Dependencies}

To create this port, for the Air mass flow model parameter, select Dual - Independent Variable Cam Phasing.

AmbPrs - Ambient pressure
scalar
Ambient pressure, \(P_{A m b}\), in Pa .

\section*{Dependencies}

To create this port, for the Air mass flow model parameter, select Dual - Independent Variable Cam Phasing.

EngSpd - Engine speed
scalar

Engine speed, \(N\), in rpm.

\section*{Ect - Engine cooling temperature}

\section*{scalar}

Engine cooling temperature, \(T_{\text {coolant }}\), in K.
Dependencies
To enable this parameter, for Torque model, select Torque Structure.

\section*{Intk - Intake port pressure, temperature, enthalpy, mass fractions}
two-way connector port
Bus containing the upstream:
- Prs - Pressure, in Pa
- Temp - Temperature, in K
- Enth - Specific enthalpy, in J/kg
- MassFrac - Intake port mass fractions, dimensionless. EGR mass flow at the intake port is burned gas.

Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H20MassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- N02MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

\section*{Exh - Exhaust port pressure, temperature, enthalpy, mass fractions two-way connector port}

Bus containing the exhaust:
- Prs - Pressure, in Pa
- Temp - Temperature, in K
- Enth - Specific enthalpy, in J/kg
- MassFrac - Exhaust port mass fractions, dimensionless.

Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H20MassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- N02MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

\section*{Output}

Info - Bus signal
bus
Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|l|}
\hline Signal & Description & Variable & Units \\
\hline IntkGasMassFlw & \begin{tabular}{l} 
Engine intake air mass \\
flow.
\end{tabular} & \(\dot{m}_{\text {air }}\) & \(\mathrm{kg} / \mathrm{s}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Signal & Description & Variable & Units \\
\hline IntkAirMassFlw & Engine intake port mass flow. & \(\dot{m}_{\text {int }}\) & kg/s \\
\hline NrmlzdAirChrg & Engine load (that is, normalized cylinder air mass) corrected for final steady-state cam phase angles & \(L\) & N/A \\
\hline Afr & Air-fuel ratio at engine exhaust port & AFR & N/A \\
\hline FuelMassFlw & Fuel flow into engine & \(\dot{m}_{\text {fuel }}\) & kg/s \\
\hline FuelVolFlw & Volumetric fuel flow & \(Q_{\text {fuel }}\) & \(\mathrm{m}^{3} / \mathrm{s}\) \\
\hline ExhManGasTemp & Exhaust gas temperature at exhaust manifold inlet & \(T_{\text {exh }}\) & K \\
\hline EngTrq & Engine brake torque & \(T_{\text {brake }}\) & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline EngSpd & Engine speed & \(N\) & rpm \\
\hline IntkCamPhase & Intake cam phaser angle & \(\varphi_{I C P} \mathrm{i}\) & degrees crank advance \\
\hline ExhCamPhase & Exhaust cam phaser angle & \(\varphi_{E C P}\) & \begin{tabular}{l}
degrees \\
crank \\
retard
\end{tabular} \\
\hline CrkAng & Engine crankshaft absolute angle & \begin{tabular}{l}
\[
\int_{0}^{(360) C p s} E n g S p d \frac{180}{30} d \theta
\] \\
where Cps is crankshaft revolutions per power stroke
\end{tabular} & \begin{tabular}{l}
degrees \\
crank \\
angle
\end{tabular} \\
\hline EgrPct & EGR percent & \(E G R_{p c t}\) & N/A \\
\hline EoAir & EO air mass flow rate & \(\dot{m}_{\text {exh }}\) & kg/s \\
\hline EoBrndGas & EO burned gas mass flow rate & \(y_{e x h, b}\) & kg/s \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Signal} & Description & Variable & Units \\
\hline \multicolumn{3}{|l|}{EoHC} & EO hydrocarbon emission mass flow rate & \(y_{\text {exh,HC }}\) & kg/s \\
\hline \multicolumn{3}{|l|}{EoCO} & EO carbon monoxide emission mass flow rate & \(y_{\text {exh, } \mathrm{Co}}\) & kg/s \\
\hline \multicolumn{3}{|l|}{EoN0x} & EO nitric oxide and nitrogen dioxide emissions mass flow rate & \(y_{\text {exh,NOx }}\) & kg/s \\
\hline \multicolumn{3}{|l|}{EoC02} & EO carbon dioxide emission mass flow rate & \(y_{\text {exh, } \mathrm{CO} 2}\) & kg/s \\
\hline \multicolumn{3}{|l|}{EoPm} & EO particulate matter emission mass flow rate & \(y_{\text {exh, } P M}\) & kg/s \\
\hline \multirow[t]{6}{*}{PwrI nfo} & \multirow[t]{3}{*}{PwrTrn sfrd} & PwrIntkH eatFlw & Intake heat flow & \(\dot{m}_{\text {intk }} h_{\text {intk }}\) & W \\
\hline & & PwrExhHe atFlw & Exhaust heat flow & \(-\dot{m}_{\text {exh }} h_{\text {exh }}\) & W \\
\hline & & PwrCrksh ft & Crankshaft power & \(-T_{\text {brake }} \omega\) & W \\
\hline & \multirow[t]{3}{*}{PwrNot Trnsfr d} & PwrFuel & Fuel input power & \(\dot{m}_{\text {fuel }} L H V\) & W \\
\hline & & PwrLoss & \begin{tabular}{l}
For Torque model set to Simple Torque Lookup: \\
All losses
\end{tabular} & \[
\begin{aligned}
& T_{\text {brake }} \omega-\dot{m}_{\text {fueu }} L H V \\
& -\dot{m}_{\text {intk }} h_{\text {intk }}+\dot{m}_{\text {exh }} h_{\text {exh }}
\end{aligned}
\] & W \\
\hline & & PwrFricL oss & \begin{tabular}{l}
For Torque model set to Torque Structure: \\
Friction loss
\end{tabular} & \(-T_{\text {fric }} \omega\) & W \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Signal} & Description & Variable & Units \\
\hline & PwrPumpL oss & \begin{tabular}{l}
For Torque model set to Torque Structure: \\
Pumping loss
\end{tabular} & \(-T_{\text {pump }} \omega\) & W \\
\hline & PwrHeatT rnsfrLos s & \begin{tabular}{l}
For Torque model set to Torque Structure: \\
Heat transfer loss
\end{tabular} & \begin{tabular}{l}
\(T_{\text {brake }} \omega-\dot{m}_{f u e l} L H V\) \\
\(-\dot{m}_{\text {intk }} h_{\text {intk }}+\dot{m}_{\text {exh }} h_{\text {exh }}\) \\
\(+T_{\text {fric }} \omega+T_{\text {pump }} \omega\)
\end{tabular} & W \\
\hline PwrSto red & Not used & & & \\
\hline
\end{tabular}

\section*{EngTrq - Engine brake torque \\ scalar}

Engine brake torque, \(T_{\text {brake }}\), in \(\mathrm{N} \cdot \mathrm{m}\).
Intk - Intake port mass flow rate, heat flow rate, temperature, mass fraction two-way connector port

Bus containing:
- MassFlwRate - Intake port mass flow rate, in kg/s
- HeatFlwRate - Intake port heat flow rate, in J/s
- Temp - Intake port temperature, in K
- MassFrac - Intake port mass fractions, dimensionless.

Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H20MassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- N02MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

\section*{Exh - Exhaust port mass flow rate, heat flow rate, temperature, mass fraction two-way connector port}

Bus containing:
- MassFlwRate - Exhaust port mass flow rate, in kg/s
- HeatFlwRate - Exhaust heat flow rate, in J/s
- Temp - Exhaust temperature, in K
- MassFrac - Exhaust port mass fractions, dimensionless.

Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H20MassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- N02MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

\section*{Parameters}

\section*{Block Options}

\section*{Air mass flow model - Select air mass flow model}

Dual-Independent Variable Cam Phasing (default)|Simple Speed-Density
To calculate engine air mass flow, configure the SI engine to use either of these air mass flow models.
\begin{tabular}{|c|c|}
\hline Air Mass Flow Model & Description \\
\hline "SI Engine Speed-Density Air Mass Flow Model" & Uses the speed-density equation to calculate the engine air mass flow, relating the engine air mass flow to the intake manifold pressure and engine speed. Consider using this air mass flow model in engines with fixed valvetrain designs. \\
\hline "SI Engine Dual-Independent Cam Phaser Air Mass Flow Model" & \begin{tabular}{l}
To calculate the engine air mass flow, the dualindependent cam phaser model uses: \\
- Empirical calibration parameters developed from engine mapping measurements \\
- Desktop calibration parameters derived from engine computer-aided design (CAD) data \\
In contrast to typical embedded air mass flow calculations based on direct air mass flow measurement with an air mass flow (MAF) sensor, this air mass flow model offers: \\
- Elimination of MAF sensors in dual cam-phased valvetrain applications \\
- Reasonable accuracy with changes in altitude \\
- Semiphysical modeling approach \\
- Bounded behavior \\
- Suitable execution time for electronic control unit (ECU) implementation \\
- Systematic development of a relatively small number of calibration parameters
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

The table summarizes the parameter dependencies.
\begin{tabular}{|c|c|}
\hline Air Mass Flow Model & Enables Parameters \\
\hline \begin{tabular}{l}
Dual- \\
Independent Variable Cam Phasing
\end{tabular} & \begin{tabular}{l}
Cylinder volume at intake valve close table, f_vivc \\
Cylinder volume intake cam phase breakpoints, f_vivc_icp_bpt \\
Cylinder trapped mass correction factor, f_tm_corr \\
Normalized density breakpoints, f_tm_corr_nd_bpt \\
Engine speed breakpoints, f_tm_corr_n_bpt \\
Air mass flow, f_mdot_air \\
Exhaust cam phase breakpoints, f_mdot_air_ecp_bpt \\
Trapped mass flow breakpoints, f_mdot_trpd_bpt \\
Air mass flow correction factor, f_mdot_air_corr \\
Engine load breakpoints for air mass flow correction, f_mdot_air_corr_ld_bpt \\
Engine speed breakpoints for air mass flow correction, f_mdot_air_n_bpt
\end{tabular} \\
\hline Simple Speed Density & \begin{tabular}{l}
Speed-density volumetric efficiency, f_nv \\
Speed-density intake manifold pressure breakpoints, f_nv_prs_bpt \\
Speed-density engine speed breakpoints, f_nv_n_bpt
\end{tabular} \\
\hline
\end{tabular}

\section*{Torque model - Select torque model \\ Torque Structure (default)|Simple Torque Lookup}

To calculate the brake torque, configure the SI engine to use either of these torque models.
\begin{tabular}{|l|l|}
\hline Brake Torque Model & Description \\
\hline "SI Engine Torque Structure & \begin{tabular}{l} 
For the structured brake torque calculation, the SI \\
engine uses tables for the inner torque, friction \\
torque, optimal spark, spark efficiency, and lambda \\
efficiency.
\end{tabular} \\
\hline "SI Engine Simple Torque Model" & \begin{tabular}{l} 
For the simple brake torque calculation, the SI \\
engine block uses a torque lookup table map that is \\
a function of engine speed and load.
\end{tabular} \\
\hline
\end{tabular}
Dependencies

The table summarizes the parameter dependencies.
\begin{tabular}{|c|c|}
\hline Torque Model & Enables Parameters \\
\hline Torque Structure & \begin{tabular}{l}
Inner torque table, f_tq_inr \\
Friction torque table, f_tq_fric \\
Engine temperature modifier on friction torque, f_fric_temp_mod \\
Engine temperature modifier breakpoints, f_fric_temp_bpt \\
Pumping torque table, f_tq_pump \\
Optimal spark table, f_sa_opt \\
Inner torque load breakpoints, f_tq_inr_l_bpt \\
Inner torque speed breakpoints, f_tq_inr_n_bpt \\
Spark efficiency table, f_m_sa \\
Spark retard from optimal, f_del_sa_bpt \\
Lambda efficiency, f_m_lam \\
Lambda breakpoints, f_m_lam_bpt
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Torque Model & Enables Parameters \\
\hline Simple Torque & Torque table, f_tq_nl \\
Lookup & Torque table load breakpoints, f_tq_nl_l_bpt \\
& Torque table speed breakpoints, f_tq_nl_n_bpt \\
\hline
\end{tabular}

\section*{Air}

Number of cylinders, NCyl - Engine cylinders scalar

Number of engine cylinders, \(N_{\text {cyl }}\).
Crank revolutions per power stroke, Cps - Revolutions per stroke scalar

Crankshaft revolutions per power stroke, \(C p s\), in rev/stroke.

\section*{Total displaced volume, Vd - Volume scalar}

Displaced volume, \(V_{d}\), in m^3.
Ideal gas constant air, Rair - Constant scalar

Ideal gas constant, \(R_{\text {air }}\), in \(\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})\).
Air standard pressure, Pstd - Pressure scalar

Standard air pressure, \(P_{\text {std }}\), in Pa.
Air standard temperature, Tstd - Temperature scalar

Standard air temperature, \(T_{s t d}\), in K .
Speed-density volumetric efficiency, f_nv - Lookup table array

The engine volumetric efficiency lookup table, \(f_{\eta_{v^{\prime}}}\) is a function of intake manifold absolute pressure and engine speed
\[
\eta_{\nu}=f_{\eta_{v}}(M A P, N)
\]
where:
- \(\eta_{\nu}\) is engine volumetric efficiency, dimensionless.
- MAP is intake manifold absolute pressure, in KPa.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for the Air mass flow model parameter, select Simple Speed-Density.

\section*{Speed-density intake manifold pressure breakpoints, f_nv_prs_bpt Breakpoints}
array
Intake manifold pressure breakpoints for speed-density volumetric efficiency lookup table, in KPa.

\section*{Dependencies}

To enable this parameter, for the Air mass flow model parameter, select Simple Speed-Density.

Speed-density engine speed breakpoints, f_nv_n_bpt - Breakpoints array

Engine speed breakpoints for speed-density volumetric efficiency lookup table, in rpm.

\section*{Dependencies}

To enable this parameter, for the Air mass flow model parameter, select Simple Speed-Density.

Cylinder volume at intake valve close table, f_vivc - 2-D lookup table array

The cylinder volume at intake valve close table (IVC), \(f_{V i v c}\) is a function of the intake cam phaser angle
\[
V_{I V C}=f_{V i v c}\left(\varphi_{I C P}\right)
\]
where:
- \(V_{I V C}\) is cylinder volume at IVC, in L .
- \(\varphi_{I C P}\) is intake cam phaser angle, in crank advance degrees.


\section*{Dependencies}

To enable this parameter, for the Air mass flow model parameter, select Dual Independent Variable Cam Phasing.

Cylinder volume intake cam phase breakpoints, f_vivc_icp_bpt Breakpoints
array
Cylinder volume intake cam phase breakpoints, in L.

\section*{Dependencies}

To enable this parameter, for the Air mass flow model parameter, select Dual Independent Variable Cam Phasing.

Cylinder trapped mass correction factor, f_tm_corr - Lookup table array

The trapped mass correction factor table, \(f_{T M c o r r}\), is a function of the normalized density and engine speed
\[
T M_{\text {corr }}=f_{T M c o r r}\left(\rho_{\text {norm }}, \quad N\right)
\]
where:
- \(T M_{\text {corr, }}\), is trapped mass correction multiplier, dimensionless.
- \(\rho_{\text {norm }}\) is normalized density, dimensionless.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for the Air mass flow model parameter, select Dual Independent Variable Cam Phasing.

Normalized density breakpoints, f_tm_corr_nd_bpt - Breakpoints array

Normalized density breakpoints, dimensionless.

\section*{Dependencies}

To enable this parameter, for the Air mass flow model parameter, select Dual Independent Variable Cam Phasing.

Engine speed breakpoints, f_tm_corr_n_bpt - Breakpoints
array array

Engine speed breakpoints, in rpm.

\section*{Dependencies}

To enable this parameter, for the Air mass flow model parameter, select Dual Independent Variable Cam Phasing.

\section*{Air mass flow, f_mdot_air - Lookup table array}

The phaser intake mass flow model lookup table is a function of exhaust cam phaser angles and trapped air mass flow
\[
\dot{m}_{\text {intkideal }}=f_{\text {intkideal }}\left(\varphi_{E C P}, T M_{\text {flow }}\right)
\]
where:
- \(\dot{m}_{\text {intkideal }}\) is engine intake port mass flow at arbitrary cam phaser angles, in g/s.
- \(\varphi_{E C P}\) is exhaust cam phaser angle, in degrees crank retard.
- \(T M_{\text {flow }}\) is flow rate equivalent to corrected trapped mass at the current engine speed, in \(\mathrm{g} / \mathrm{s}\).


\section*{Dependencies}

To enable this parameter, for the Air mass flow model parameter, select Dual Independent Variable Cam Phasing.

Exhaust cam phase breakpoints, f_mdot_air_ecp_bpt - Breakpoints array

Exhaust cam phaser breakpoints for air mass flow lookup table, in degrees crank retard.

\section*{Dependencies}

To enable this parameter, for the Air mass flow model parameter, select Dual Independent Variable Cam Phasing.

\section*{Trapped mass flow breakpoints, f_mdot_trpd_bpt - Breakpoints array}

Trapped mass flow breakpoints for air mass flow lookup table, in \(\mathrm{g} / \mathrm{s}\).

\section*{Dependencies}

To enable this parameter, for the Air mass flow model parameter, select Dual Independent Variable Cam Phasing.

\section*{Air mass flow correction factor, f_mdot_air_corr - Lookup table array}

The intake air mass flow correction lookup table, \(f_{\text {aircorr }}\), is a function of ideal load and engine speed
\[
\dot{m}_{\text {air }}=\dot{m}_{\text {intkideal }} f_{\text {aircorr }}\left(L_{\text {ideal }}, N\right)
\]
where:
- \(L_{i d e a l}\) is engine load (normalized cylinder air mass) at arbitrary cam phaser angles, uncorrected for final steady-state cam phaser angles, dimensionless.
- \(N\) is engine speed, in rpm.
- \(\dot{m}_{a i r}\) is engine intake air mass flow final correction at steady-state cam phaser angles, in \(\mathrm{g} / \mathrm{s}\).
- \(\dot{m}_{\text {intkideal }}\) is engine intake port mass flow at arbitrary cam phaser angles, in \(\mathrm{g} / \mathrm{s}\).


\section*{Dependencies}

To enable this parameter, for the Air mass flow model parameter, select Dual Independent Variable Cam Phasing.

\section*{Engine load breakpoints for air mass flow correction, f_mdot_air_corr_ld_bpt - Breakpoints array}

Engine load breakpoints for air mass flow final correction, dimensionless.

\section*{Dependencies}

To enable this parameter, for the Air mass flow model parameter, select Dual Independent Variable Cam Phasing.

Engine speed breakpoints for air mass flow correction, f_mdot_air_n_bpt - Breakpoints array

Engine speed breakpoints for air mass flow final correction, in rpm.

\section*{Dependencies}

To enable this parameter, for the Air mass flow model parameter, select Dual Independent Variable Cam Phasing.

\section*{Torque}

\section*{Torque table, f_tq_nl - Lookup table \\ [L x N] array}

For the simple torque lookup table model, the SI engine uses a lookup table map that is a function of engine speed and load, \(T_{\text {brake }}=f_{T n L}(L, N)\), where:
- \(T_{\text {brake }}\) is engine brake torque after accounting for spark advance, AFR, and friction effects, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(L\) is engine load, as a normalized cylinder air mass, dimensionless.
- \(N\) is engine speed, in rpm.


The simple torque lookup model assumes that the calibration has negative torque values to indicate the non-firing engine load (L) versus speed (N) condition. The calibrated table (L-by-N) contains the non-firing data in the first table row (1-by-N). When the fuel delivered to the engine is zero, the model uses the data in the first table row (1-by-N) at or above 100 AFR. 100 AFR results from fuel cutoff or very lean operation where combustion cannot occur.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Simple Torque Lookup.

Torque table load breakpoints, f_tq_nl_l_bpt - Breakpoints
[1 x L] vector

Engine load breakpoints, \(L\), dimensionless.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Simple Torque Lookup.

\section*{Torque table speed breakpoints, f_tq_nl_n_bpt - Breakpoints}
[1 x N] vector
Engine speed breakpoints, \(N\), in rpm.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Simple Torque Lookup.

\section*{Inner torque table, f_tq_inr - Lookup table array}

The inner torque lookup table, \(f_{\text {Tqinr }}\), is a function of engine speed and engine load, \(T q_{\text {inr }}=f_{\text {Tqinr }}(L, N)\), where:
- \(T q_{i n r}\) is inner torque based on gross indicated mean effective pressure, in \(\mathrm{N} \cdot \mathrm{m}\).
- L is engine load at arbitrary cam phaser angles, corrected for final steady-state cam phaser angles, dimensionless.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.

\section*{Friction torque table, f_tq_fric - Lookup table array}

The friction torque lookup table, \(f_{\text {Tfric }}\), is a function of engine speed and engine load, \(T_{\text {fric }}=f_{\text {Tfric }}(L, N)\), where:
- \(T_{\text {fric }}\) is friction torque offset to inner torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(L\) is engine load at arbitrary cam phaser angles, corrected for final steady-state cam phaser angles, dimensionless.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.

\section*{Engine temperature modifier on friction torque, f_fric_temp_mod Lookup table \\ vector}

Engine temperature modifier on friction torque, \(f_{\text {fric,temp }}\) dimensionless.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.

\section*{Engine temperature modifier breakpoints, f_fric_temp_bpt Breakpoints}
vector
Engine temperature modifier breakpoints, in K.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.

\section*{Pumping torque table, f_tq_pump - Lookup table array}

The pumping torque lookup table, \(f_{\text {Tpump }}\), is a function of engine speed and injected fuel mass, \(T_{\text {pump }}=f_{\text {Tpump }}(\mathrm{L}, \mathrm{N})\), where:
- \(T_{\text {pump }}\) is pumping torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(L\) is engine load, as a normalized cylinder air mass, dimensionless.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.

\section*{Optimal spark table, f_sa_opt - Lookup table array}

The optimal spark lookup table, \(f_{\text {SAopt }}\), is a function of engine speed and engine load, \(S A_{\text {opt }}=f_{\text {SAopt }}(L, N)\), where:
- \(S A_{\text {opt }}\) is optimal spark advance timing for maximum inner torque at stoichiometric airfuel ratio (AFR), in deg.
- \(L\) is engine load at arbitrary cam phaser angles, corrected for final steady-state cam phaser angles, dimensionless.
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.
```

Inner torque load breakpoints, f_tq_inr_l_bpt - Breakpoints
array

```

Inner torque load breakpoints, dimensionless.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.
```

Inner torque speed breakpoints, f_tq_inr_n_bpt - Breakpoints
array

```

Inner torque speed breakpoints, in rpm.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.

\section*{Spark efficiency table, f_m_sa - Lookup table \\ array}

The spark efficiency lookup table, \(f_{M s a}\), is a function of the spark retard from optimal
\[
\begin{aligned}
& M_{s a}=f_{M s a}(\Delta S A) \\
& \Delta S A=S A_{\text {opt }}-S A
\end{aligned}
\]
where:
- \(M_{s a}\) is the spark retard efficiency multiplier, dimensionless.
- \(\Delta\) SAis the spark retard timing distance from optimal spark advance, in deg.


\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.

\section*{Spark retard from optimal, f_del_sa_bpt - Breakpoints}
scalar

Spark retard from optimal inner torque timing breakpoints, in deg.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.

\section*{Lambda efficiency, f_m_lam - Lookup table array}

The lambda efficiency lookup table, \(f_{M \lambda}\), is a function of lambda, \(M_{\lambda}=f_{M \lambda}(\lambda)\), where:
- \(M_{\lambda}\) is the lambda multiplier on inner torque to account for the air-fuel ratio (AFR) effect, dimensionless.
- \(\lambda\) is lambda, AFR normalized to stoichiometric fuel AFR, dimensionless.


\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.
Lambda breakpoints, f_m_lam_bpt - Breakpoints array

Lambda effect on inner torque lambda breakpoints, dimensionless.

\section*{Dependencies}

To enable this parameter, for the Torque model parameter, select Torque Structure.

\section*{Exhaust}

\section*{Exhaust temperature table, f_t_exh - Lookup table array}

The exhaust temperature lookup table, \(f_{\text {Texh }}\), is a function of engine load and engine speed
\[
T_{e x h}=f_{T e x h}(L, N)
\]
where:
- \(T_{\text {exh }}\) is engine exhaust temperature, in K .
- \(L\) is normalized cylinder air mass or engine load, dimensionless.
- \(N\) is engine speed, in rpm.


Load breakpoints, f_t_exh_l_bpt - Breakpoints
array
Engine load breakpoints used for exhaust temperature lookup table, dimensionless.

\section*{Speed breakpoints, f_t_exh_n_bpt - Breakpoints}
array

Engine speed breakpoints used for exhaust temperature lookup table, in rpm.

\section*{Exhaust gas specific heat at constant pressure, cp_exh - Specific heat scalar}

Exhaust gas-specific heat, \(C p_{\text {exh }}\), in \(\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})\).

\section*{CO2 mass fraction table, f_CO2_frac - Carbon dioxide ( \(\mathrm{CO}_{2}\) ) emission lookup table}
array
The SI Core Engine \(\mathrm{CO}_{2}\) emission mass fraction lookup table is a function of engine torque and engine speed, CO2 Mass Fraction = f(Speed, Torque), where:
- CO2 Mass Fraction is the \(\mathrm{CO}_{2}\) emission mass fraction, dimensionless.
- Speed is engine speed, in rpm.
- Torque is engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).


\section*{Dependencies}

To enable this parameter, on the Exhaust tab, select CO2.

\section*{CO mass fraction table, f_CO_frac - Carbon monoxide (CO) emission lookup table}
array
The SI Core Engine CO emission mass fraction lookup table is a function of engine torque and engine speed, CO Mass Fraction = f(Speed, Torque), where:
- CO Mass Fraction is the CO emission mass fraction, dimensionless.
- Speed is engine speed, in rpm.
- Torque is engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).


\section*{Dependencies}

To enable this parameter, on the Exhaust tab, select CO.

\section*{HC mass fraction table, f_HC_frac - Hydrocarbon (HC) emission lookup table}
array
The SI Core Engine HC emission mass fraction lookup table is a function of engine torque and engine speed, HC Mass Fraction = f(Speed, Torque), where:
- HC Mass Fraction is the HC emission mass fraction, dimensionless.
- Speed is engine speed, in rpm.
- Torque is engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).


\section*{Dependencies}

To enable this parameter, on the Exhaust tab, select HC.

\section*{NOx mass fraction table, f_NOx_frac - Nitric oxide and nitrogen dioxide (NOx) emission lookup table array}

The SI Core Engine NOx emission mass fraction lookup table is a function of engine torque and engine speed, NOx Mass Fraction = f(Speed, Torque), where:
- NOx Mass Fraction is the NOx emission mass fraction, dimensionless.
- Speed is engine speed, in rpm.
- Torque is engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).


\section*{Dependencies}

To enable this parameter, on the Exhaust tab, select NOx.

\section*{PM mass fraction table, f_PM_frac - Particulate matter (PM) emission lookup table \\ array}

The SI Core Engine PM emission mass fraction lookup table is a function of engine torque and engine speed where:
- \(\quad P M\) is the \(P M\) emission mass fraction, dimensionless.
- Speed is engine speed, in rpm.
- Torque is engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, on the Exhaust tab, select PM.

\section*{Engine speed breakpoints, f_exhfrac_n_bpt - Breakpoints vector}

Engine speed breakpoints used for the emission mass fractions lookup tables, in rpm.

\section*{Dependencies}

To enable this parameter, on the Exhaust tab, select CO2, CO, NOx, HC, or PM.
Engine torque breakpoints, f_exhfrac_trq_bpt - Breakpoints vector

Engine torque breakpoints used for the emission mass fractions lookup tables, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, on the Exhaust tab, select CO2, CO, NOx, HC, or PM.

\section*{Fuel}
```

Injector slope, Sinj - Slope
scalar

```

Fuel injector slope, \(S_{i n j}, \mathrm{mg} / \mathrm{ms}\).
Stoichiometric air-fuel ratio, afr_stoich - Air-fuel ratio scalar

Air-fuel ratio, \(A F R\).
Fuel lower heating value, fuel_lhv - Heating value scalar

Fuel lower heating value, \(L H V\), in J/kg.
Fuel specific gravity, fuel_sg - Specific gravity scalar

Specific gravity of fuel, \(S g_{\text {fuel }}\), dimensionless.

\section*{References}
[1] Gerhardt, J., Hönninger, H., and Bischof, H., A New Approach to Functional and Software Structure for Engine Management Systems - BOSCH ME7. SAE Technical Paper 980801, 1998.
[2] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.

\section*{Extended Capabilities}

\author{
C/C++ Code Generation \\ Generate \(C\) and \(C++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\text {TM }}\).
}

\section*{See Also}

Mapped SI Engine | SI Controller

\section*{Topics}
"SI Core Engine Air Mass Flow and Torque Production"
"Engine Calibration Maps"
Introduced in R2017a

\section*{Turbine}

Turbine for boosted engines
Library: Powertrain Blockset / Propulsion / Combustion Engine Components / Boost


\section*{Description}

The Turbine block uses the conservation of mass and energy to calculate mass and heat flow rates for turbines with either fixed or variable geometry. You can configure the block with a wastegate valve to bypass the turbine. The block uses two-way ports to connect to the inlet and outlet control volumes and the drive shaft. You can specify the lookup tables to calculate the mass flow rate and turbine efficiency. Typically, turbine manufacturers provide the mass flow rate and efficiency tables as a function of corrected speed and pressure ratio. The block does not support reverse mass flow.

If you have Model-Based Calibration Toolbox, click Calibrate Performance Maps to virtually calibrate the mass flow rate and turbine efficiency lookup tables using measured data.

The mass flows from the inlet control volume to outlet control volume.


The Turbine block implements equations to model the performance, wastegate flow, and combined flow.

\section*{Virtual Calibration}

If you have Model-Based Calibration Toolbox, click Calibrate Performance Maps to virtually calibrate the corrected mass flow rate and turbine efficiency lookup tables using measured data. The dialog box steps through these tasks.
\begin{tabular}{|c|c|c|}
\hline Task & \multicolumn{2}{|l|}{Description} \\
\hline Import turbine data & \multicolumn{2}{|l|}{Import this turbine data from a file. For more information, see "Using Data" (Model-Based Calibration Toolbox).} \\
\hline & Turbine type & Data \\
\hline & Fixed geometry & \begin{tabular}{l}
- Pressure ratio, dimensionless \\
- Speed, rad/s \\
- Efficiency, dimensionless \\
- Corrected mass flow rate, \(\mathrm{kg} / \mathrm{s}\)
\end{tabular} \\
\hline & Variable geometry & \begin{tabular}{l}
- Pressure ratio, dimensionless \\
- Speed, rad/s \\
- Rack position, dimensionless \\
- Efficiency, dimensionless \\
- Corrected mass flow rate, \(\mathrm{kg} / \mathrm{s}\) \\
Include data for several test points at each rack position operating point.
\end{tabular} \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
Model-Based Calibration Toolbox limits the speed and pressure ratio breakpoint values to the maximum values in the file. \\
To filter or edit the data, select Edit in Application. The ModelBased Calibration Toolbox Data Editor opens.
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Task & \multicolumn{3}{|l|}{Description} \\
\hline \multirow[t]{10}{*}{Generate response models} & \multicolumn{3}{|l|}{Model-Based Calibration Toolbox fits the imported data and generates response models.} \\
\hline & \multirow[t]{4}{*}{\begin{tabular}{|l|}
\hline Turbine type \\
\hline \begin{tabular}{l} 
Fixed \\
geometry
\end{tabular} \\
\hline
\end{tabular}} & \multicolumn{2}{|l|}{Description} \\
\hline & & Data & Response Model \\
\hline & & Corrected mass flow rate & Square root turbine flow model described in Modeling and Control of Engines and Drivelines \({ }^{2}\) \\
\hline & & Efficiency & Blade speed ratio (BSR) model described in Modeling and Control of Engines and Drivelines \({ }^{2}\) \\
\hline & \multirow[t]{4}{*}{Variable geometry} & \multicolumn{2}{|l|}{Model-Based Calibration Toolbox uses a point-bypoint test plan to fit the data. For each rack position, the block uses these response models to fit the corrected mass flow rate and efficiency data.} \\
\hline & & Data & Response Model \\
\hline & & Corrected mass flow rate & Square root turbine flow model described in Modeling and Control of Engines and Drivelines \({ }^{2}\) \\
\hline & & Efficiency & Blade speed ratio (BSR) model described in Modeling and Control of Engines and Drivelines \({ }^{2}\) \\
\hline & \multicolumn{3}{|l|}{To assess or adjust the response model fit, select Edit in Application. The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).} \\
\hline
\end{tabular}
\begin{tabular}{|l|l||}
\hline Task & Description \\
\hline \begin{tabular}{l} 
Generate \\
calibration
\end{tabular} & \begin{tabular}{l} 
Model-Based Calibration Toolbox calibrates the response model and \\
generates calibrated tables.
\end{tabular} \\
& Turbine type \\
& \begin{tabular}{l} 
Description \\
Fixed \\
geometry
\end{tabular} \\
& \begin{tabular}{l} 
Model-Based Calibration Toolbox uses the \\
response models for the corrected mass flow rate \\
and efficiency tables.
\end{tabular} \\
\hline Variable & \begin{tabular}{l} 
Model-Based Calibration Toolbox fills the \\
geometry \\
earrected mass flow rate and efficiency tables for \\
Toolbox then combines the rack position- \\
dependent tables into 3D lookup tables for \\
corrected mass flow rate and efficiency.
\end{tabular} \\
& \begin{tabular}{l} 
To assess or adjust the calibration, select Edit in Application. The \\
Model-Based Calibration Toolbox CAGE Browser opens. For more \\
information, see "Calibration Tables" (Model-Based Calibration \\
Toolbox).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Task & \multicolumn{2}{|l|}{Description} \\
\hline Update block parameters & \multicolumn{2}{|l|}{Update these corrected mass flow rate and efficiency parameters with the calibration.} \\
\hline & Turbine type & Parameters \\
\hline & Fixed geometry & \begin{tabular}{l}
- Corrected mass flow rate table, mdot_corrfx_tbl \\
- Efficiency table, eta_turbfx_tbl \\
- Corrected speed breakpoints, w_corrfx_bpts1 \\
- Pressure ratio breakpoints, Pr_fx_bpts2
\end{tabular} \\
\hline & Variable geometry & \begin{tabular}{l}
- Corrected mass flow rate table, mdot_corrvr_tbl \\
- Efficiency table, eta_turbvr_tbl \\
- Corrected speed breakpoints, w_corrvr_bpts2 \\
- Pressure ratio breakpoints, Pr_vr_bpts2 \\
- Rack breakpoints, L_rack_bpts3
\end{tabular} \\
\hline
\end{tabular}

\section*{Thermodynamics}

The block uses these equations to model the thermodynamics.
\begin{tabular}{|l|l|}
\hline Calculation & Equations \\
\hline Forward mass flow & \(\dot{m}_{\text {turb }}>0\) \\
& \(p_{01}=p_{\text {inlet }}\) \\
& \(p_{02}=p_{\text {outlet }}\) \\
& \(T_{01}=T_{\text {inlet }}\) \\
& \(h_{01}=h_{\text {inlet }}\) \\
\hline First law of thermodynamics & \(\dot{W}_{\text {turb }}=\dot{m}_{\text {turb }} c_{p}\left(T_{01}-T_{02}\right)\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Calculation & Equations \\
\hline Isentropic efficiency & \(\eta_{t u r b}=\frac{h_{01}-h_{02}}{h_{01}-h_{02 \mathrm{~s}}}=\frac{T_{01}-T_{02}}{T_{01}-T_{02 \mathrm{~s}}}\) \\
\hline \begin{tabular}{l} 
Isentropic outlet temperature, \\
assuming ideal gas, and \\
constant specific heats
\end{tabular} & \(T_{02 s}=T_{01}\left(\frac{p_{02}}{p_{01}}\right)^{\frac{\gamma-1}{\gamma}}\) \\
\hline Specific heat ratio & \(\gamma=\frac{c_{p}}{c_{p}-R}\) \\
\hline Outlet temperature & \(T_{02}=T_{01}+\eta_{t u r b} T_{01}\left\{1-\left(\frac{p_{02}}{p_{01}}\right)^{\frac{\gamma-1}{\gamma}}\right\}\) \\
\hline Heat flows & \(q_{\text {in, turb }}=\dot{m}_{t u r b} c_{p} T_{01}\) \\
& \(q_{o u t, \text { turb }}=\dot{m}_{t u r b} c_{p} T_{02}\) \\
\hline Drive shaft torque & \(\tau_{\text {turb }}=\frac{\dot{W}_{t u r b}}{\omega}\) \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(p_{\text {inlet }}, p_{01}\) & Inlet control volume total pressure \\
\(T_{\text {inlet }}, T_{01}\) & Inlet control volume total temperature \\
\(h_{\text {inlet }}, h_{01}\) & Inlet control volume total specific enthalpy \\
\(p_{\text {outlet }}, p_{02}\) & Outlet control volume total pressure \\
\(T_{\text {outlet }}\) & Outlet control volume total temperature \\
\(h_{\text {outlet }}\) & Outlet control volume total specific enthalpy \\
\(\dot{W}_{\text {turb }}\) & Drive shaft power \\
\(T_{02}\) & Temperature exiting the turbine \\
\(h_{02}\) & Outlet total specific enthalpy \\
\(\dot{m}_{\text {turb }}\) & Turbine mass flow rate \\
\(q_{\text {in, turb }}\) & Turbine inlet heat flow rate \\
\(q_{\text {out, turb }}\) & Turbine outlet heat flow rate
\end{tabular}
\begin{tabular}{ll}
\(\eta_{t u r b}\) & Turbine isentropic efficiency \\
\(T_{02 s}\) & Isentropic outlet total temperature \\
\(h_{02 s}\) & Isentropic outlet total specific enthalpy \\
\(R\) & Ideal gas constant \\
\(c_{p}\) & Specific heat at constant pressure \\
\(\gamma\) & Specific heat ratio \\
\(\tau_{\text {turb }}\) & Drive shaft torque
\end{tabular}

\section*{Performance Lookup Tables}

The block implements lookup tables based on these equations.
\begin{tabular}{|c|c|c|}
\hline Calculation & Equation & \\
\hline Corrected mass flow rate & \multicolumn{2}{|l|}{\[
\dot{m}_{\text {corr }}=\dot{m}_{\text {turb }} \frac{\sqrt{T_{01} / T_{r e f}}}{p_{01} / p_{r e f}}
\]} \\
\hline Corrected speed & \multicolumn{2}{|l|}{\[
\omega_{\text {corr }}=\frac{\omega}{\sqrt{T_{01} / T_{r e f}}}
\]} \\
\hline Pressure expansion ratio & \multicolumn{2}{|l|}{\[
p_{r}=\frac{p_{01}}{p_{02}}
\]} \\
\hline \multirow[t]{2}{*}{Efficiency lookup table} & Fixed geometry (3-D table) & \(\eta_{t u r b f x, t b l}=f\left(\omega_{\text {corr }}, p_{r}\right)\) \\
\hline & Variable geometry (3-D table) & \(\eta_{\text {turbvr }, \text { tbl }}=f\left(\omega_{\text {corr }}, p_{r}, L_{\text {rack }}\right)\) \\
\hline \multirow[t]{2}{*}{Corrected mass flow lookup table} & Fixed geometry (3-D table) & \(\dot{m}_{\text {corrfx }, t b l}=f\left(\omega_{c o r r}, p_{r}\right)\) \\
\hline & Variable geometry (3-D table) & \(\dot{m}_{\text {corrvr }, t b l}=f\left(\omega_{\text {corr }}, p_{r}, L_{\text {rack }}\right)\) \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(p_{01}\) & Inlet control volume total pressure \\
\(p_{r}\) & Pressure expansion ratio \\
\(p_{02}\) & Outlet control volume total pressure \\
\(P_{r e f}\) & Lookup table reference pressure \\
\(T_{01}\) & Inlet control volume total temperature
\end{tabular}
\begin{tabular}{ll}
\(T_{\text {ref }}\) & Lookup table reference temperature \\
\(\dot{m}_{\text {turb }}\) & Turbine mass flow rate \\
\(\omega\) & Drive shaft speed \\
\(\omega_{\text {corr }}\) & Corrected drive shaft speed \\
\(L_{\text {rack }}\) & Variable geometry turbine rack position \\
\(\eta_{\text {turbfx }, \text { tbl }}\) & Efficiency 3-D lookup table for fixed geometry \\
\(\dot{m}_{\text {corrfx }, t b l}\) & Corrected mass flow rate 3-D lookup table for fixed geometry \\
\(\eta_{\text {turbvr, tbl }}\) & Efficiency 3-D lookup table for variable geometry \\
\(\dot{m}_{\text {corrvr, tbl }}\) & Corrected mass flow rate 3-D lookup table for variable geometry
\end{tabular}

\section*{Wastegate}

To calculate the wastegate heat and mass flow rates, the Turbine block uses a Flow Restriction block. The Flow Restriction block uses the wastegate flow area.
\[
A_{w g}=A_{\text {wgpctcmd }} \frac{A_{\text {wgopen }}}{100}
\]

The equation uses these variables.
\begin{tabular}{ll}
\(A_{\text {wgpctcmd }}\) & Wastegate valve area percent command \\
\(A_{\text {wg }}\) & Wastegate valve area \\
\(A_{\text {wgopen }}\) & Wastegate valve area when fully open
\end{tabular}

\section*{Combined Flow}

To represent flow through the wastegate valve and turbine, the block uses these equations.
\begin{tabular}{|ll|}
\hline Calculation & Equations \\
\begin{tabular}{l} 
Blocks not configured \\
with a wastegate valve \\
Total mass flow rate
\end{tabular} & \(\dot{m}_{w g}=q_{w g}=0\) \\
\(\dot{m}_{t o t a l}=\dot{m}_{t u r b}+\dot{m}_{w g}\)
\end{tabular}
\begin{tabular}{|ll|}
\hline Calculation & Equations \\
Total heat flow rate & \(q_{\text {inlet }}=q_{\text {in, turb }}+q_{w g}\) \\
& \(q_{\text {outlet }}=q_{\text {out, turb }}+q_{w g}\) \\
\begin{tabular}{ll} 
Combined temperature \\
exiting the wastegate \\
valve and turbine
\end{tabular} & \(T_{\text {outflw }}=\left\{\begin{array}{cc}\frac{q_{\text {outlet }}}{\dot{m}_{\text {total } p}} & \dot{m}_{\text {total }}>\dot{m}_{\text {thresh }} \\
\frac{T_{02}+T_{\text {outflw, wg }}}{2} & \text { else }\end{array}\right.\) \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(\dot{m}_{\text {total }}\) & Total mass flow rate through the wastegate valve and turbine \\
\(\dot{m}_{\text {turb }}\) & Turbine mass flow rate \\
\(\dot{m}_{w g}\) & Mass flow rate through the wastegate valve \\
\(q_{\text {inlet }}\) & Total inlet heat flow rate \\
\(q_{\text {outlet }}\) & Total outlet heat flow rate \\
\(q_{\text {in, turb }}\) & Turbine inlet heat flow rate \\
\(q_{\text {out, turb }}\) & Turbine outlet heat flow rate \\
\(q_{w g}\) & Wastegate valve heat flow rate \\
\(T_{02}\) & Temperature exiting the turbine \\
\(T_{\text {outflw }}\) & Total temperature exiting the block \\
\(T_{\text {outflw, wg }}\) & Temperature exiting the wastegate valve \\
\(\dot{m}_{\text {thresh }}\) & Mass flow rate threshold to prevent dividing by zero \\
\(c_{p}\) & Specific heat at constant pressure
\end{tabular}

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Equations \\
\hline \multirow[t]{5}{*}{PwrIn fo} & \multirow[t]{3}{*}{\begin{tabular}{l}
PwrTrnsfrd - Power transferred between blocks \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block
\end{tabular}} & PwrDriveshft & Power transmitted from the shaft & - \(\dot{W}_{\text {turb }}\) \\
\hline & & PwrHeatFlwIn & Heat flow rate at port A & \(q_{\text {outlet }}\) \\
\hline & & PwrHeatFlwOu t & Heat flow rate at port B & \(q_{\text {outlet }}\) \\
\hline & \begin{tabular}{l}
PwrNotTrnsfrd - Power crossing the block boundary, but not transferred \\
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular} & PwrLoss & Power loss & \(-q_{\text {inlet }}\)
\(-q_{\text {outlet }}\)
\(+\dot{W}_{\text {turb }}\) \\
\hline & \begin{tabular}{l}
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular} & Not used & & \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(\dot{W}_{\text {turb }}\) & Drive shaft power \\
\(q_{\text {outlet }}\) & Total outlet heat flow rate \\
\(q_{\text {inlet }}\) & Total inlet heat flow rate
\end{tabular}

\section*{Ports}

\section*{Input}

\section*{Ds - Drive shaft speed}
two-way connector port
ShaftSpd - Signal containing the drive shaft angular speed, \(\omega\), in rad/s.
A - Inlet pressure, temperature, enthalpy, mass fractions
two-way connector port
Bus containing the inlet control volume:
- InPrs - Pressure, \(p_{\text {inlet }}\), in Pa
- InTemp - Temperature, \(T_{\text {inlet }}\), in K
- InEnth - Specific enthalpy, \(h_{\text {inlet }}\), in J/kg

\section*{B - Outlet pressure, temperature, enthalpy, mass fractions}
two-way connector port
Bus containing the outlet control volume:
- OutPrs - Pressure, \(p_{\text {outlet }}\), in Pa
- OutTemp - Temperature, \(T_{\text {outlet }}\), in K
- OutEnth - Specific enthalpy, \(h_{\text {outlet }}\), in J/kg

\section*{RackPos - Rack position}
scalar
Variable geometry turbine rack position, \(L_{\text {rack }}\).

\section*{Dependencies}

To create this port, select Variable geometry for the Turbine type parameter.

\section*{WgAreaPct - Wastegate area percent}

\section*{scalar}

Wastegate valve area percent, \(A_{\text {wgpctcmd }}\).

\section*{Dependencies}

To create this port, select Include wastegate.

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|}
\hline Signal & Description & Units \\
\hline TurbOutletTemp & Temperature exiting the turbine & K \\
\hline DriveshftPwr & Drive shaft power & W \\
\hline DriveshftTrq & Drive shaft torque & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline TurbMassFlw & Turbine mass flow rate & \(\mathrm{kg} / \mathrm{s}\) \\
\hline PrsRatio & Pressure ratio & \(\mathrm{N} / \mathrm{A}\) \\
\hline DriveshftCorrSpd & Corrected drive shaft speed & \(\mathrm{rad} / \mathrm{s}\) \\
\hline TurbEff & Turbine isentropic efficiency & \(\mathrm{N} / \mathrm{A}\) \\
\hline CorrMassFlw & Corrected mass flow rate & \(\mathrm{kg} / \mathrm{s}\) \\
\hline WgArea & Wastegate valve area & \(\mathrm{m} \wedge 2\) \\
\hline WgMassFlw & \begin{tabular}{l} 
Mass flow rate through the wastegate \\
valve
\end{tabular} & \(\mathrm{kg} / \mathrm{s}\) \\
\hline WgOutletTemp & \begin{tabular}{l} 
Temperature exiting the wastegate \\
valve
\end{tabular} & K \\
\hline PwrInfo & \begin{tabular}{l} 
PwrTrnsf \\
rd
\end{tabular} & \begin{tabular}{l} 
PwrDrivesh \\
ft
\end{tabular} \\
Power transmitted from the shaft & W \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l} 
PwrHeatFlw \\
In
\end{tabular}} & Heat flow rate at port A & W \\
\hline & \begin{tabular}{l} 
PwrHeatFlw \\
Out
\end{tabular} & Heat flow rate at port B \\
\hline \begin{tabular}{l} 
PwrNotTr \\
nsfrd
\end{tabular} & PwrLoss & Power loss \\
\hline PwrStored & Not used & W \\
\hline
\end{tabular}

\section*{Ds - Drive shaft torque}
two-way connector port
Trq - Signal containing the drive shaft torque, \(\tau_{t u r b}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{A - Inlet mass flow rate, heat flow rate, temperature, mass fractions two-way connector port}

Bus containing:
- MassFlwRate - Total mass flow rate through wastegate valve and turbine, \(-\dot{m}_{\text {total }}\), in kg/s
- HeatFlwRate - Total inlet heat flow rate, \(-q_{\text {inlet }}\), in J/s
- Temp - Total inlet temperature, \(T_{\text {inlet }}\), in K
- MassFrac - Mass fractions, dimensionless.

Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H20MassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- N02MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

B - Outlet mass flow rate, heat flow rate, temperature, mass fractions
two-way connector port
Bus containing:
- MassFlwRate - Turbine mass flow rate through wastegate valve and turbine, \(\dot{m}_{t u r b}\), in kg/s
- HeatFlwRate - Total outlet heat flow rate, \(q_{\text {outlet }}\), in J/s
- Temp - Total outlet temperature, \(T_{\text {outflw }}\), in K
- MassFrac - Mass fractions, dimensionless.

Specifically, a bus with these mass fractions:
- 02MassFrac - Oxygen
- N2MassFrac - Nitrogen
- UnbrndFuelMassFrac - Unburned fuel
- C02MassFrac - Carbon dioxide
- H20MassFrac - Water
- COMassFrac - Carbon monoxide
- NOMassFrac - Nitric oxide
- N02MassFrac - Nitrogen dioxide
- NOxMassFrac - Nitric oxide and nitrogen dioxide
- PmMassFrac - Particulate matter
- AirMassFrac - Air
- BrndGasMassFrac - Burned gas

\section*{Parameters}

\section*{Block Options}

\section*{Turbine type - Select turbine type}

Fixed geometry (default)|Variable geometry
Turbine type.

\section*{Dependencies}

The table summarizes the parameter and port dependencies.
\begin{tabular}{|l|l|l|}
\hline Value & Enables Parameters & Creates Ports \\
\hline Fixed geometry & \begin{tabular}{l} 
Corrected mass flow rate table, \\
mdot_corrfx_tbl \\
Efficiency table, eta_turbfx_tbl \\
Corrected speed breakpoints, \\
w_corrf_bpts1 \\
Pressure ratio breakpoints, \\
Pr_f__bpts2
\end{tabular} & None \\
\hline Variable geometry & \begin{tabular}{l} 
Corrected mass flow rate table, \\
mdot_corrvr_tbl \\
Efficiency table, eta_turbvr_tbl \\
Corrected speed breakpoints,
\end{tabular} & RP \\
\hline & \begin{tabular}{l} 
w_corrv_bpts2 \\
Pressure ratio breakpoints, \\
Pr_vr_bpts2 \\
Rack breakpoints, L_rack_bpts3
\end{tabular} & \\
\hline
\end{tabular}

\section*{Include wastegate - Select}
on (default) | off | off

\section*{Dependencies}

Selecting the Include wastegate parameter enables:
- Wastegate flow area, A_wgopen
- Pressure ratio linearize limit, Plim_wg

\section*{Performance Tables}

\section*{Calibrate Performance Maps - Calibrate tables with measured data selection}

If you have Model-Based Calibration Toolbox, click Calibrate Performance Maps to virtually calibrate the corrected mass flow rate and turbine efficiency lookup tables using measured data. The dialog box steps through these tasks.
\begin{tabular}{|c|c|c|}
\hline Task & \multicolumn{2}{|l|}{Description} \\
\hline Import turbine data & \multicolumn{2}{|l|}{Import this turbine data from a file. For more information, see "Using Data" (Model-Based Calibration Toolbox).} \\
\hline & Turbine type & Data \\
\hline & Fixed geometry & \begin{tabular}{l}
- Pressure ratio, dimensionless \\
- Speed, rad/s \\
- Efficiency, dimensionless \\
- Corrected mass flow rate, \(\mathrm{kg} / \mathrm{s}\)
\end{tabular} \\
\hline & Variable geometry & \begin{tabular}{l}
- Pressure ratio, dimensionless \\
- Speed, rad/s \\
- Rack position, dimensionless \\
- Efficiency, dimensionless \\
- Corrected mass flow rate, \(\mathrm{kg} / \mathrm{s}\) \\
Include data for several test points at each rack position operating point.
\end{tabular} \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
Model-Based Calibration Toolbox limits the speed and pressure ratio breakpoint values to the maximum values in the file. \\
To filter or edit the data, select Edit in Application. The ModelBased Calibration Toolbox Data Editor opens.
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Task & \multicolumn{3}{|l|}{Description} \\
\hline \multirow[t]{10}{*}{Generate response models} & \multicolumn{3}{|l|}{Model-Based Calibration Toolbox fits the imported data and generates response models.} \\
\hline & \multirow[t]{4}{*}{\begin{tabular}{|l|}
\hline Turbine type \\
\hline \begin{tabular}{l} 
Fixed \\
geometry
\end{tabular} \\
\hline
\end{tabular}} & \multicolumn{2}{|l|}{Description} \\
\hline & & Data & Response Model \\
\hline & & Corrected mass flow rate & Square root turbine flow model described in Modeling and Control of Engines and Drivelines \({ }^{2}\) \\
\hline & & Efficiency & Blade speed ratio (BSR) model described in Modeling and Control of Engines and Drivelines \({ }^{2}\) \\
\hline & \multirow[t]{4}{*}{Variable geometry} & \multicolumn{2}{|l|}{Model-Based Calibration Toolbox uses a point-bypoint test plan to fit the data. For each rack position, the block uses these response models to fit the corrected mass flow rate and efficiency data.} \\
\hline & & Data & Response Model \\
\hline & & Corrected mass flow rate & Square root turbine flow model described in Modeling and Control of Engines and Drivelines \({ }^{2}\) \\
\hline & & Efficiency & Blade speed ratio (BSR) model described in Modeling and Control of Engines and Drivelines \({ }^{2}\) \\
\hline & \multicolumn{3}{|l|}{To assess or adjust the response model fit, select Edit in Application. The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).} \\
\hline
\end{tabular}
\begin{tabular}{|l|l||}
\hline Task & Description \\
\hline \begin{tabular}{l} 
Generate \\
calibration
\end{tabular} & \begin{tabular}{l} 
Model-Based Calibration Toolbox calibrates the response model and \\
generates calibrated tables.
\end{tabular} \\
& \begin{tabular}{ll} 
Turbine type & Description \\
& \begin{tabular}{l} 
Fixed \\
geometry
\end{tabular} \\
& \begin{tabular}{l} 
Model-Based Calibration Toolbox uses the \\
response models for the corrected mass flow rate \\
and efficiency tables.
\end{tabular} \\
\cline { 2 - 4 } & \begin{tabular}{l} 
Variable \\
geometry
\end{tabular} \\
\begin{tabular}{l} 
Model-Based Calibration Toolbox fills the \\
corrected mass flow rate and efficiency tables for \\
each rack position. Model-Based Calibration \\
Toolbox then combines the rack position- \\
dependent tables into 3D lookup tables for \\
corrected mass flow rate and efficiency.
\end{tabular} \\
& \begin{tabular}{l} 
To assess or adjust the calibration, select Edit in Application. The \\
Model-Based Calibration Toolbox CAGE Browser opens. For more \\
information, see "Calibration Tables" (Model-Based Calibration \\
Toolbox).
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Task & \multicolumn{2}{|l|}{Description} \\
\hline Update block parameters & \multicolumn{2}{|l|}{Update these corrected mass flow rate and efficiency parameters with the calibration.} \\
\hline & Turbine type & Parameters \\
\hline & Fixed geometry & \begin{tabular}{l}
- Corrected mass flow rate table, mdot_corrfx_tbl \\
- Efficiency table, eta_turbfx_tbl \\
- Corrected speed breakpoints, w_corrfx_bpts1 \\
- Pressure ratio breakpoints, Pr_fx_bpts2
\end{tabular} \\
\hline & Variable geometry & \begin{tabular}{l}
- Corrected mass flow rate table, mdot_corrvr_tbl \\
- Efficiency table, eta_turbvr_tbl \\
- Corrected speed breakpoints, w_corrvr_bpts2 \\
- Pressure ratio breakpoints, Pr_vr_bpts2 \\
- Rack breakpoints, L_rack_bpts3
\end{tabular} \\
\hline
\end{tabular}

Corrected mass flow rate table, mdot_corrfx_tbl - Lookup table array

Corrected mass flow rate lookup table for fixed geometry, \(\dot{m}_{c o r r f x}, t b l\), as a function of corrected driveshaft speed, \(\omega_{\text {corr, }}\), and pressure ratio, \(p_{r}\), in \(\mathrm{kg} / \mathrm{s}\).


\section*{Dependencies}

To enable this parameter, select Fixed geometry for the Turbine type parameter.

\section*{Efficiency table, eta_turbfx_tb - Lookup table} array

Efficiency lookup table for fixed geometry, \(\eta_{t u r b f x, t b l}\), as a function of corrected driveshaft speed, \(\omega_{\text {corr }}\), and pressure ratio, \(p_{r}\), dimensionless.


\section*{Dependencies}

To enable this parameter, select Fixed geometry for the Turbine type parameter.
Corrected speed breakpoints, w_corrfx_bpts1 - Fixed geometry array

Corrected drive shaft speed breakpoints for fixed geometry, \(\omega_{\text {corrfx, bpts } 1}\), in rad/s.

\section*{Dependencies}

To enable this parameter, select Fixed geometry for the Turbine type parameter.
Pressure ratio breakpoints, Pr_fx_bpts2 - Fixed geometry array

Pressure ratio breakpoints for fixed geometry, \(p_{r f x}\), bpts2.

\section*{Dependencies}

To enable this parameter, select Fixed geometry for the Turbine type parameter.

\section*{Corrected mass flow rate table, mdot_corrvr_tbl - Lookup table} array

Corrected mass flow rate lookup table for variable geometry, \(\dot{m}_{\text {corrvr, } t b l}\), as a function of corrected driveshaft speed, \(\omega_{\text {corr, }}\), and pressure ratio, \(p_{r}\), in \(\mathrm{kg} / \mathrm{s}\).


\section*{Dependencies}

To enable this parameter, select Variable geometry for the Turbine type parameter.

\section*{Efficiency table, eta_turbvr_tbl - Lookup table} array

Efficiency lookup table for variable geometry, \(\eta_{t u r b v r, t b l}\), as a function of corrected driveshaft speed, \(\omega_{\text {corr }}\), and pressure ratio, \(p_{r}\), dimensionless.


\section*{Dependencies}

To enable this parameter, select Variable geometry for the Turbine type parameter.
Corrected speed breakpoints, w_corrvr_bpts2 - Variable geometry array

Corrected drive shaft speed breakpoints for variable geometry, \(\omega_{\text {corrvr, bpts1 }}\), in rad/s.

\section*{Dependencies}

To enable this parameter, select Variable geometry for the Turbine type parameter.
```

Pressure ratio breakpoints, Pr_vr_bpts2 - Variable geometry array

```

Pressure ratio breakpoints for variable geometry.

\section*{Dependencies}

To enable this parameter, select Variable geometry for the Turbine type parameter.

\section*{Rack breakpoints, L_rack_bpts3 - Variable geometry array}

Rack position breakpoints for variable geometry, \(L_{\text {rack, bpts3 }}\).

\section*{Dependencies}

To enable this parameter, select Variable geometry for the Turbine type parameter.
Reference temperature, T_ref - Temperature scalar

Performance map reference temperature, \(T_{r e f}\), in K.
Reference pressure, P_ref - Pressure scalar

Performance map reference pressure, \(P_{r e f}\), in Pa .

\section*{Wastegate}

Wastegate flow area, A_wgopen - Area scalar

Area of fully opened wastegate valve, \(A_{\text {wgopen, }}\) in \(\mathrm{m}^{\wedge} 2\).

\section*{Dependencies}

To enable Wastegate flow area, A_wgopen, select the Include wastegate parameter.
Pressure ratio linearize limit, Plim_wg-Area, m^2
scalar

\section*{Dependencies}

Flow restriction linearization limit, \(p_{l i m, w g}\).

\section*{To enable Pressure ratio linearize limit, Plim_wg, select the Include wastegate parameter.}

\section*{Properties}

\section*{Ideal gas constant, R - Constant}
scalar
Ideal gas constant \(R\), in \(\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})\).

\section*{Specific heat at constant pressure, cp - Specific heat scalar}

Specific heat at constant pressure, \(c_{p}\), in \(\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})\).

\section*{References}
[1] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.
[2] Eriksson, Lars and Lars Nielsen. Modeling and Control of Engines and Drivelines. Chichester, West Sussex, United Kingdom: John Wiley \& Sons Ltd, 2014.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).

\author{
See Also \\ Two-Way Connection | Boost Drive Shaft | Compressor
}

\author{
Topics \\ "Model-Based Calibration Toolbox" \\ Introduced in R2017a
}

\section*{Mapped Core Engine}

Steady-state core engine model using lookup tables
Library: Powertrain Blockset / Propulsion / Combustion Engine Components / Core Engine


\section*{Description}

The Mapped Core Engine block implements a steady-state core engine model using power, air mass flow, fuel flow, exhaust temperature, efficiency, and emission performance lookup tables. You can use the block for:
- Hardware-in-the-loop (HIL) engine control design.
- Vehicle-level fuel economy and performance simulations.

The block enables you to specify lookup tables for these engine characteristics. The lookup tables are functions of engine load, \(L\), and engine speed \(N\). If you select Input engine temperature, the tables are also a function of engine temperature, \(T\).
- Power
- Air
- Fuel
- Temperature
- Efficiency
- Emissions
- Hydrocarbon (HC)
- Carbon monoxide (CO)
- Nitric oxide and nitrogen dioxide (NOx)
- Carbon dioxide \(\left(\mathrm{CO}_{2}\right)\)
- Particulate matter (PM) emissions

To bound the Mapped Core Engine block output, the block does not extrapolate the lookup table data.

\section*{Ports}

\section*{Input}

\section*{\(<T r q C m d>-\) Engine load \\ TrqCmd (default)}

Engine load, L. Examples of engine load include:
- Commanded torque
- Commanded indicated mean effective pressure (IMEP) in the engine cylinder
- Normalized cylinder air mass
- Injected fuel mass

\section*{Dependencies}

To specify an engine load port name, on the Configuration tab, enter a name in the Load input port name parameter field.

\section*{<EngSpd> - Engine speed}

EngSpd (default)
Engine speed, \(N\).

\section*{Dependencies}

To specify an engine load port name, on the Configuration tab, enter a name in the Speed input port name parameter field.

\section*{<EngTemp> - Engine temperature}

EngSpd (default)
Engine temperature, T.

\section*{Dependencies}

To create the engine temperature input port name, select Input engine temperature parameter field.

To specify an engine load port name, on the Configuration tab, enter a name in the Temperature input port name parameter field.

\section*{Output}
<EngTrq> - Power
EngTrq (default)
Engine power, \(T_{\text {brake }}\).

\section*{Dependencies}
- To create this port, on the Configuration tab, select Power.
- To specify the port name, on the Power tab, enter a name in the Power output port name parameter field.

\section*{<IntkAirMassFlw> - Air mass flow \\ IntkAirMassFlw (default)}

Engine air mass flow, \(\dot{m}_{\text {intk }}\).

\section*{Dependencies}
- To create this port, on the Configuration tab, select Air.
- To specify the port name, on the Air tab, enter a name in the Air output port name parameter field.

\section*{<FuelMassFlw> - Fuel flow}

FuelMassFlw (default)
Engine fuel flow, \(\dot{m}_{f u e l}\).

\section*{Dependencies}
- To create this port, on the Configuration tab, select Fuel.
- To specify the port name, on the Fuel tab, enter a name in the Fuel output port name parameter field.

\section*{<ExhManGasTemp> - Exhaust temperature \\ ExhManGasTemp (default)}

Engine exhaust temperature, \(T_{\text {exh }}\).

\section*{Dependencies}
- To create this port, on the Configuration tab, select Temperature.
- To specify the port name, on the Temperature tab, enter a name in the Temperature output port name parameter field.

\section*{<Bsfc> - Efficiency}

Bsfc (default)
Brake-specific fuel consumption (BSFC), Eff.

\section*{Dependencies}
- To create this port, on the Configuration tab, select Efficiency.
- To specify the port name, on the Efficiency tab, enter a name in the Efficiency output port name parameter field.

\section*{<EoHC> - Hydrocarbon emissions}

\section*{EoHC (default)}

Hydrocarbon emissions, HC.

\section*{Dependencies}
- To create this port, on the Configuration tab, select HC.
- To specify the port name, on the HC tab, enter a name in the HC output port name parameter field.

\section*{<EoCO> - Carbon monoxide emissions EoCO (default)}

Carbon monoxide emissions, CO.

\section*{Dependencies}
- To create this port, on the Configuration tab, select CO.
- To specify the port name, on the \(\mathbf{C O}\) tab, enter a name in the \(\mathbf{C O}\) output port name parameter field.

\section*{<EONOx> - Nitric oxide and nitrogen dioxide emissions EoNOx (default)}

Nitric oxide and nitrogen dioxide emissions, NOx.

\section*{Dependencies}
- To create this port, on the Configuration tab, select NOx.
- To specify the port name, on the NOx tab, enter a name in the NOx output port name parameter field.

\section*{<EOCO2> - Carbon dioxide emissions \\ EoC02 (default)}

Carbon dioxide emissions, CO2.

\section*{Dependencies}
- To create this port, on the Configuration tab, select CO2.
- To specify the port name, on the \(\mathbf{C O 2}\) tab, enter a name in the \(\mathbf{C O 2}\) output port name parameter field.

\section*{<EoPm> - Particulate matter emissions}

EoPm (default)
Particulate matter emissions, PM.

\section*{Dependencies}
- To create this port, on the Configuration tab, select PM.
- To specify the port name, on the \(\mathbf{P M}\) tab, enter a name in the PM output port name parameter field.

\section*{Parameters}

\section*{Configuration}

\section*{Engine Type - Type of engine image \\ Compression-ignition (CI) (default)|Spark-ignition (SI)}

Type of mapped internal combustion engine image to use in the block.

\section*{Load input port name - Name \\ TrqCmd (default)}

Engine load input port name.

\section*{Breakpoints for load input - Breakpoints} vector

Breakpoints for engine load input.
```

Speed input port name - Name
EngSpd (default)

```

Speed input port name.
Breakpoints for speed input - Breakpoints vector

Breakpoints for engine speed input.

\section*{Temperature input port name - Name EngTemp (default)}

Temperature input port name.

\section*{Dependencies}

To enable this parameter, select Input engine temperature.

\section*{Breakpoints for temperature input - Breakpoints} vector

Breakpoints for engine temperature input.

\section*{Dependencies}

To enable this parameter, select Input engine temperature.

\section*{Output Configuration - Create output ports}
power on (default)
Create the output ports.

\section*{Dependencies}

The table summarizes the output ports that are created for each Output parameter selection.
\begin{tabular}{|l|l|l|}
\hline Output Selection & Creates Port & Creates Tab \\
\hline Power & EngTrq & Power \\
\hline Air & IntkAirMassFlw & Air \\
\hline Fuel & FuelMassFlw & Fuel \\
\hline Temperature & ExhManGasTemp & Temperature \\
\hline Efficiency & Bsfc & Efficiency \\
\hline HC & EoHC & HC \\
\hline CO & EoCO & CO \\
\hline NOx & EoNOx & NOx \\
\hline CO2 & EoCO2 & CO2 \\
\hline PM & EoPm & PM \\
\hline
\end{tabular}

\section*{Power}

Power output port name - Power
BrkTrq (default)
Power output port name.

\section*{Dependencies}

To create this parameter, on the Configuration tab, select Power.

\section*{Power table - Power \\ array}

Power table.
Dependencies
To create this parameter, on the Configuration tab, select Power.
```

Air
Air output port name - Air
AirFlw (default)

```

Air mass flow output port name.

\section*{Dependencies}

To create this parameter, on the Configuration tab, select Air.

\section*{Air table - Air}
array
Air mass flow table.
Dependencies
To create this parameter, on the Configuration tab, select Air.

\section*{Fuel}

\section*{Fuel output port name - Fuel}

FuelFlw (default)
Fuel output port name.
Dependencies
To create this parameter, on the Configuration tab, select Fuel.

\section*{Fuel table - Fuel}
array
Fuel table.

\section*{Dependencies}

To create this parameter, on the Configuration tab, select Fuel.

\section*{Temperature}

Temperature output port name - Temperature
Texh (default)
Temperature output port name.

\section*{Dependencies}

To create this parameter, on the Configuration tab, select Temperature.

\section*{Temperature table - Temperature \\ array}

Temperature table.

\section*{Dependencies}

To create this parameter, on the Configuration tab, select Temperature.

\section*{Efficiency}

Efficiency output port name - Efficiency
BSFC (default)
Efficiency output port name.
Dependencies
To create this parameter, on the Configuration tab, select Efficiency.

\section*{Efficiency table - Efficiency}

\section*{array}

Efficiency table.

\section*{Dependencies}

To create this parameter, on the Configuration tab, select Efficiency.
HC
HC output port name - Hydrocarbon
EO HC (default)
Hydrocarbon output port name.

\section*{Dependencies}

To create this parameter, on the Configuration tab, select HC.
HC table - Hydrocarbon
array

Hydrocarbon table.

\section*{Dependencies}

To create this parameter, on the Configuration tab, select HC.

\section*{CO}

CO output port name - Carbon dioxide
EO CO (default)
Carbon monoxide output port name.

\section*{Dependencies}

To create this parameter, on the Configuration tab, select CO.

\section*{CO table - Carbon dioxide array}

Carbon dioxide table.

\section*{Dependencies}

To create this parameter, on the Configuration tab, select CO.
NOX
NOx output port name - Nitric oxide \(\mathbf{N O}\) and nitrogen dioxide \(\mathbf{N O}_{\mathbf{2}}\) EO NOx (default)

NOx output port name. NOx is nitric oxide NO and nitrogen dioxide \(\mathrm{NO}_{2}\).

\section*{Dependencies}

To create this parameter, on the Configuration tab, select NOx.
NOX table - Nitric oxide \(\mathbf{N O}\) and nitrogen dioxide \(\mathbf{N O}_{\mathbf{2}}\) array

NOx emissions table. NOx is nitric oxide NO and nitrogen dioxide \(\mathrm{NO}_{2}\).

\section*{Dependencies}

To create this parameter, on the Configuration tab, select NOx.

\section*{\(\mathrm{CO2}\)}

\section*{CO2 output port name - Carbon dioxide EO CO2 (default)}

Carbon dioxide output port name.

\section*{Dependencies}

To create this parameter, on the Configuration tab, select CO2.

\section*{CO2 table - Carbon dioxide}
array
Carbon dioxide table.

\section*{Dependencies}

To create this parameter, on the Configuration tab, select CO2.

\section*{PM}

PM output port name - Particulate matter
EO PM (default)
Particulate matter output port name.
Dependencies
To create this parameter, on the Configuration tab, select PM.

\section*{PM table - Particulate matter \\ array}

Particulate matter table.

\section*{Dependencies}

To create this parameter, on the Configuration tab, select PM.

\title{
Extended Capabilities
}

\author{
C/C++ Code Generation \\ Generate \(C\) and \(C++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\text {TM }}\).
}

\author{
See Also \\ CI Core Engine | SI Core Engine \\ Introduced in R2017a
}

\section*{Mapped CI Engine}

Compression-ignition engine model using lookup tables
Library: Powertrain Blockset / Propulsion / Combustion Engines
Vehicle Dynamics Blockset / Powertrain / Propulsion


\section*{Description}

The Mapped CI Engine block implements a mapped compression-ignition (CI) engine model using power, air mass flow, fuel flow, exhaust temperature, efficiency, and emission performance lookup tables. You can use the block for:
- Hardware-in-the-loop (HIL) engine control design
- Vehicle-level fuel economy and performance simulations

The lookup tables, developed with the Model-Based Calibration Toolbox, are functions of injected fuel mass, \(F\), engine torque, \(T\), engine speed, \(N\), and engine temperature, \(T e m p_{\text {Eng }}\).
\begin{tabular}{|l|l|l|}
\hline Input Command Setting & \begin{tabular}{l} 
Input Engine \\
Temperature Parameter \\
Setting
\end{tabular} & Lookup Tables \\
\hline \multirow{2}{*}{ Fuel mass } & off & \(f(F, N)\) \\
\cline { 2 - 3 } & on & \(f\left(F, N, T e m p_{\text {Eng }}\right)\) \\
\hline \multirow{2}{*}{ Torque } & off & \(f(T, N)\) \\
\cline { 2 - 3 } & on & \(f\left(T, N, T e m p_{\text {Eng }}\right)\) \\
\hline
\end{tabular}

The block enables you to specify lookup tables for these engine characteristics:
- Power
- Air
- Fuel
- Temperature
- Efficiency
- Hydrocarbon (HC) emissions
- Carbon monoxide (CO) emissions
- Nitric oxide and nitrogen dioxide (NOx) emissions
- Carbon dioxide \(\left(\mathrm{CO}_{2}\right)\) emissions
- Particulate matter (PM) emissions

To bound the Mapped CI Engine block output, the block does not extrapolate the lookup table data.

\section*{Virtual Calibration}

If you have Model-Based Calibration Toolbox, click Calibrate Maps to virtually calibrate the 2D lookup tables using measured data. The dialog box steps through these tasks.

\begin{tabular}{|l|l|}
\hline Task & Description \\
\hline \begin{tabular}{l} 
Generate \\
response models
\end{tabular} & \begin{tabular}{l} 
For both firing and non-firing data, the Model-Based Calibration \\
Toolbox uses test plans to fit data to Gaussian process models (GPMs). \\
To assess or adjust the response model fit, select Edit in \\
Application. The Model-Based Calibration Toolbox Model Browser \\
opens. For more information, see "Model Assessment" (Model-Based \\
Calibration Toolbox).
\end{tabular} \\
\hline \begin{tabular}{l} 
Generate \\
calibration
\end{tabular} & \begin{tabular}{l} 
Model-Based Calibration Toolbox calibrates the firing and non-firing \\
response models and generates calibrated tables.
\end{tabular} \\
\begin{tabular}{l} 
To assess or adjust the calibration, select Edit in Application. The \\
Model-Based Calibration Toolbox CAGE Browser opens. For more \\
information, see "Calibration Tables" (Model-Based Calibration \\
Toolbox).
\end{tabular} \\
\hline \begin{tabular}{l} 
Update block \\
parameters
\end{tabular} & \begin{tabular}{l} 
Update the block lookup table and breakpoint parameters with the \\
calibration.
\end{tabular} \\
\hline
\end{tabular}

\section*{Cylinder Air Mass}

The block calculates the normalized cylinder air mass using these equations.
\[
\begin{aligned}
& M_{\text {Nom }}=\frac{P_{\text {std }} V_{d}}{N_{\text {cyl }} R_{\text {air }} T_{\text {std }}} \\
& L=\frac{\left(\frac{60 s}{\min }\right) C p s \cdot \dot{m}_{\text {air }}}{\left(\frac{1000 g}{K g}\right) N_{\text {cyl }} \cdot N \cdot M_{\text {Nom }}}
\end{aligned}
\]

The equations use these variables.
\(L \quad\) Normalized cylinder air mass
\(M_{\text {Nom }} \quad\) Nominal engine cylinder air mass at standard temperature and pressure, piston at bottom dead center (BDC) maximum volume, in kg
Cps Crankshaft revolutions per power stroke, rev/stroke
\(P_{s t d} \quad\) Standard pressure
\(T_{\text {std }} \quad\) Standard temperature
\begin{tabular}{ll}
\(R_{a i r}\) & Ideal gas constant for air and burned gas mixture \\
\(V_{d}\) & Displaced volume \\
\(N_{c y l}\) & Number of engine cylinders \\
\(N\) & Engine speed \\
\(\dot{m}_{\text {intk }}\) & Engine air mass flow, in \(\mathrm{g} / \mathrm{s}\)
\end{tabular}

\section*{Turbocharger Lag}

To model turbocharger lag, select Include turbocharger lag effect. Turbocharger lag limits the maximum fuel mass per injection. To model the maximum fuel mass per injection, the block uses a first-order system with a time constant. At low torque, the engine does not require boost to provide sufficient air flow. When the requested fuel mass requires boost, the block uses a time constant to determine the maximum fuel mass per injection. The block uses these equations for the specified Input command setting.
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Calculation} & \multicolumn{2}{|l|}{Input command Parameter Setting} \\
\hline & Fuel mass & Torque \\
\hline Dynamic torque & \[
\frac{d F_{\max }}{d t}=\frac{1}{\tau_{\text {eng }}}\left(F_{c m d}-F_{\max }\right.
\] & \[
\frac{d T_{\max }}{d t}=\frac{1}{\tau_{e n g}}\left(T_{c m d}-T_{\max }\right)
\] \\
\hline Fuel mass per injection or torque with turbocharger lag & \[
\begin{aligned}
& F= \\
& \begin{cases}F_{c m d} & \text { when } F_{c m d}<F_{\text {max }} \\
F_{\max } & \text { when } F_{c m d} \geq F_{\text {max }}\end{cases}
\end{aligned}
\] & \[
\begin{aligned}
& T_{\text {target }}= \\
& \begin{cases}T_{c m d} & \text { when } T_{c m d}<T_{\max } \\
T_{\max } & \text { when } T_{c m d} \geq T_{\max }\end{cases}
\end{aligned}
\] \\
\hline Fuel mass per injection or torquewithout turbocharger lag & \(F=F_{\text {cmd }}=F_{\text {max }}\) & \(T_{\text {target }}=T_{\text {cmd }}=T_{\text {max }}\) \\
\hline Boost time constant & \[
\begin{aligned}
& \tau_{b s t}= \\
& \begin{cases}\tau_{b s t, \text { rising }} & \text { when } F_{c m d} \\
\tau_{b s t, \text { falling }} & \text { when } F_{c m d} \leq\end{cases}
\end{aligned}
\] & \[
\begin{aligned}
& \tau_{b s t}= \\
& \operatorname{ax} \begin{cases}\tau_{b s t, r i s i n g} & \text { when } T_{c m d}>T_{\text {max }} \\
\text { ax } & \text { when } T_{c m d} \leq T_{\text {max }}, \text { falling }\end{cases}
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multirow{2}{*}{ Calculation } & Input command Parameter Setting \\
\cline { 2 - 3 } & Fuel mass \\
\hline Final time constant & \(\tau_{\text {eng }}= \begin{cases}\tau_{\text {nat }} & \text { when } T_{\text {brake }}<f_{b s t}(N) \\
\tau_{b s t} & \text { when } T_{b r a k e} \geq f_{b s t}(N)\end{cases}\) \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(T_{\text {brake }}\) & Brake torque \\
\(F\) & Fuel mass per injection \\
\(F_{\text {cmd }}, F_{\text {max }}\) & Commanded and maximum fuel mass per injection, respectively \\
\(T_{\text {target, }}, T_{\text {cmd }}, T_{\max }\) & Target, commanded, and maximum torque, respectively \\
\(\tau_{\text {bst }}\) & Boost time constant \\
\(\tau_{\text {bst,rising, }}, \tau_{\text {bst,falling }}\) & Boost rising and falling time constant, respectively \\
\(\tau_{\text {eng }}\) & Final time constant \\
\(\tau_{\text {nat }}\) & Time constant below the boost torque speed line \\
\(f_{\text {bst }}(N)\) & Boost torque/speed line \\
\(N\) & Engine speed
\end{tabular}

\section*{Fuel Flow}

To calculate the fuel economy for high-fidelity models, the block uses the volumetric fuel flow.
\[
Q_{\text {fuel }}=\frac{\dot{m}_{\text {fuel }}}{\left(\frac{1000 \mathrm{~kg}}{\mathrm{~m}^{3}}\right) S g_{\text {fuel }}}
\]

The equation uses these variables.
\(\dot{m}_{\text {fuel }} \quad\) Fuel mass flow
\(S g_{\text {fuel }} \quad\) Specific gravity of fuel
\(Q_{\text {fuel }} \quad\) Volumetric fuel flow

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Descriptio & Equations \\
\hline \multirow[t]{4}{*}{} & \begin{tabular}{l}
PwrTrnsfrd - Power transferred between blocks \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block
\end{tabular} & PwrCrkshft & Crankshaft power & \(-\tau_{\text {eng }} \omega\) \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
PwrNotTrnsfrd - Power crossing the block boundary, but not transferred \\
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular}} & PwrFuel & Fuel input power & \(\dot{m}_{\text {fuel }} L H V\) \\
\hline & & PwrLoss & Power loss & \[
\begin{aligned}
& \tau_{\text {eng }} \omega \\
& -\dot{m}_{f u e l} L H V
\end{aligned}
\] \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular}} & Not used & \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(L H V\) & Fuel lower heating value \\
\(\omega\) & Engine speed, rad/s \\
\(\dot{m}_{\text {fuel }}\) & Fuel mass flow \\
\(\tau_{\text {eng }}\) & Fuel mass per injection time constant
\end{tabular}

\section*{Ports}

\section*{Input}

FuelMassCmd - Injected fuel mass command
scalar
Injected fuel mass command, \(F\), in mg/inj.

\section*{Dependencies}

To create this port, for Input command, select Fuel mass.

\section*{TrqCmd - Torque command scalar}

Torque command, \(T\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To create this port, for Input command, select Torque.

\section*{EngSpd - Engine speed}
scalar
Engine speed, \(N\), in rpm.

\section*{EngTemp - Engine temperature}
scalar
Engine temperature, Temp \(_{\text {Eng }}\), in K .

\section*{Dependencies}

To create this port, select Input engine temperature.

\section*{Output}

Info - Bus signal
bus
Bus signal containing these block calculations.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Signal} & Description & Units \\
\hline \multicolumn{3}{|l|}{IntkGasMassFlw} & Engine air mass flow output & kg/s \\
\hline \multicolumn{3}{|l|}{NrmlzdAirChrg} & Normalized engine cylinder air mass & N/A \\
\hline \multicolumn{3}{|l|}{Afr} & Air-fuel ratio (AFR) & N/A \\
\hline \multicolumn{3}{|l|}{FuelMassFlw} & Engine fuel flow output & kg/s \\
\hline \multicolumn{3}{|l|}{FuelVolFlw} & Volumetric fuel flow & \(\mathrm{m}^{3} / \mathrm{s}\) \\
\hline \multicolumn{3}{|l|}{ExhManGasTemp} & Engine exhaust gas temperature & K \\
\hline \multicolumn{3}{|l|}{EngTrq} & Engine torque output & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline \multicolumn{3}{|l|}{EngSpd} & Engine speed & rpm \\
\hline \multicolumn{3}{|l|}{CrkAng} & \begin{tabular}{l}
Engine crankshaft absolute angle
\[
\int_{0}^{(360) C p s} E n g S p d \frac{180}{30} d \theta
\] \\
where Cps is crankshaft revolutions per power stroke.
\end{tabular} & degrees crank angle \\
\hline \multicolumn{3}{|l|}{Bsfc} & Engine brake-specific fuel consumption (BSFC) & \(\mathrm{g} / \mathrm{kWh}\) \\
\hline \multicolumn{3}{|l|}{EoHC} & Engine out hydrocarbon emission mass flow & kg/s \\
\hline \multicolumn{3}{|l|}{EoC0} & Engine out carbon monoxide emission mass flow rate & kg/s \\
\hline \multicolumn{3}{|l|}{EoN0x} & Engine out nitric oxide and nitrogen dioxide emissions mass flow & kg/s \\
\hline \multicolumn{3}{|l|}{EoC02} & Engine out carbon dioxide emission mass flow & kg/s \\
\hline \multicolumn{3}{|l|}{EoPM} & Engine out particulate matter emission mass flow & kg/s \\
\hline \multirow[t]{3}{*}{PwrInf 0} & PwrTrnsfrd & PwrCrkshft & Crankshaft power & W \\
\hline & PwrNotTrns & PwrFuel & Fuel input power & W \\
\hline & frd & PwrLoss & Power loss & W \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|l|}{ Signal } & Description & Units \\
\hline & PwrStored & Not used & \\
\hline
\end{tabular}

\section*{EngTrq - Power}
scalar
Engine power, \(T_{\text {brake }}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Parameters}

\section*{Block Options}

\section*{Input command - Table functions}

Fuel mass (default) | Torque
The lookup tables, developed with the Model-Based Calibration Toolbox, are functions of injected fuel mass, \(F\), engine torque, \(T\), engine speed, \(N\), and engine temperature, \(T_{e m p}\) Eng.
\begin{tabular}{|l|l|l|}
\hline Input Command Setting & \begin{tabular}{l} 
Input Engine \\
Temperature Parameter \\
Setting
\end{tabular} & Lookup Tables \\
\hline \multirow{2}{*}{ Fuel mass } & off & \(f(F, N)\) \\
\cline { 2 - 3 } & on & \(f\left(F, N, T e m p_{\text {Eng }}\right)\) \\
\hline Torque & off & \(f(T, N)\) \\
\cline { 2 - 3 } & on & \(f\left(T, N, T e m p_{\text {Eng }}\right)\) \\
\hline
\end{tabular}

\section*{Dependencies}
- Selecting Fuel mass enables Breakpoints for commanded fuel mass input, f_tbrake_f_bpt.
- Selecting Torque enables Breakpoints for commanded torque input, f_tbrake_t_bpt.
- Selecting Input engine temperature enables Breakpoints for temperature input, f_tbrake_engtmp_bpt.

\section*{Include turbocharger lag effect - Increase time constant} off (default)

To model turbocharger lag, select Include turbocharger lag effect. Turbocharger lag limits the maximum fuel mass per injection. To model the maximum fuel mass per injection, the block uses a first-order system with a time constant. At low torque, the engine does not require boost to provide sufficient air flow. When the requested fuel mass requires boost, the block uses a time constant to determine the maximum fuel mass per injection. The block uses these equations for the specified Input command setting.


The equations use these variables.
\begin{tabular}{ll}
\(T_{\text {brake }}\) & Brake torque \\
\(F\) & Fuel mass per injection \\
\(F_{c m d}, F_{\max }\) & Commanded and maximum fuel mass per injection, respectively \\
\(T_{\text {target }}, T_{c m d}, T_{\max }\) & Target, commanded, and maximum torque, respectively
\end{tabular}
\begin{tabular}{ll}
\(\tau_{\text {bst }}\) & Boost time constant \\
\(\tau_{\text {bst,rising }}, \tau_{\text {bst,falling }}\) & Boost rising and falling time constant, respectively \\
\(\tau_{\text {eng }}\) & Final time constant \\
\(\tau_{\text {nat }}\) & Time constant below the boost torque speed line \\
\(f_{\text {bst }}(N)\) & Boost torque/speed line \\
\(N\) & Engine speed \\
Dependencies &
\end{tabular}

Selecting Include turbocharger lag effect enables these parameters:
- Boost torque line, f_tbrake_bst
- Time constant below boost line, tau_nat
- Rising maximum fuel mass boost time constant, tau_bst_rising
- Falling maximum fuel mass boost time constant, tau_bst_falling

\section*{Input engine temperature - Create input port off (default) | on}

Select this to create the EngTemp input port.
The lookup tables, developed with the Model-Based Calibration Toolbox, are functions of injected fuel mass, \(F\), engine torque, \(T\), engine speed, \(N\), and engine temperature, Temp \(_{\text {Eng }}\).
\begin{tabular}{|l|l|l|}
\hline Input Command Setting & \begin{tabular}{l} 
Input Engine \\
Temperature Parameter \\
Setting
\end{tabular} & Lookup Tables \\
\hline \multirow{2}{*}{ Fuel mass } & off & \(f(F, N)\) \\
\cline { 2 - 3 } & on & \(f\left(F, N, T e m p_{\text {Eng }}\right)\) \\
\hline Torque & off & \(f(T, N)\) \\
\cline { 2 - 3 } & on & \(f\left(T, N, T e m p_{\text {Eng }}\right)\) \\
\hline
\end{tabular}

\section*{Configuration}

Calibrate Maps - Calibrate tables with measured data
selection

If you have Model-Based Calibration Toolbox, click Calibrate Maps to virtually calibrate the 2D lookup tables using measured data. The dialog box steps through these tasks.
\begin{tabular}{|c|c|c|c|}
\hline Task & \multicolumn{3}{|l|}{Description} \\
\hline \multirow[t]{5}{*}{Import firing data} & \multicolumn{3}{|l|}{Import this firing data from a file. For more information, see "Using Data" (Model-Based Calibration Toolbox).} \\
\hline & Input command & Required Data & Optional Data \\
\hline & Fuel mass & \begin{tabular}{l}
- Engine speed, rpm \\
- Commanded fuel mass per injection, mg \\
- Engine torque, N•m
\end{tabular} & \begin{tabular}{l}
- Air mass flow rate, kg/s \\
- Brake specific fuel consumption, g/(kW•h) \\
- CO2 mass flow rate,
\end{tabular} \\
\hline & Torque & \begin{tabular}{l}
- Engine speed, rpm \\
- Engine torque, N•m
\end{tabular} & \begin{tabular}{l}
kg/s \\
- CO mass flow rate, \(\mathrm{kg} / \mathrm{s}\) \\
- Exhaust temperature, K \\
- Fuel mass flow rate, kg/s \\
- HC mass flow rate, \(\mathrm{kg} / \mathrm{s}\) \\
- NOx mass flow rate, kg/s \\
- Particulate matter mass flow rate, \(\mathrm{kg} / \mathrm{s}\)
\end{tabular} \\
\hline & \multicolumn{3}{|l|}{Collect firing data at steady-state operating conditions when injectors deliver the fuel. Data should cover the engine speed and torque operating range. Model-Based Calibration Toolbox uses the firing data boundary as the maximum torque.} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Task & Description \\
\hline \begin{tabular}{l} 
Import non-firing \\
data
\end{tabular} & \begin{tabular}{l} 
Import this non-firing data from a file. \\
- Engine speed, rpm \\
Collect non-firing (motoring) data at steady-state operating conditions \\
when fuel is cut off. All non-firing torque points must be less than \\
zero. Non-firing data is a function of engine speed only.
\end{tabular} \\
\hline \begin{tabular}{l} 
Generate \\
response models
\end{tabular} & \begin{tabular}{l} 
For both firing and non-firing data, the Model-Based Calibration \\
Toolbox uses test plans to fit data to Gaussian process models (GPMs). \\
To assess or adjust the response model fit, select Edit in \\
Application. The Model-Based Calibration Toolbox Model Browser \\
opens. For more information, see "Model Assessment" (Model-Based \\
Calibration Toolbox).
\end{tabular} \\
\hline \begin{tabular}{l} 
Generate \\
calibration
\end{tabular} & \begin{tabular}{l} 
Model-Based Calibration Toolbox calibrates the firing and non-firing \\
response models and generates calibrated tables. \\
To assess or adjust the calibration, select Edit in Application. The
\end{tabular} \\
\hline \begin{tabular}{l} 
Model-Based Calibration Toolbox CAGE Browser opens. For more \\
information, see "Calibration Tables" (Model-Based Calibration \\
Toolbox).
\end{tabular} \\
\hline \begin{tabular}{l} 
Update block \\
parameters
\end{tabular} & \begin{tabular}{l} 
Update the block lookup table and breakpoint parameters with the \\
calibration.
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Breakpoints for commanded fuel mass input, f_tbrake_f_bpt Breakpoints}
vector
Breakpoints, in mg/inj.

\section*{Dependencies}

Setting Input command to Fuel mass enables this parameter.

\section*{Breakpoints for commanded torque input, f_tbrake_t_bpt - Breakpoints vector}

\section*{Breakpoints, in \(\mathrm{N} \cdot \mathrm{m}\).}

\section*{Dependencies}

Setting Input command to Torque enables this parameter.
Breakpoints for engine speed input, f_tbrake_n_bpt - Breakpoints vector

Breakpoints, in rpm.
Breakpoints for temperature input, f_tbrake_engtmp_bpt - Breakpoints vector

Breakpoints, in K.

\section*{Dependencies}

To enable this parameter, select Input engine temperature.
Number of cylinders, NCyl - Number scalar

Number of cylinders.
Crank revolutions per power stroke, Cps - Crank revolutions scalar

Crank revolutions per power stroke.
Total displaced volume, Vd - Volume scalar

Volume displaced by engine, in m^3.

\section*{Fuel lower heating value, Lhv - Heating value} scalar

Fuel lower heating value, \(L H V\), in J/kg.

\section*{Fuel specific gravity, Sg - Specific gravity scalar}

Specific gravity of fuel, \(S g_{\text {fuel }}\), dimensionless.
Ideal gas constant air, Rair - Constant scalar

Ideal gas constant of air and residual gas entering the engine intake port, in \(\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})\).
Air standard pressure, Pstd - Pressure scalar

Standard air pressure, in Pa.
Air standard temperature, Tstd - Temperature scalar

Standard air temperature, in K.

\section*{Boost torque line, f_tbrake_bst - Boost lag vector}

Boost torque line, \(f_{\text {bst }}(N)\), in \(N \cdot m\).

\section*{Dependencies}

To enable this parameter, select Include turbocharger lag effect.

\section*{Time constant below boost line - Time constant below scalar}

Time constant below boost line, \(\tau_{\text {nat }}\), in s .

\section*{Dependencies}

To enable this parameter, select Include turbocharger lag effect.
Rising maximum fuel mass boost time constant, tau_bst_rising - Rising
time constant
scalar
Rising maximum fuel mass boost time constant, \(\tau_{b s t, r i s i n g}\), in s .

\section*{Dependencies}

To enable this parameter, select Include turbocharger lag effect.
Falling maximum fuel mass boost time constant, tau_bst_falling Falling time constant

\section*{scalar}

Falling maximum fuel mass boost time constant, \(\tau_{\text {bst,falling }}\), in s .

\section*{Dependencies}

To enable this parameter, select Include turbocharger lag effect.

\section*{Power}

Brake torque map, f_tbrake - 2D lookup table array
\begin{tabular}{|c|c|}
\hline Input Command Setting & Description \\
\hline Fuel mass & \begin{tabular}{l}
The engine brake torque lookup table is a function of commanded fuel mass and engine speed, \(T_{\text {brake }}=f(F, N)\), where: \\
- \(T_{\text {brake }}\) is engine torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
- \(F\) is commanded fuel mass, in mg per injection. \\
- \(N\) is engine speed, in rpm.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Input Command \\
Setting
\end{tabular} & Description \\
\hline Torque & \begin{tabular}{l} 
The engine brake torque lookup table is a function of target \\
torque and engine speed, \(T_{\text {brake }}=f\left(T_{\text {target, }} N\right)\), where:
\end{tabular} \\
& - \(T_{\text {brake }}\) is engine torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
& - \(T_{\text {target }}\) is target torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
& - \(N\) is engine speed, in rpm.
\end{tabular}

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Plot brake torque map - Plot table \\ button}

Click to plot table.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.
Brake torque map, f_tbrake_3d - 3D lookup table array
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Input Command \\
Setting
\end{tabular} & Description \\
\hline Fuel mass & \begin{tabular}{l} 
The engine brake torque lookup table is a function of \\
commanded fuel mass and engine speed, \(T_{\text {brake }}=\mathrm{f}(F, N\), \\
\(\left.T e m p_{\text {Eng }}\right)\), where:
\end{tabular} \\
& \begin{tabular}{l} 
- \(\quad T_{\text {brake }}\) is engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
\end{tabular} \\
& \begin{tabular}{l} 
- is commanded fuel mass, in mg per injection. \\
\\
\\
\hline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Input Command \\
Setting
\end{tabular} & Description \\
\hline Torque & \begin{tabular}{l} 
The engine brake torque lookup table is a function of target \\
torque and engine speed, \(T_{\text {brake }}=f\left(T_{\text {target, }}, N\right.\), Temp \(\left.p_{\text {Eng }}\right)\), where:
\end{tabular} \\
& - \(T_{\text {brake }}\) is engine torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
& - \(T_{\text {target }}\) is target torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
& - \(N\) is engine speed, in rpm. \\
& - Temp \begin{tabular}{l} 
Eng
\end{tabular} \\
& \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this parameter, select Input engine temperature.

\section*{Air}

Air mass flow map, f_air - 2D lookup table array
\begin{tabular}{|c|c|}
\hline Input Command Setting & Description \\
\hline Fuel mass & \begin{tabular}{l}
The air mass flow lookup table is a function of commanded fuel mass and engine speed, \(\dot{m}_{\text {intk }}=f\left(F_{\max }, N\right)\), where: \\
- \(\dot{m}_{\text {intk }}\) is engine air mass flow, in kg/s. \\
- \(F_{\text {max }}\) is commanded fuel mass, in mg per injection. \\
- \(N\) is engine speed, in rpm.
\end{tabular} \\
\hline Torque & \begin{tabular}{l}
The air mass flow lookup table is a function of maximum torque and engine speed, \(\dot{m}_{\text {intk }}=f\left(T_{\max }, N\right)\), where: \\
- \(\dot{m}_{\text {intk }}\) is engine air mass flow, in \(\mathrm{kg} / \mathrm{s}\). \\
- \(T_{\max }\) is maximum torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
- \(N\) is engine speed, in rpm.
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Plot air mass map - Plot table \\ button}

Click to plot table.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.
Air mass flow map, f_air_3d - 3D lookup table array
\begin{tabular}{|c|c|}
\hline Input Command Setting & Description \\
\hline Fuel mass & \begin{tabular}{l}
The air mass flow lookup table is a function of commanded fuel mass and engine speed, \(\dot{m}_{\text {intk }}=f\left(F_{\max }, N, \operatorname{Temp} p_{\text {Eng }}\right)\), where: \\
- \(\dot{m}_{\text {intk }}\) is engine air mass flow, in \(\mathrm{kg} / \mathrm{s}\). \\
- \(F_{\max }\) is commanded fuel mass, in mg per injection. \\
- \(N\) is engine speed, in rpm. \\
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .
\end{tabular} \\
\hline Torque & \begin{tabular}{l}
The air mass flow lookup table is a function of maximum torque and engine speed, \(\dot{m}_{\text {intk }}=f\left(T_{\max }, N, T e m p_{\text {Eng }}\right)\), where: \\
- \(\dot{m}_{\text {intk }}\) is engine air mass flow, in \(\mathrm{kg} / \mathrm{s}\). \\
- \(T_{\max }\) is maximum torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
- \(N\) is engine speed, in rpm. \\
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this parameter, select Input engine temperature.

\section*{Fuel}

Fuel flow map, f_fuel - 2D lookup table
array
\begin{tabular}{|c|c|}
\hline Input Command Setting & Description \\
\hline Fuel mass & \begin{tabular}{l}
The engine fuel flow lookup table is a function of commanded fuel mass and engine speed, MassFlow \(=f(F, N)\), where: \\
- MassFlow is engine fuel mass flow, in kg/s. \\
- \(F\) is commanded fuel mass, in mg per injection. \\
- \(N\) is engine speed, in rpm. \\
Engine Speed (RPM)
\end{tabular} \\
\hline Torque & \begin{tabular}{l}
The engine fuel flow lookup table is a function of target torque and engine speed, MassFlow \(=f\left(T_{\text {target }}, N\right)\), where: \\
- MassFlow is engine fuel mass flow, in \(\mathrm{kg} / \mathrm{s}\). \\
- \(T_{\text {target }}\) is target torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
- \(N\) is engine speed, in rpm.
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Plot fuel flow map - Plot table \\ button}

Click to plot table.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

Fuel flow map, f_fuel_3d - 3D lookup table array
\begin{tabular}{|c|c|}
\hline Input Command Setting & Description \\
\hline Fuel mass & \begin{tabular}{l}
The engine fuel flow lookup table is a function of commanded fuel mass, engine speed, and engine temperature, MassFlow= \(f\left(F, N, T e m p_{\text {Eng }}\right)\), where: \\
- MassFlow is engine fuel mass flow, in \(\mathrm{kg} / \mathrm{s}\). \\
- \(F\) is commanded fuel mass, in mg per injection. \\
- \(N\) is engine speed, in rpm. \\
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .
\end{tabular} \\
\hline Torque & \begin{tabular}{l}
The engine fuel flow lookup table is a function of target torque and engine speed, and engine temperature, MassFlow \(=f\left(T_{\text {target }}\right.\), \(N, \operatorname{Temp}_{\text {Eng }}\) ), where: \\
- MassFlow is engine fuel mass flow, in \(\mathrm{kg} / \mathrm{s}\). \\
- \(T_{\text {target }}\) is target torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
- \(N\) is engine speed, in rpm. \\
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this parameter, select Input engine temperature.

\section*{Temperature}

\section*{Exhaust temperature map, f_texh - 2D lookup table array}
\begin{tabular}{|c|c|}
\hline Input Command Setting & Description \\
\hline Fuel mass & \begin{tabular}{l}
The engine exhaust temperature table is a function of commanded fuel mass and engine speed, \(T_{e x h}=f(F, N)\), where: \\
- \(T_{e x h}\) is exhaust temperature, in K . \\
- \(F\) is commanded fuel mass, in mg per injection. \\
- \(N\) is engine speed, in rpm.
\end{tabular} \\
\hline Torque & \begin{tabular}{l}
The engine exhaust temperature table is a function of target torque and engine speed, \(T_{\text {exh }}=f\left(T_{\text {target }}, N\right)\), where: \\
- \(T_{\text {exh }}\) is exhaust temperature, in K. \\
- \(T_{\text {target }}\) is target torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
- \(N\) is engine speed, in rpm.
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Plot exhaust temperature map - Plot table}
button
Click to plot table.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

Exhaust temperature map, f_texh_3d - 3D lookup table array
\begin{tabular}{|c|c|}
\hline Input Command Setting & Description \\
\hline Fuel mass & \begin{tabular}{l}
The engine exhaust temperature table is a function of commanded fuel mass and engine speed, \(T_{\text {exh }}=f\left(F, N, \operatorname{Temp}_{\text {Eng }}\right)\), where: \\
- \(T_{\text {exh }}\) is exhaust temperature, in K . \\
- \(F\) is commanded fuel mass, in mg per injection. \\
- \(N\) is engine speed, in rpm. \\
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .
\end{tabular} \\
\hline Torque & \begin{tabular}{l}
The engine exhaust temperature table is a function of target torque and engine speed, \(T_{\text {exh }}=f\left(T_{\text {target }}, N, T e m p_{\text {Eng }}\right)\), where: \\
- \(T_{\text {exh }}\) is exhaust temperature, in K. \\
- \(T_{\text {target }}\) is target torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
- \(N\) is engine speed, in rpm. \\
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this parameter, select Input engine temperature.

\section*{Efficiency}

BSFC map, f_eff - 2D lookup table
array
\begin{tabular}{|c|c|}
\hline Input Command Setting & Description \\
\hline Fuel mass & \begin{tabular}{l}
The brake-specific fuel consumption (BSFC) efficiency is a function of commanded fuel mass and engine speed, \(B S F C=f(F\), \(N\) ), where: \\
- \(B S F C\) is BSFC, in \(\mathrm{g} / \mathrm{kWh}\). \\
- \(F\) is commanded fuel mass, in mg per injection. \\
- \(N\) is engine speed, in rpm. \\
Engine Speed (RPM)
\end{tabular} \\
\hline Torque & \begin{tabular}{l}
The brake-specific fuel consumption (BSFC) efficiency is a function of target torque and engine speed, \(B S F C=f\left(T_{\text {target }}, N\right)\), where: \\
- BSFC is BSFC, in \(\mathrm{g} / \mathrm{kWh}\). \\
- \(T_{\text {target }}\) is target torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
- \(N\) is engine speed, in rpm.
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Plot BSFC map - Plot table}
button
Click to plot table.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.
BSFC map, f_eff_3d - 3D lookup table array
\begin{tabular}{|c|c|}
\hline Input Command Setting & Description \\
\hline Fuel mass & \begin{tabular}{l}
The brake-specific fuel consumption (BSFC) efficiency is a function of commanded fuel mass and engine speed, \(B S F C=f(F\), \(N\), Temp \(_{\text {Eng }}\) ), where: \\
- BSFC is BSFC, in \(\mathrm{g} / \mathrm{kWh}\). \\
- \(F\) is commanded fuel mass, in mg per injection. \\
- \(N\) is engine speed, in rpm. \\
- \(T e m p_{\text {Eng }}\) is engine temperature, in K.
\end{tabular} \\
\hline Torque & \begin{tabular}{l}
The brake-specific fuel consumption (BSFC) efficiency is a function of target torque and engine speed, \(B S F C=f\left(T_{\text {target }}, N\right.\), Temp \(_{\text {Eng }}\) ), where: \\
- BSFC is BSFC, in \(\mathrm{g} / \mathrm{kWh}\). \\
- \(T_{\text {target }}\) is target torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
- \(N\) is engine speed, in rpm. \\
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this parameter, select Input engine temperature.

\section*{HC}

EO HC map, f_hc - 2D lookup table array
\begin{tabular}{|c|c|}
\hline Input Command Setting & Description \\
\hline Fuel mass & \begin{tabular}{l}
The engine-out hydrocarbon emissions are a function of commanded fuel mass and engine speed, \(E O H C=f(F, N)\), where: \\
- EO HC is engine-out hydrocarbon emissions, in kg/s. \\
- \(F\) is commanded fuel mass, in mg per injection. \\
- \(N\) is engine speed, in rpm.
\end{tabular} \\
\hline Torque & \begin{tabular}{l}
The engine-out hydrocarbon emissions are a function of target torque and engine speed, \(E O H C=f\left(T_{\text {target }}, N\right)\), where: \\
- EO HC is engine-out hydrocarbon emissions, in kg/s. \\
- \(T_{\text {target }}\) is target torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
- \(N\) is engine speed, in rpm.
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Plot EO HC map - Plot table}

\section*{button}

Click to plot table.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

EO HC map, f_hc_3d - 3D lookup table
array
\begin{tabular}{|c|c|}
\hline Input Command Setting & Description \\
\hline Fuel mass & \begin{tabular}{l}
The engine-out hydrocarbon emissions are a function of commanded fuel mass and engine speed, \(E O H C=f(F, N\), \(T e m p_{\text {Eng }}\) ), where: \\
- EO HC is engine-out hydrocarbon emissions, in \(\mathrm{kg} / \mathrm{s}\). \\
- \(F\) is commanded fuel mass, in mg per injection. \\
- \(N\) is engine speed, in rpm. \\
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .
\end{tabular} \\
\hline Torque & \begin{tabular}{l}
The engine-out hydrocarbon emissions are a function of target torque and engine speed, \(E O H C=f\left(T_{\text {target }}, N, T e m p_{\text {Eng }}\right)\), where: \\
- EO HC is engine-out hydrocarbon emissions, in \(\mathrm{kg} / \mathrm{s}\). \\
- \(T_{\text {target }}\) is target torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
- \(N\) is engine speed, in rpm. \\
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this parameter, select Input engine temperature.

\section*{CO}

EO CO map, f_co - 2D lookup table
array
\begin{tabular}{|c|c|}
\hline Input Command Setting & Description \\
\hline Fuel mass & \begin{tabular}{l}
The engine-out carbon monoxide emissions are a function of commanded fuel mass and engine speed, \(E O C O=f(F, N)\), where: \\
- EO CO is engine-out carbon monoxide emissions, in \(\mathrm{kg} / \mathrm{s}\). \\
- \(F\) is commanded fuel mass, in mg per injection. \\
- \(N\) is engine speed, in rpm. \\
Commanded Fuel (mg/inj)
\end{tabular} \\
\hline Torque & \begin{tabular}{l}
The engine-out carbon monoxide emissions are a function of target torque and engine speed, \(E O C O=f\left(T_{\text {target }}, N\right)\), where: \\
- EO CO is engine-out carbon monoxide emissions, in \(\mathrm{kg} / \mathrm{s}\). \\
- \(T_{\text {target }}\) is target torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
- \(N\) is engine speed, in rpm.
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Plot EO CO map - Plot table \\ button}

Click to plot table.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.
EO CO map, f_co_3d - 3D lookup table array
\begin{tabular}{|c|c|}
\hline Input Command Setting & Description \\
\hline Fuel mass & \begin{tabular}{l}
The engine-out carbon monoxide emissions are a function of commanded fuel mass and engine speed, \(E O C O=f(F, N\), \(T e m p_{\text {Eng }}\) ), where: \\
- EO CO is engine-out carbon monoxide emissions, in \(\mathrm{kg} / \mathrm{s}\). \\
- \(F\) is commanded fuel mass, in mg per injection. \\
- \(N\) is engine speed, in rpm. \\
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .
\end{tabular} \\
\hline Torque & \begin{tabular}{l}
The engine-out carbon monoxide emissions are a function of target torque and engine speed, \(E O C O=f\left(T_{\text {target }}, N, T e m p_{\text {Eng }}\right)\), where: \\
- EO CO is engine-out carbon monoxide emissions, in \(\mathrm{kg} / \mathrm{s}\). \\
- \(T_{\text {target }}\) is target torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
- \(N\) is engine speed, in rpm. \\
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this parameter, select Input engine temperature.

\section*{NOx}

EO NOx map, f_nox - 2D lookup table array
\begin{tabular}{|c|c|}
\hline Input Command Setting & Description \\
\hline Fuel mass & \begin{tabular}{l}
The engine-out nitric oxide and nitrogen dioxide emissions are a function of commanded fuel mass and engine speed, \(E O\) NOx= \(\mathrm{f}(F, N)\), where: \\
- EO NOx is engine-out nitric oxide and nitrogen dioxide emissions, in kg/s. \\
- \(F\) is commanded fuel mass, in mg per injection. \\
- \(N\) is engine speed, in rpm.
\end{tabular} \\
\hline Torque & \begin{tabular}{l}
The engine-out nitric oxide and nitrogen dioxide emissions are a function of target torque and engine speed, \(E O N O x=f\left(T_{\text {target }}\right.\), \(N\) ), where: \\
- EO NOx is engine-out nitric oxide and nitrogen dioxide emissions, in kg/s. \\
- \(T_{\text {target }}\) is target torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
- \(N\) is engine speed, in rpm.
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Plot EO NOx map - Plot table \\ button}

Click to plot table.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.
EO NOx map, f_nox_3d - 3D lookup table array
\begin{tabular}{|c|c|}
\hline Input Command Setting & Description \\
\hline Fuel mass & \begin{tabular}{l}
The engine-out nitric oxide and nitrogen dioxide emissions are a function of commanded fuel mass, engine speed, and engine temperature, EO NOx \(=f\left(F, N, T e m p_{E n g}\right)\), where: \\
- EO NOx is engine-out nitric oxide and nitrogen dioxide emissions, in kg/s. \\
- \(F\) is commanded fuel mass, in mg per injection. \\
- \(N\) is engine speed, in rpm. \\
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .
\end{tabular} \\
\hline Torque & \begin{tabular}{l}
The engine-out nitric oxide and nitrogen dioxide emissions are a function of target torque, engine speed, and engine temperature, EO NOx \(=f\left(T_{\text {target }}, N, T e m p_{\text {Eng }}\right)\), where: \\
- EO NOx is engine-out nitric oxide and nitrogen dioxide emissions, in \(\mathrm{kg} / \mathrm{s}\). \\
- \(T_{\text {target }}\) is target torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
- \(N\) is engine speed, in rpm. \\
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this parameter, select Input engine temperature.
CO2
EO CO2 map, f_co2 - 2D lookup table
array
\begin{tabular}{|c|c|}
\hline Input Command Setting & Description \\
\hline Fuel mass & \begin{tabular}{l}
The engine-out carbon dioxide emissions are a function of commanded fuel mass and engine speed, EO CO2 \(=f(F, N)\), where: \\
- EO CO2 is engine-out carbon dioxide emissions, in kg/s. \\
- \(F\) is commanded fuel mass, in mg per injection. \\
- \(N\) is engine speed, in rpm. \\
Commanded Fuel (mg/inj)
\end{tabular} \\
\hline Torque & \begin{tabular}{l}
The engine-out carbon dioxide emissions are a function of target torque and engine speed, EO CO2 \(=f\left(T_{\text {target }}, N\right)\), where: \\
- EO CO2 is engine-out carbon dioxide emissions, in \(\mathrm{kg} / \mathrm{s}\). \\
- \(T_{\text {target }}\) is target torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
- \(N\) is engine speed, in rpm.
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Plot C02 map - Plot table \\ button}

Click to plot table.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.
EO CO2 map, f_co2_3d - 3D lookup table
array
\begin{tabular}{|c|c|}
\hline Input Command Setting & Description \\
\hline Fuel mass & \begin{tabular}{l}
The engine-out carbon dioxide emissions are a function of commanded fuel mass, engine speed, and engine temperature, \(E O C O 2=f\left(F, N, T e m p_{\text {Eng }}\right)\), where: \\
- EO CO2 is engine-out carbon dioxide emissions, in \(\mathrm{kg} / \mathrm{s}\). \\
- \(F\) is commanded fuel mass, in mg per injection. \\
- \(N\) is engine speed, in rpm. \\
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .
\end{tabular} \\
\hline Torque & \begin{tabular}{l}
The engine-out carbon dioxide emissions are a function of target torque, engine speed, and engine temperature, EO CO2 = \(f\left(T_{\text {target }}, N, T e m p_{\text {Eng }}\right)\), where: \\
- EO CO2 is engine-out carbon dioxide emissions, in \(\mathrm{kg} / \mathrm{s}\). \\
- \(T_{\text {target }}\) is target torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
- \(N\) is engine speed, in rpm. \\
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this parameter, select Input engine temperature.

\section*{PM}

EO PM map, f_pm - 2D lookup table array
\begin{tabular}{|c|c|}
\hline Input Command Setting & Description \\
\hline Fuel mass & \begin{tabular}{l}
The engine-out PM emissions are a function of commanded fuel mass and engine speed, where: \\
- EO PM is engine-out PM emissions, in \(\mathrm{kg} / \mathrm{s}\). \\
- \(F\) is commanded fuel mass, in mg per injection. \\
- \(\quad N\) is engine speed, in rpm.
\end{tabular} \\
\hline Torque & \begin{tabular}{l}
The engine-out PM emissions are a function of target torque and engine speed, EO PM \(=f\left(T_{\text {target }}, N\right)\), where: \\
- EO PM is engine-out PM emissions, in \(\mathrm{kg} / \mathrm{s}\). \\
- \(T_{\text {target }}\) is target torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
- \(N\) is engine speed, in rpm.
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Plot EO PM map - Plot table \\ button}

Click to plot table.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.
EO PM map, f_pm_3d - 3D lookup table
array
\begin{tabular}{|c|c|}
\hline Input Command Setting & Description \\
\hline Fuel mass & \begin{tabular}{l}
The engine-out PM emissions are a function of commanded fuel mass, engine speed, and engine temperature, where: \\
- EO PM is engine-out PM emissions, in \(\mathrm{kg} / \mathrm{s}\). \\
- \(F\) is commanded fuel mass, in mg per injection. \\
- \(N\) is engine speed, in rpm. \\
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .
\end{tabular} \\
\hline Torque & \begin{tabular}{l}
The engine-out PM emissions are a function of target torque, engine speed, and engine temperature, \(E O P M=f\left(T_{\text {target }}, N, T\right)\), where: \\
- EO PM is engine-out PM emissions, in \(\mathrm{kg} / \mathrm{s}\). \\
- \(T_{\text {target }}\) is target torque, in \(\mathrm{N} \cdot \mathrm{m}\). \\
- \(N\) is engine speed, in rpm. \\
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .
\end{tabular} \\
\hline
\end{tabular}

Dependencies
To enable this parameter, select Input engine temperature.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

CI Core Engine | Mapped Motor | Mapped SI Engine

\section*{Topics}
"Generate Mapped CI Engine from a Spreadsheet"

\author{
"Engine Calibration Maps" \\ "Model-Based Calibration Toolbox" \\ Introduced in R2017a
}

\section*{Mapped SI Engine}

Spark-ignition engine model using lookup tables
Library: Powertrain Blockset / Propulsion / Combustion Engines
Vehicle Dynamics Blockset / Powertrain / Propulsion


\section*{Description}

The Mapped SI Engine block implements a mapped spark-ignition (SI) engine model using power, air mass flow, fuel flow, exhaust temperature, efficiency, and emission performance lookup tables. You can use the block for:
- Hardware-in-the-loop (HIL) engine control design
- Vehicle-level fuel economy and performance simulations

The block enables you to specify lookup tables for these engine characteristics. The lookup tables, developed with the Model-Based Calibration Toolbox, are functions of commanded torque, \(T_{\text {cmd }}\), brake torque, \(T_{\text {brake }}\), and engine speed, \(N\). If you select Input engine temperature, the tables are also a function of engine temperature, \(\mathrm{Temp}_{\text {Eng }}\).
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Table} & \multicolumn{2}{|l|}{Input Engine Temperature Parameter Setting} \\
\hline & off & on \\
\hline Power & \(f\left(T_{\text {cmd }}, N\right)\) & \(f\left(T_{\text {cmd }}, N, T e m p_{\text {Eng }}\right)\) \\
\hline Air & \multirow[t]{7}{*}{\(f\left(T_{\text {brake }}, N\right)\)} & \multirow[t]{7}{*}{\(f\left(T_{\text {brake }}, N, T e m p_{\text {Eng }}\right)\)} \\
\hline Fuel & & \\
\hline Temperature & & \\
\hline Efficiency & & \\
\hline HC & & \\
\hline CO & & \\
\hline NOx & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Table } & \multicolumn{2}{|l|}{ Input Engine Temperature Parameter Setting } \\
\cline { 3 - 3 } & off & on \\
\hline CO 2 & & \\
\hline PM & & \\
\hline
\end{tabular}

To bound the Mapped SI Engine block output, the block does not extrapolate the lookup table data.

\section*{Virtual Calibration}

If you have Model-Based Calibration Toolbox, click Calibrate Maps to virtually calibrate the 2D lookup tables using measured data. The dialog box steps through these tasks.
\begin{tabular}{|c|c|c|}
\hline Task & \multicolumn{2}{|l|}{Description} \\
\hline \multirow[t]{4}{*}{Import firing data} & \multicolumn{2}{|l|}{Import this firing data from a file. For more information, see "Using Data" (Model-Based Calibration Toolbox).} \\
\hline & Required Data & Optional Data \\
\hline & \begin{tabular}{l}
- Engine speed, rpm \\
- Engine torque, \(\mathrm{N} \cdot \mathrm{m}\)
\end{tabular} & \begin{tabular}{l}
- Air mass flow rate, kg/s \\
- Brake specific fuel consumption, \(\mathrm{g} /\) (kW•h) \\
- CO2 mass flow rate, \(\mathrm{kg} / \mathrm{s}\) \\
- CO mass flow rate, \(\mathrm{kg} / \mathrm{s}\) \\
- Exhaust temperature, K \\
- Fuel mass flow rate, \(\mathrm{kg} / \mathrm{s}\) \\
- HC mass flow rate, \(\mathrm{kg} / \mathrm{s}\) \\
- NOx mass flow rate, \(\mathrm{kg} / \mathrm{s}\) \\
- Particulate matter mass flow rate, \(\mathrm{kg} / \mathrm{s}\)
\end{tabular} \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
Collect firing data at steady-state operating conditions when injectors deliver the fuel. Data should cover the engine speed and torque operating range. Model-Based Calibration Toolbox uses the firing data boundary as the maximum torque. \\
To filter or edit the data, select Edit in Application. The ModelBased Calibration Toolbox Data Editor opens.
\end{tabular}} \\
\hline Import non-firing data & \multicolumn{2}{|l|}{\begin{tabular}{l}
Import this non-firing data from a file. \\
- Engine speed, rpm \\
- Engine torque, N•m \\
Collect non-firing (motoring) data at steady-state operating conditions when fuel is cut off. All non-firing torque points must be less than zero. Non-firing data is a function of engine speed only.
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Task & Description \\
\hline \begin{tabular}{l} 
Generate \\
response models
\end{tabular} & \begin{tabular}{l} 
For both firing and non-firing data, the Model-Based Calibration \\
Toolbox uses test plans to fit data to Gaussian process models (GPMs). \\
To assess or adjust the response model fit, select Edit in \\
Application. The Model-Based Calibration Toolbox Model Browser \\
opens. For more information, see "Model Assessment" (Model-Based \\
Calibration Toolbox).
\end{tabular} \\
\hline \begin{tabular}{l} 
Generate \\
calibration
\end{tabular} & \begin{tabular}{l} 
Model-Based Calibration Toolbox calibrates the firing and non-firing \\
response models and generates calibrated tables.
\end{tabular} \\
\begin{tabular}{l} 
To assess or adjust the calibration, select Edit in Application. The \\
Model-Based Calibration Toolbox CAGE Browser opens. For more \\
information, see "Calibration Tables" (Model-Based Calibration \\
Toolbox).
\end{tabular} \\
\hline \begin{tabular}{l} 
Update block \\
parameters
\end{tabular} & \begin{tabular}{l} 
Update the block lookup table and breakpoint parameters with the \\
calibration.
\end{tabular} \\
\hline
\end{tabular}

\section*{Cylinder Air Mass}

The block calculates the normalized cylinder air mass using these equations.
\[
\begin{aligned}
& M_{N o m}=\frac{P_{s t d} V_{d}}{N_{c y l} R_{a i r} T_{s t d}} \\
& L=\frac{\left(\frac{60 s}{\min }\right) C p s \cdot \dot{m}_{a i r}}{\left(\frac{1000 g}{K g}\right) N_{c y l} \cdot N \cdot M_{N o m}}
\end{aligned}
\]

The equations use these variables.
\(L \quad\) Normalized cylinder air mass
\(M_{\text {Nom }} \quad\) Nominal engine cylinder air mass at standard temperature and pressure, piston at bottom dead center (BDC) maximum volume, in kg
Cps Crankshaft revolutions per power stroke, rev/stroke
\(P_{s t d} \quad\) Standard pressure
\(T_{\text {std }} \quad\) Standard temperature
\begin{tabular}{ll}
\(R_{a i r}\) & Ideal gas constant for air and burned gas mixture \\
\(V_{d}\) & Displaced volume \\
\(N_{c y l}\) & Number of engine cylinders \\
\(N\) & Engine speed \\
\(\dot{m}_{\text {intk }}\) & Engine air mass flow, in \(\mathrm{g} / \mathrm{s}\)
\end{tabular}

\section*{Turbocharger Lag}

To model turbocharger lag, select Include turbocharger lag effect. During throttle control, the time constant models the manifold filling and emptying dynamics. When the torque request requires a turbocharger boost, the block uses a larger time constant to represent the turbocharger lag. The block uses these equations.
\begin{tabular}{|l|c|}
\hline Dynamic torque & \(\frac{d T_{\text {brake }}}{d t}=\frac{1}{\tau_{\text {eng }}}\left(T_{\text {stdy }}-T_{\text {brake }}\right)\) \\
\hline \begin{tabular}{l} 
Boost time \\
constant
\end{tabular} & \(\tau_{\text {bst }}=\left\{\begin{array}{ll|}\tau_{\text {bst, rising }} & \text { when } T_{\text {stdy }}>T_{\text {brake }} \\
\tau_{\text {bst, falling }} & \text { when } T_{\text {stdy }} \leq T_{\text {brake }}\end{array}\right.\) \\
\hline \begin{tabular}{l} 
Final time \\
constant
\end{tabular} & \(\tau_{\text {eng }}= \begin{cases}\tau_{\text {thr }} & \text { when } T_{\text {brake }}<f_{\text {bst }}(N) \\
\tau_{\text {bst }} & \text { when } T_{\text {brake }} \geq f_{\text {bst }}(N)\end{cases}\) \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(T_{\text {brake }}\) & Brake torque \\
\(T_{\text {stdy }}\) & Steady-state target torque \\
\(\tau_{\text {bst }}\) & Boost time constant \\
\(\tau_{\text {bst, rising, }}\) & Boost rising and falling time constant, respectively \\
\(\tau_{\text {bst,falling }}\) & \\
\(\tau_{\text {eng }}\) & Final time constant \\
\(\tau_{\text {thr }}\) & Time constant during throttle control \\
\(f_{\text {bst }}(N)\) & Boost torque speed line \\
\(N\) & Engine speed
\end{tabular}

\section*{Fuel Flow}

To calculate the fuel economy for high-fidelity models, the block uses the volumetric fuel flow.
\[
Q_{f u e l}=\frac{\dot{m}_{\text {fuel }}}{\left(\frac{1000 \mathrm{~kg}}{\mathrm{~m}^{3}}\right) S g_{f u e l}}
\]

The equation uses these variables.
\(\dot{m}_{\text {fuel }} \quad\) Fuel mass flow
\(S g_{\text {fuel }} \quad\) Specific gravity of fuel
\(Q_{\text {fuel }} \quad\) Volumetric fuel flow

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Equations \\
\hline \multirow[t]{4}{*}{} & \begin{tabular}{l}
PwrTrnsfrd - Power transferred between blocks \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block
\end{tabular} & PwrCrkshft & Crankshaft power & \(-\tau_{\text {eng }} \omega\) \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
PwrNotTrnsfrd - Power crossing the block boundary, but not transferred \\
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular}} & PwrFuel & Fuel input power & \(\dot{m}_{\text {fuel }} L H V\) \\
\hline & & PwrLoss & Power loss & \[
\begin{aligned}
& \tau_{\text {eng }} \omega \\
& -\dot{m}_{\text {fuel }} L H V
\end{aligned}
\] \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular}} & Not used & \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(L H V\) & Fuel lower heating value \\
\(\omega\) & Engine speed, rad/s \\
\(\dot{m}_{\text {fuel }}\) & Fuel mass flow \\
\(\tau_{\text {eng }}\) & Fuel mass per injection time constant
\end{tabular}

\section*{Ports}

\section*{Input}

\section*{TrqCmd - Commanded torque \\ scalar}

Torque, \(T_{\text {cmd }}\), in \(\mathrm{N} \cdot \mathrm{m}\).
EngSpd - Engine speed
scalar
Engine speed, \(N\), in rpm.

\section*{EngTemp - Engine temperature}

\section*{scalar}

Engine temperature, \(\mathrm{Temp}_{\text {Eng }}\), in K .

\section*{Dependencies}

To create this port, select Input engine temperature.

\section*{Output}

\section*{Info - Bus signal \\ bus}

Bus signal containing these block calculations.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Signal} & Description & Units \\
\hline \multicolumn{3}{|l|}{IntkGassMassFlw} & Engine air mass flow output & kg/s \\
\hline \multicolumn{3}{|l|}{NrmlzdAirChrg} & Normalized engine cylinder air mass & N/A \\
\hline \multicolumn{3}{|l|}{Afr} & Air-fuel ratio (AFR) & N/A \\
\hline \multicolumn{3}{|l|}{FuelMassFlw} & Engine fuel flow output & kg/s \\
\hline \multicolumn{3}{|l|}{FuelVolFlw} & Volumetric fuel flow & \(\mathrm{m}^{3} / \mathrm{s}\) \\
\hline \multicolumn{3}{|l|}{ExhManGasTemp} & Engine exhaust gas temperature & K \\
\hline \multicolumn{3}{|l|}{EngTrq} & Engine torque output & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline \multicolumn{3}{|l|}{EngSpd} & Engine speed & rpm \\
\hline \multicolumn{3}{|l|}{CrkAng} & \begin{tabular}{l}
Engine crankshaft absolute angle
\[
\int_{0}^{(360) C p s} E n g S p d \frac{180}{30} d \theta
\] \\
where \(C p s\) is crankshaft revolutions per power stroke.
\end{tabular} & degrees crank angle \\
\hline \multicolumn{3}{|l|}{Bsfc} & Engine brake-specific fuel consumption (BSFC) & \(\mathrm{g} / \mathrm{kWh}\) \\
\hline \multicolumn{3}{|l|}{EoHC} & Engine out hydrocarbon emission mass flow & kg/s \\
\hline \multicolumn{3}{|l|}{EoCO} & Engine out carbon monoxide emission mass flow rate & kg/s \\
\hline \multicolumn{3}{|l|}{EoN0x} & Engine out nitric oxide and nitrogen dioxide emissions mass flow & kg/s \\
\hline \multicolumn{3}{|l|}{EoC02} & Engine out carbon dioxide emission mass flow & kg/s \\
\hline \multicolumn{3}{|l|}{EoPM} & Engine out particulate matter emission mass flow & kg/s \\
\hline \multirow[t]{3}{*}{PwrInf 0} & PwrTrnsfrd & PwrCrkshft & Crankshaft power & W \\
\hline & PwrNotTrnsf & PwrFuel & Fuel input power & W \\
\hline & & PwrLoss & Power loss & W \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline \multicolumn{2}{|l|}{ Signal } & Description & Units \\
\hline & PwrStored & Not used & \\
\hline
\end{tabular}

\section*{EngTrq - Engine brake torque}

\section*{scalar}

Engine brake torque, \(T_{\text {brake }}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Parameters}

\section*{Block Options}

\section*{Include turbocharger lag effect - Increase time constant} off (default)

To model turbocharger lag, select Include turbocharger lag effect. During throttle control, the time constant models the manifold filling and emptying dynamics. When the torque request requires a turbocharger boost, the block uses a larger time constant to represent the turbocharger lag. The block uses these equations.
\begin{tabular}{|l|c|}
\hline Dynamic torque & \(\frac{d T_{\text {brake }}}{d t}=\frac{1}{\tau_{\text {eng }}}\left(T_{\text {stdy }}-T_{\text {brake }}\right)\) \\
\hline \begin{tabular}{l} 
Boost time \\
constant
\end{tabular} & \(\tau_{\text {bst }}=\left\{\begin{array}{ll|}\tau_{\text {bst, rising }} & \text { when } T_{\text {stdy }}>T_{\text {brake }} \\
\tau_{\text {bst, falling }} & \text { when } T_{\text {stdy }} \leq T_{\text {brake }}\end{array}\right.\) \\
\hline \begin{tabular}{l} 
Final time \\
constant
\end{tabular} & \(\tau_{\text {eng }}= \begin{cases}\tau_{\text {thr }} & \text { when } T_{\text {brake }}<f_{\text {bst }}(N) \\
\tau_{\text {bst }} & \text { when } T_{\text {brake }} \geq f_{\text {bst }}(N)\end{cases}\) \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(T_{\text {brake }}\) & Brake torque \\
\(T_{\text {stdy }}\) & Steady-state target torque \\
\(\tau_{\text {bst }}\) & Boost time constant \\
\(\tau_{\text {bst,rising, }}\) & Boost rising and falling time constant, respectively \\
\(\tau_{\text {bst,falling }}\) & \\
\(\tau_{\text {eng }}\) & Final time constant
\end{tabular}
\begin{tabular}{ll}
\(\tau_{\text {thr }}\) & Time constant during throttle control \\
\(f_{\text {bst }}(N)\) & Boost torque speed line \\
\(N\) & Engine speed
\end{tabular}

\section*{Dependencies}

Selecting Include turbocharger lag effect enables these parameters:
- Boost torque line, f_tbrake_bst
- Time constant below boost line, tau_thr
- Rising torque boost time constant, tau_bst_rising
- Falling torque boost time constant, tau_bst_falling

\section*{Input engine temperature - Create input port}
off (default) | on
Select this to create the EngTemp input port.
The block enables you to specify lookup tables for these engine characteristics. The lookup tables, developed with the Model-Based Calibration Toolbox, are functions of commanded torque, \(T_{c m d}\), brake torque, \(T_{\text {brake }}\), and engine speed, \(N\). If you select Input engine temperature, the tables are also a function of engine temperature, \(\mathrm{Temp}_{\text {Eng }}\).
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Table } & Input Engine Temperature Parameter Setting \\
& off & on \\
\hline Power & \(f\left(T_{\text {cmd }}, N\right)\) & \(f\left(T_{\text {cmd }}, N, T e m p_{\text {Eng }}\right)\) \\
\hline Air & & \(f\left(T_{\text {brakes }}, N, T e m p_{\text {Eng }}\right)\) \\
\hline Fuel & & \\
\hline Temperature & \\
\hline Efficiency & \\
\hline HC & \\
\hline CO & \\
\hline NOx & & \\
\hline CO2 & & \\
\hline PM & & \\
\hline
\end{tabular}

\section*{Configuration}

Calibrate Maps - Calibrate tables with measured data
selection
If you have Model-Based Calibration Toolbox, click Calibrate Maps to virtually calibrate the 2D lookup tables using measured data. The dialog box steps through these tasks.
\begin{tabular}{|c|c|}
\hline Task & Description \\
\hline \multirow[t]{4}{*}{Import firing data} & Import this firing data from a file. For more information, see "Using Data" (Model-Based Calibration Toolbox). \\
\hline & Required Data Optional Data \\
\hline & \begin{tabular}{l}
- Engine speed, rpm \\
- Engine torque, \(\mathrm{N} \cdot \mathrm{m}\) \\
- Air mass flow rate, kg/s \\
- Brake specific fuel consumption, \(\mathrm{g} /\) (kW•h) \\
- CO2 mass flow rate, \(\mathrm{kg} / \mathrm{s}\) \\
- CO mass flow rate, \(\mathrm{kg} / \mathrm{s}\) \\
- Exhaust temperature, K \\
- Fuel mass flow rate, kg/s \\
- HC mass flow rate, \(\mathrm{kg} / \mathrm{s}\) \\
- NOx mass flow rate, \(\mathrm{kg} / \mathrm{s}\) \\
- Particulate matter mass flow rate, \(\mathrm{kg} / \mathrm{s}\)
\end{tabular} \\
\hline & \begin{tabular}{l}
Collect firing data at steady-state operating conditions when injectors deliver the fuel. Data should cover the engine speed and torque operating range. Model-Based Calibration Toolbox uses the firing data boundary as the maximum torque. \\
To filter or edit the data, select Edit in Application. The ModelBased Calibration Toolbox Data Editor opens.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Task & Description \\
\hline \begin{tabular}{l} 
Import non-firing \\
data
\end{tabular} & \begin{tabular}{l} 
Import this non-firing data from a file. \\
- Engine speed, rpm \\
Collect non-firing (motoring) data at steady-state operating conditions \\
when fuel is cut off. All non-firing torque points must be less than \\
zero. Non-firing data is a function of engine speed only.
\end{tabular} \\
\hline \begin{tabular}{l} 
Generate \\
response models
\end{tabular} & \begin{tabular}{l} 
For both firing and non-firing data, the Model-Based Calibration \\
Toolbox uses test plans to fit data to Gaussian process models (GPMs). \\
To assess or adjust the response model fit, select Edit in \\
Application. The Model-Based Calibration Toolbox Model Browser \\
opens. For more information, see "Model Assessment" (Model-Based \\
Calibration Toolbox).
\end{tabular} \\
\hline \begin{tabular}{l} 
Generate \\
calibration
\end{tabular} & \begin{tabular}{l} 
Model-Based Calibration Toolbox calibrates the firing and non-firing \\
response models and generates calibrated tables. \\
To assess or adjust the calibration, select Edit in Application. The
\end{tabular} \\
\hline \begin{tabular}{l} 
Model-Based Calibration Toolbox CAGE Browser opens. For more \\
information, see "Calibration Tables" (Model-Based Calibration \\
Toolbox).
\end{tabular} \\
\hline \begin{tabular}{l} 
Update block \\
parameters
\end{tabular} & \begin{tabular}{l} 
Update the block lookup table and breakpoint parameters with the \\
calibration.
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.
Breakpoints for commanded torque, f_tbrake_t_bpt - Breakpoints vector

Breakpoints, in \(\mathrm{N} \cdot \mathrm{m}\).
Breakpoints for engine speed input, f_tbrake_n_bpt - Breakpoints vector

Breakpoints, in rpm.

\section*{Breakpoints for temperature input, f_tbrake_engtmp_bpt - Breakpoints vector}

Breakpoints, in K.

\section*{Dependencies}

To enable this parameter, select Input engine temperature.

\section*{Number of cylinders, NCyl - Number scalar}

Number of cylinders.
Crank revolutions per power stroke, Cps - Crank revolutions scalar

Crank revolutions per power stroke.

\section*{Total displaced volume, Vd - Volume scalar}

Volume displaced by engine, in \(\mathrm{m} \wedge 3\).

\section*{Fuel lower heating value, Lhv - Heating value scalar}

Fuel lower heating value, \(L H V\), in J/kg.
Fuel specific gravity, Sg - Specific gravity scalar

Specific gravity of fuel, \(S g_{\text {fuel }}\), dimensionless.
Ideal gas constant air, Rair - Constant scalar

Ideal gas constant of air and residual gas entering the engine intake port, in \(\mathrm{J} /(\mathrm{kg} * \mathrm{~K})\).
Air standard pressure, Pstd - Pressure scalar

Standard air pressure, in Pa.

\section*{Air standard temperature, Tstd - Temperature} scalar

Standard air temperature, in K.

\section*{Boost torque line, f_tbrake_bst - Boost lag} vector

Boost torque line, \(f_{b s t}(N)\), in \(N \cdot m\).

\section*{Dependencies}

To enable this parameter, select Include turbocharger lag effect.
Time constant below boost line - Time constant below scalar

Time constant below boost line, \(\tau_{\text {thr }}\), in s .

\section*{Dependencies}

To enable this parameter, select Include turbocharger lag effect.
```

Rising torque boost time constant, tau_bst_rising - Rising time
constant
scalar

```

Rising torque boost time constant, \(\tau_{b s t, r i s i n g}\), in s.

\section*{Dependencies}

To enable this parameter, select Include turbocharger lag effect.
Falling torque boost time constant, tau_bst_falling - Falling time constant
scalar
Falling torque boost time constant, \(\tau_{\text {bst,falling }}\) in s .
Dependencies
To enable this parameter, select Include turbocharger lag effect.

\section*{Power}

\section*{Brake torque map, f_tbrake - 2D lookup table array}

The engine torque lookup table is a function of commanded engine torque and engine speed, \(T=f\left(T_{c m d}, N\right)\), where:
- \(\quad T\) is engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(T_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.


\section*{Plot brake torque map - Plot table \\ button}

Click to plot table.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.
Brake torque map, f_tbrake_3d - 3D lookup table
array
The engine torque lookup table is a function of commanded engine torque, engine speed, and engine temperature, \(T=f\left(T_{c m d}, N, T e m p_{\text {Eng }}\right)\), where:
- \(\quad T\) is engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(T_{\text {cmd }}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.
- \(T_{e m p}^{\text {Eng }}\) is engine temperature, in K .

Dependencies
To enable this parameter, select Input engine temperature.

\section*{Air}

Air mass flow map, f_air - 2D lookup table array

The engine air mass flow lookup table is a function of commanded engine torque and engine speed, \(\dot{m}_{\text {intk }}=f\left(T_{\text {cmd }}, N\right)\), where:
- \(\dot{m}_{\text {intk }}\) is engine air mass flow, in \(\mathrm{kg} / \mathrm{s}\).
- \(T_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Plot air mass map - Plot table}
button
Click to plot table.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Air mass flow map, f_air_3d - 3D lookup table array}

The engine air mass flow lookup table is a function of commanded engine torque, engine speed, and engine temperature, \(\dot{m}_{\text {intk }}=f\left(T_{\text {cmd }}, N, T e m p_{\text {Eng }}\right)\), where:
- \(\dot{m}_{\text {intk }}\) is engine air mass flow, in \(\mathrm{kg} / \mathrm{s}\).
- \(T_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .

\section*{Dependencies}

To enable this parameter, select Input engine temperature.

\section*{Fuel}

\section*{Fuel flow map, f_fuel - 2D lookup table}
array
The engine fuel mass flow lookup table is a function of commanded engine torque and engine speed, MassFlow \(=f\left(T_{\text {cmd }}, N\right)\), where:
- MassFlow is engine fuel mass flow, in \(\mathrm{kg} / \mathrm{s}\).
- \(T_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Plot fuel flow map - Plot table \\ \section*{button}}

Click to plot table.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Fuel flow map, f_fuel_3d - 3D lookup table} array

The engine fuel mass flow lookup table is a function of commanded engine torque, engine speed, and engine temperature, MassFlow \(=f\left(T_{\text {cmd }}, N, T e m p_{\text {Eng }}\right)\), where:
- MassFlow is engine fuel mass flow, in \(\mathrm{kg} / \mathrm{s}\).
- \(T_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .

\section*{Dependencies}

To enable this parameter, select Input engine temperature.

\section*{Temperature}

\section*{Exhaust temperature map, f_texh - 2D lookup table array}

The engine exhaust temperature lookup table is a function of commanded engine torque and engine speed, \(T_{\text {exh }}=f\left(T_{\text {cmd }}, N\right)\), where:
- \(T_{\text {exh }}\) is exhaust temperature, in K .
- \(T_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Plot exhaust temperature map - Plot table \\ button}

Click to plot table.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Exhaust temperature map, f_texh_3d - 3D lookup table array}

The engine exhaust temperature lookup table is a function of commanded engine torque, engine speed, and engine temperature, \(T_{\text {exh }}=f\left(T_{c m d}, N, T e m p_{\text {Eng }}\right)\), where:
- \(T_{\text {exh }}\) is exhaust temperature, in K .
- \(T_{\text {cmd }}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .

\section*{Dependencies}

To enable this parameter, select Input engine temperature.

\section*{Efficiency}

\section*{BSFC map, f_eff - 2D lookup table} array

The brake-specific fuel consumption (BSFC) efficiency is a function of commanded engine torque and engine speed, \(B S F C=f\left(T_{\text {cmd }}, N\right)\), where:
- BSFC is BSFC, in \(\mathrm{g} / \mathrm{kWh}\).
- \(T_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Plot BSFC map - Plot table}
button
Click to plot table.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{BSFC map, f_eff_3d - 3D lookup table array}

The brake-specific fuel consumption (BSFC) efficiency is a function of commanded engine torque, engine speed, and engine temperature, \(B S F C=f\left(T_{c m d}, N, T e m p_{\text {Eng }}\right)\), where:
- BSFC is BSFC, in \(\mathrm{g} / \mathrm{kWh}\).
- \(T_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .

\section*{Dependencies}

To enable this parameter, select Input engine temperature.

\section*{HC}

\section*{EO HC map, f_hc - 2D lookup table array}

The engine-out hydrocarbon emissions are a function of commanded engine torque and engine speed, \(E O H C=f\left(T_{\text {cmd }}, N\right)\), where:
- \(E O H C\) is engine-out hydrocarbon emissions, in \(\mathrm{kg} / \mathrm{s}\).
- \(T_{\text {cmd }}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Plot EO HC map - Plot table}

\section*{button}

Click to plot table.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{EO HC map, f_hc_3d - 3D lookup table array}

The engine-out hydrocarbon emissions are a function of commanded engine torque, engine speed, and engine temperature, \(E O H C=f\left(T_{c m d}, N, T e m p_{\text {Eng }}\right)\), where:
- EO HC is engine-out hydrocarbon emissions, in kg/s.
- \(T_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .

\section*{Dependencies}

To enable this parameter, select Input engine temperature.

\section*{CO}

EO CO map, f_co - 2D lookup table array

The engine-out carbon monoxide emissions are a function of commanded engine torque and engine speed, \(E O C O=f\left(T_{\text {cmd }}, N\right)\), where:
- EO CO is engine-out carbon monoxide emissions, in \(\mathrm{kg} / \mathrm{s}\).
- \(T_{\text {cmd }}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Plot EO CO map - Plot table}

\section*{button}

Click to plot table.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.
EO HC map, f_hc_3d - 3D lookup table array

The engine-out hydrocarbon emissions are a function of commanded engine torque, engine speed, and engine temperature, \(E O H C=f\left(T_{c m d}, N, T e m p_{\text {Eng }}\right)\), where:
- \(E O H C\) is engine-out hydrocarbon emissions, in \(\mathrm{kg} / \mathrm{s}\).
- \(T_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.
- \(T_{e m p}^{\text {Eng }}\) is engine temperature, in K .

\section*{Dependencies}

To enable this parameter, select Input engine temperature.

\section*{NOX}

\section*{EO NOx map, f_nox - 2D lookup table array}

The engine-out nitric oxide and nitrogen dioxide emissions are a function of commanded engine torque and engine speed, \(E O\) NOx \(=f\left(T_{\text {cmd }}, N\right)\), where:
- EO NOx is engine-out nitric oxide and nitrogen dioxide emissions, in \(\mathrm{kg} / \mathrm{s}\).
- \(T_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Plot EO NOX map - Plot table}

\section*{button}

Click to plot table.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.
EO NOx map, f_nox_3d - 3D lookup table array

The engine-out nitric oxide and nitrogen dioxide emissions are a function of commanded engine torque, engine speed, and engine temperature, EO NOx \(=f\left(T_{\text {cmd }}, N, T e m p_{E n g}\right)\), where:
- EO NOx is engine-out nitric oxide and nitrogen dioxide emissions, in \(\mathrm{kg} / \mathrm{s}\).
- \(T_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .

\section*{Dependencies}

To enable this parameter, select Input engine temperature.

\section*{CO2}

\section*{EO CO2 map, f_co2 - 2D lookup table array}

The engine-out carbon dioxide emissions are a function of commanded engine torque and engine speed, \(E O C O 2=f\left(T_{\text {cmd }}, N\right)\), where:
- EO CO2 is engine-out carbon dioxide emissions, in \(\mathrm{kg} / \mathrm{s}\).
- \(T_{\text {cmd }}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.


\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Plot CO2 map - Plot table button}

Click to plot table.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{E0 CO2 map, f_co2_3d - 3D lookup table array}

The engine-out carbon dioxide emissions are a function of commanded engine torque, engine speed, and engine temperature, EO CO2 \(=f\left(T_{c m d}, N, T e m p_{E n g}\right)\), where:
- EO CO2 is engine-out carbon dioxide emissions, in \(\mathrm{kg} / \mathrm{s}\).
- \(T_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .

\section*{Dependencies}

To enable this parameter, select Input engine temperature.

\section*{PM}
```

EO PM map, f_pm - 2D lookup table
array

```

The engine-out particulate matter emissions are a function of commanded engine torque and engine speed, where:
- EO PM is engine-out PM emissions, in \(\mathrm{kg} / \mathrm{s}\).
- \(T_{\text {cmd }}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{Plot EO PM map - Plot table}
button

Click to plot table.

\section*{Dependencies}

To enable this parameter, clear Input engine temperature.

\section*{EO PM map, f_pm_3d - 3D lookup table array}

The engine-out particulate matter emissions are a function of commanded engine torque, engine speed, and engine temperature, where:
- EO PM is engine-out PM emissions, in kg/s.
- \(T_{c m d}\) is commanded engine torque, in \(\mathrm{N} \cdot \mathrm{m}\).
- \(N\) is engine speed, in rpm.
- \(T e m p_{\text {Eng }}\) is engine temperature, in K .

Dependencies
To enable this parameter, select Input engine temperature.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

Mapped CI Engine | Mapped Motor | SI Core Engine

\section*{Topics}
"Generate Mapped SI Engine from a Spreadsheet"
"Engine Calibration Maps"
"Model-Based Calibration Toolbox"

\section*{Introduced in R2017a}

\section*{Electric Motor, Converters, Inverter Blocks - Alphabetical List}

\section*{Interior PMSM}

Three-phase interior permanent magnet synchronous motor with sinusoidal back electromotive force
Library: Powertrain Blockset / Propulsion / Electric Motors


\section*{Description}

The Interior PMSM block implements a three-phase interior permanent magnet synchronous motor (PMSM) with sinusoidal back electromotive force. The block uses the three-phase input voltages to regulate the individual phase currents, allowing control of the motor torque or speed.

By default, the block sets the Simulation type parameter to Continuous to use a continuous sample time during simulation. If you want to generate code for fixed-step double- and single-precision targets, considering setting the parameter to Discrete. Then specify a Sample Time, Ts parameter.

On the Parameters tab, if you select Back-emf, the block implements this equation to calculate the permanent flux linkage constant.
\[
\lambda_{p m}=\frac{1}{\sqrt{3}} \cdot \frac{K_{e}}{1000 P} \cdot \frac{60}{2 \pi}
\]

\section*{Motor Construction}

This figure shows the motor construction with a single pole pair on the motor.


The motor magnetic field due to the permanent magnets creates a sinusoidal rate of change of flux with motor angle.

For the axes convention, the \(a\)-phase and permanent magnet fluxes are aligned when motor angle \(\theta_{r}\) is zero.

\section*{Three-Phase Sinusoidal Model Electrical System}

The block implements these equations, expressed in the motor flux reference frame (dq frame). All quantities in the motor reference frame are referred to the stator.
\[
\begin{aligned}
& \omega_{e}=P \omega_{m} \\
& \frac{d}{d t} i_{d}=\frac{1}{L_{d}} v_{d}-\frac{R}{L_{d}} i_{d}+\frac{L_{q}}{L_{d}} P \omega_{m} i_{q} \\
& \frac{d}{d t} i_{q}=\frac{1}{L_{q}} v_{q}-\frac{R}{L_{q}} i_{q}-\frac{L_{d}}{L_{q}} P \omega_{m} i_{d}-\frac{\lambda_{p m} P \omega_{m}}{L_{q}} \\
& T_{e}=1.5 P\left[\lambda_{p m} i_{q}+\left(L_{d}-L_{q}\right) i_{d} i_{q}\right]
\end{aligned}
\]

The \(L_{q}\) and \(L_{d}\) inductances represent the relation between the phase inductance and the motor position due to the saliency of the motor.

The equations use these variables.
\(L_{q}, L_{d} \quad\) q-and d-axis inductances
\begin{tabular}{ll}
\(R\) & Resistance of the stator windings \\
\(i_{q}, i_{d}\) & q - and d-axis currents \\
\(v_{q}, v_{d}\) & q - and d-axis voltages \\
\(\omega_{m}\) & Angular mechanical velocity of the motor \\
\(\omega_{e}\) & Angular electrical velocity of the motor \\
\(\lambda_{p m}\) & Permanent flux linkage constant \\
\(K_{e}\) & Back electromotive force (EMF) \\
\(P\) & Number of pole pairs \\
\(T_{e}\) & Electromagnetic torque \\
\(\Theta_{e}\) & Electrical angle
\end{tabular}

\section*{Mechanical System}

The motor angular velocity is given by:
\[
\begin{gathered}
\frac{d}{d t} \omega_{m}=\frac{1}{J}\left(T_{e}-T_{f}-F \omega_{m}-T_{m}\right) \\
\frac{d \theta_{m}}{d t}=\omega_{m}
\end{gathered}
\]

The equations use these variables.
\begin{tabular}{ll}
\(J\) & Combined inertia of motor and load \\
\(F\) & Combined viscous friction of motor and load \\
\(\theta_{m}\) & Motor mechanical angular position \\
\(T_{m}\) & Motor shaft torque \\
\(T_{e}\) & Electromagnetic torque \\
\(T_{f}\) & Motor shaft static friction torque \\
\(\omega_{m}\) & Angular mechanical velocity of the motor
\end{tabular}

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & & Equations \\
\hline \multirow[t]{5}{*}{} & \multirow[t]{5}{*}{\begin{tabular}{l}
PwrTrnsfrd - Power transferred between blocks \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block \\
PwrNotTrnsfrd - Power crossing the block boundary, but not transferred \\
- Positive signals indicate an input \\
- Negative signals indicate a loss \\
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular}} & PwrMtr & Mechanical power & \(P_{\text {mot }}\) & \(P_{\text {mot }}=-\omega_{m} T_{e}\) \\
\hline & & PwrBus & Electrical power & \(P_{\text {bus }}\) & \[
\begin{aligned}
& P_{b u s}=v_{a n} i_{a}+ \\
& v_{b n} i_{b}+v_{c n} i_{c}
\end{aligned}
\] \\
\hline & & PwrEle cLoss & Resistive power loss & \(P_{\text {elec }}\) & \[
\begin{aligned}
& P_{\text {elec }}=\quad-\frac{3}{2}\left(R_{s} i_{s d}^{2}\right. \\
& \left.+R_{s} i_{s q}^{2}\right)
\end{aligned}
\] \\
\hline & & PwrMec hLoss & Mechanical power loss & \(P_{\text {mech }}\) & \begin{tabular}{l}
When Port Configuration is set to Torque:
\[
\begin{aligned}
& P_{\text {mech }}=- \\
& \left(\omega_{m}^{2} F+\left|\omega_{m}\right| T_{f}\right)
\end{aligned}
\] \\
When Port Configuration is set to Speed:
\[
P_{\text {mech }}=0
\]
\end{tabular} \\
\hline & & PwrMtr Stored & Stored motor power & \(P_{\text {str }}\) & \[
\begin{aligned}
& P_{\text {str }}=\quad P_{\text {bus }}+P_{\text {mot }} \\
& +P_{\text {elec }}+P_{\text {mech }}
\end{aligned}
\] \\
\hline
\end{tabular}

The equations use these variables.
\(R_{\mathrm{S}} \quad\) Stator resistance
\(i_{a}, i_{b}, i_{c} \quad\) Stator phase \(\mathrm{a}, \mathrm{b}\), and c current
\(i_{s q}, i_{s d} \quad\) Stator \(q\) - and d-axis currents
\begin{tabular}{ll}
\(v_{a n}, v_{b n}, v_{c n}\) & Stator phase \(\mathrm{a}, \mathrm{b}\), and c voltage \\
\(\omega_{m}\) & Angular mechanical velocity of the rotor \\
\(F\) & Combined motor and load viscous damping \\
\(T_{e}\) & Electromagnetic torque \\
\(T_{f}\) & Combined motor and load friction torque
\end{tabular}

\section*{Ports}

\section*{Input}

\section*{LdTrq - Motor shaft torque}
scalar
Motor shaft input torque, \(T_{m}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To create this port, select Torque for the Port Configuration parameter.

\section*{Spd - Motor shaft speed}
scalar
Angular velocity of the motor, \(\omega_{m}\), in rad/s.

\section*{Dependencies}

To create this port, select Speed for the Port Configuration parameter.

\section*{PhaseVolt - Stator terminal voltages \\ 1-by-3 array}

Stator terminal voltages, \(V_{a}, V_{b}\), and \(V_{c}\), in V .

\section*{Dependencies}

To create this port, select Speed or Torque for the Port Configuration parameter.

\section*{Output}

\section*{Info - Bus signal}
bus
The bus signal contains these block calculations.
\begin{tabular}{|l|l|l|l|}
\hline Signal & Description & Variable & Units \\
\hline IaStator & Stator phase current A & \(i_{a}\) & A \\
\hline IbStator & Stator phase current B & \(i_{b}\) & A \\
\hline IcStator & Stator phase current C & \(i_{c}\) & A \\
\hline IdSync & Direct axis current & \(i_{d}\) & A \\
\hline IqSync & Quadrature axis current & \(i_{q}\) & A \\
\hline VdSync & Direct axis voltage & \(v_{d}\) & V \\
\hline VqSync & Quadrature axis voltage & \(v_{q}\) & V \\
\hline MtrSpd & \begin{tabular}{l} 
Angular mechanical velocity of \\
the motor
\end{tabular} & \(\omega_{m}\) & \(\mathrm{rad} / \mathrm{s}\) \\
\hline MtrPos & \begin{tabular}{l} 
Motor mechanical angular \\
position
\end{tabular} & \(\theta_{m}\) & rad \\
\hline MtrTrq & Electromagnetic torque & \(T_{e}\) & \(\mathrm{~N} \cdot \mathrm{~m}\) \\
\hline \begin{tabular}{l} 
PwrInf \\
o
\end{tabular} & \begin{tabular}{l} 
PwrTrnsf \\
rd
\end{tabular} & PwrMtr & Mechanical power
\end{tabular}

\section*{PhaseCurr - Phase a, b, c current}

1-by-3 array
Phase a, b, c current, \(i_{a}, i_{b}\), and \(i_{c}\), in A.

\section*{MtrTrq - Motor torque}
scalar
Motor torque, \(T_{m t r}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To create this port, select Speed for the Mechanical input configuration parameter.

\section*{MtrSpd - Motor speed}
scalar
Angular speed of the motor, \(\omega_{m t r}\), in rad/s.

\section*{Dependencies}

To create this port, select Torque for the Mechanical input configuration parameter.

\section*{Parameters}

\section*{Block Options}

\section*{Mechanical input configuration - Select port configuration} Torque (default) | Speed

This table summarizes the port configurations.
\begin{tabular}{|l|l|l|}
\hline Port Configuration & Creates Input Port & Creates Output Port \\
\hline Torque & LdTrq & MtrSpd \\
\hline Speed & Spd & MtrTrq \\
\hline
\end{tabular}

\section*{Simulation type - Select simulation type \\ Continuous (default)|Discrete}

By default, the block uses a continuous sample time during simulation. If you want to generate code for single-precision targets, considering setting the parameter to Discrete.

\section*{Dependencies}

Setting Simulation type to Discrete creates the Sample Time, Ts parameter.

\section*{Sample Time (Ts) - Sample time for discrete integration scalar}

Integration sample time for discrete simulation, in s.

\section*{Dependencies}

Setting Simulation type to Discrete creates the Sample Time, Ts parameter.

\section*{Parameters}

Number of pole pairs ( P ) - Pole pairs scalar

Motor pole pairs, \(P\).
Stator phase resistance per phase (Rs) - Resistance scalar

Stator phase resistance per phase, \(R_{s}\), in ohm.
Stator d-axis and q-axis inductance (Ldq) - Inductance vector

Stator d-axis and q-axis inductance, \(L_{d}, L_{q}\), in H.
Permanent flux linkage constant (lambda_pm) - Flux scalar

Permanent flux linkage constant, \(\lambda_{p m}\), in Wb.
Back-emf constant (Ke) - Back electromotive force scalar

Back electromotive force, EMF, \(K_{e}\), in Vpk_LL/krpm. Vpk_LL is the peak voltage line-toline measurement.

To calculate the permanent flux linkage constant, the block implements this equation.
\[
\lambda_{p m}=\frac{1}{\sqrt{3}} \cdot \frac{K_{e}}{1000 P} \cdot \frac{60}{2 \pi}
\]

\section*{Physical inertia, viscous damping, and static friction (mechanical) - Inertia, damping, friction \\ vector}

Mechanical properties of the motor:
- Inertia, \(J\), in kgm^2
- Viscous damping, \(F\), in \(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})\)
- Static friction, \(T_{f}\), in \(\mathrm{N} \cdot \mathrm{m}\)

\section*{Dependencies}

To enable this parameter, select the Torque configuration parameter.

\section*{Initial Values}

\section*{Initial d-axis and \(q\)-axis current (idq0) - Current vector}

Initial q- and d-axis currents, \(i_{q}, i_{d}\), in A.

\section*{Initial mechanical position (theta_init) - Angle scalar}

Initial motor angular position, \(\theta_{m 0}\), in rad.
```

Initial mechanical speed (omega_init) - Speed
scalar

```

Initial angular velocity of the motor, \(\omega_{m 0}\), in rad/s.

\section*{Dependencies}

To enable this parameter, select the Torque configuration parameter.

\section*{References}
[1] Kundur, P. Power System Stability and Control. New York, NY: McGraw Hill, 1993.
[2] Anderson, P. M. Analysis of Faulted Power Systems. Hoboken, NJ: Wiley-IEEE Press, 1995.

\title{
Extended Capabilities
}

\author{
C/C++ Code Generation \\ Generate \(C\) and \(C++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).
}

\author{
See Also \\ Flux-Based PMSM | Induction Motor | Interior PM Controller | Mapped Motor | Surface Mount PMSM \\ Introduced in R2017a
}

\section*{Interior PM Controller}

Torque-based, field-oriented controller for an internal permanent magnet synchronous motor
Library: Powertrain Blockset / Propulsion / Electric Motor Controllers


\section*{Description}

The Interior PM Controller block implements a torque-based, field-oriented controller for an internal permanent magnet synchronous motor (PMSM) with an optional outer-loop speed controller. The internal torque control implements strategies for achieving maximum torque per ampere (MTPA) and weakening the magnetic flux. You can specify either the speed or torque control type.

The Interior PM Controller implements equations for speed control, torque determination, regulators, transforms, and motors.

The figure illustrates the information flow in the block.


The block implements equations that use these variables.
\begin{tabular}{ll}
\(\omega\) & Rotor speed \\
\(\omega^{*}\) & Rotor speed command \\
\(T^{*}\) & Torque command \\
\(i_{d}\) & d-axis current \\
\(i^{*}{ }_{d}\) & d-axis current command \\
\(i_{q}\) & q-axis current \\
\(i^{*}{ }_{q}\) & q -axis current command \\
\(v_{d}\), & d -axis voltage \\
\(v^{*}{ }_{d}\) & d-axis voltage command \\
\(v_{q}\) & q-axis voltage \\
\(v^{*}{ }_{q}\) & q-axis voltage command \\
\(v_{a}, v_{b}, v_{c}\) & Stator phase a, b, c voltages \\
\(i_{a}, i_{b}, i_{c}\) & Stator phase a, b, c currents
\end{tabular}

\section*{Speed Controller}

To implement the speed controller, select the Control Type parameter Speed Control. If you select the Control Type parameter Torque Control, the block does not implement the speed controller.

The speed controller determines the torque command by implementing a state filter, and calculating the feedforward and feedback commands. If you do not implement the speed controller, input a torque command to the Interior PM Controller block.


\section*{State Filter}

The state filter is a low-pass filter that generates the acceleration command based on the speed command. On the Speed Controller tab:
- To make the speed-command lag time negligible, specify a Bandwidth of the state filter parameter.
- To calculate a Speed time constant, Ksf gain based on the state filter bandwidth, select Calculate Speed Regulator Gains.

The discrete form of characteristic equation is given by:
\[
z+K_{s f} T_{s m}-1
\]

The filter calculates the gain using this equation.
\[
K_{s f}=\frac{1-\exp \left(-T_{s m} 2 \pi E V_{s f}\right)}{T_{s m}}
\]

The equations use these variables.
\(E V_{s f} \quad\) Bandwidth of the speed command filter
\(T_{s m} \quad\) Motion controller sample time
\(K_{s f} \quad\) Speed regulator time constant

\section*{State Feedback}

To generate the state feedback torque, the block uses the filtered speed error signal from the state filter. The feedback torque calculation also requires gains for speed regulator.

On the Speed Controller tab, select Calculate Speed Regulator Gains to calculate:
- Proportional gain, ba
- Angular gain, Ksa

\section*{- Rotational gain, Kisa}

For the gain calculations, the block uses the inertia from the Physical inertia, viscous damping, static friction parameter value on the Motor Parameters tab.

The gains for the state feedback are calculated using these equations.
\begin{tabular}{|l|l|}
\hline Calculation & Equations \\
\begin{tabular}{l} 
Discrete forms of \\
characteristic \\
equation
\end{tabular} & \begin{tabular}{l}
\(z^{3}+\frac{\left(-3 J_{p}+T_{s} b_{a}+T_{s}^{2} K_{s a}+T_{s}^{3} K_{i s a}\right)}{J_{p}} z^{2}+\frac{\left(3 J_{p}-2 T_{s} b_{a}-T_{s}^{2} K_{s a}\right)}{J_{p}} z\) \\
\(+\frac{-J_{p}+T_{s} b_{a}}{J_{p}}\) \\
\(\left(z-p_{1}\right)\left(z-p_{2}\right)\left(z-p_{3}\right)=z^{3}+\left(p_{1}+p_{2}+p_{3}\right) z^{2}+\left(p_{1} p_{2}+p_{2} p_{3}+p_{1} 3\right.\) \\
\() z^{2}-p_{1} p_{2} p_{3}\)
\end{tabular} \\
\hline \begin{tabular}{l} 
Speed regulator \\
proportional gain
\end{tabular} & \(b_{a}=\frac{J_{p}-J_{p} p_{1} p_{2} p_{3}}{T_{s m}}\) \\
\hline \begin{tabular}{l} 
Speed regulator \\
integral gain
\end{tabular} & \(K_{s a}=\frac{J_{p}\left(p_{1} p_{2}+p_{2} p_{3}+p_{3} p_{1}\right)-3 J_{p}+2 b_{a} T_{s m}}{T_{s m}^{2}}\) \\
\hline \begin{tabular}{l} 
Speed regulator \\
double integral gain
\end{tabular} & \(K_{i s a}=\frac{-J_{p}\left(p_{1}+p_{2}+p_{3}\right)+3 J_{p}-b_{a} T_{s m}-K_{s a} T_{s m}^{2}}{T_{s m}^{3}}\) \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(P\) & Motor pole pairs \\
\(b_{a}\) & Speed regulator proportional gain \\
\(K_{s a}\) & Speed regulator integral gain
\end{tabular}
\begin{tabular}{ll}
\(K_{\text {isa }}\) & Speed regulator double integral gain \\
\(J_{p}\) & Motor inertia \\
\(T_{s m}\) & Motion controller sample time
\end{tabular}

\section*{Command Feedforward}

To generate the state feedforward torque, the block uses the filtered speed and acceleration from the state filter. Also, the feedforward torque calculation uses the inertia, viscous damping, and static friction. To achieve zero tracking error, the torque command is the sum of the feedforward and feedback torque commands.

Selecting Calculate Speed Regulator Gains on the Speed Controller tab updates the inertia, viscous damping, and static friction with the Physical inertia, viscous damping, static friction parameter values on the Motor Parameters tab.

The feedforward torque command uses this equation.
\[
T_{c m d_{\_} f f}=J_{p} \dot{\omega}_{m}+F_{v} \omega_{m}+F_{s} \frac{\omega_{m}}{\left|\omega_{m}\right|}
\]
where:
\begin{tabular}{ll}
\(J_{p}\) & Motor inertia \\
\(T_{c m d f f}\) & Torque command feedforward \\
\(F_{s}\) & Static friction torque constant \\
\(F_{v}\) & Viscous friction torque constant \\
\(F_{s}\) & Static friction torque constant \\
\(\omega_{m}\) & Rotor speed
\end{tabular}

\section*{Torque Determination}

The block uses a maximum torque per ampere (MTPA) trajectory to calculate the base speed and the current commands. The available bus voltage determines the base speed. The direct ( d ) and quadrature ( q ) permanent magnet (PM) determines the induced voltage.
\begin{tabular}{|c|c|}
\hline Calculation & Equations \\
\hline Electrical base speed transition into field weakening & \[
\omega_{\text {base }}=\frac{v_{\max }}{\sqrt{\left(L_{q}{ }^{i} q\right)^{2}+\left(L_{d d_{d}}+\lambda_{p m}\right)^{2}}}
\] \\
\hline d-axis voltage & \(v_{d}=-\omega_{e} L_{q} i_{q_{\text {max }}}\) \\
\hline q -axis voltage & \(v_{q}=\omega_{e}\left(L_{d} i_{d_{-}}\right.\)max \(\left.+\lambda_{p m}\right)\) \\
\hline Maximum phase current & \(i_{\text {max }}{ }^{2}=i_{d_{-} \max }^{2}+i_{q_{-} \max }^{2}\) \\
\hline Maximum line to neutral voltage & \[
v_{\max }=\frac{v_{\text {bus }}}{\sqrt{3}}
\] \\
\hline d-axis phase current MTPA table & \[
\begin{aligned}
& I_{m}=\frac{2 T_{\max }}{3 P \lambda_{p m}} \\
& i_{d_{-} m t p a}=\frac{\lambda_{p m}}{4\left(L_{q}-L_{d}\right)}-\sqrt{\frac{\lambda_{p m}^{2}}{16\left(L_{q}-L_{d}\right)^{2}}+\frac{I_{m}^{2}}{2}}
\end{aligned}
\] \\
\hline q-axis phase current MTPA table & \[
i_{q_{-} m t p a}=\sqrt{I_{m}^{2}-\left(i_{m t p a}\right)^{2}}
\] \\
\hline Torque MTPA breakpoints & \(T_{m t p a}=\frac{3}{2} P\left(\lambda_{p m} i_{q}+\left(L_{d}-L_{q}\right) i_{d} i_{q}\right)\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Calculation & Equations \\
\hline Field weakening, using the speed-based voltage limits & \[
\begin{aligned}
& \left(L_{q} i_{q}\right)^{2}+\left(L_{d} i_{d}+\lambda_{p m}\right)^{2} \leq \frac{v_{\max }^{2}}{\omega_{e}^{2}} \\
& i_{q}=\sqrt{i_{\max }^{2}-i_{d}^{2}} \\
& \left(L_{d}^{2}-L_{q}^{2}\right) i_{d}^{2}+2 \lambda_{p m} L_{d} i_{d}+\lambda_{p m}+L_{q}^{2} i_{\max }^{2}-\frac{v_{\max }^{2}}{\omega_{e}^{2}}=0 \\
& i_{d f w}= \\
& -\lambda_{p m} L_{d}+\sqrt{\left(\lambda_{p m} L_{d}\right)^{2}-\left(L_{d}^{2}-L_{q}^{2}\right)\left(\lambda_{p m}^{2}+L_{q}^{2} i_{\max }^{2}-\frac{v_{\max }^{2}}{\omega_{e}^{2}}\right.} \\
& T_{f w}=\frac{3}{2} P\left(L_{d}^{2}-L_{q m}^{2}\right)
\end{aligned}
\] \\
\hline Current command &  \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{|c|c|}
\hline \(i_{\text {max }}\) & Maximum phase current \\
\hline \(i_{d}\) & d-axis current \\
\hline \(i_{q}\) & q-axis current \\
\hline \(i_{\text {d_max }}\) & Maximum d-axis phase current \\
\hline \(i_{q \text { _max }}\) & Maximum q-axis phase current \\
\hline \(i_{\text {d_mtpa }}\) & d-axis phase current MTPA table \\
\hline \(i_{\text {q_mtpa }}\) & q -axis phase current MTPA table \\
\hline \(I_{m}\) & Estimated maximum current \\
\hline \(i_{d f w}\) & d -axis field weakening current \\
\hline \(i_{\text {afw }}\) & q -axis field weakening current \\
\hline \(\omega_{e}\) & Rotor electrical speed \\
\hline \(\lambda_{p m}\) & Permanent magnet flux linkage \\
\hline \(v_{d}\) & d-axis voltage \\
\hline \(v_{q}\) & q -axis voltage \\
\hline \(v_{\text {max }}\) & Maximum line to neutral voltage \\
\hline \(v_{\text {bus }}\) & DC bus voltage \\
\hline \(L_{d}\) & d-axis winding inductance \\
\hline \(L_{q}\) & q -axis winding inductance \\
\hline \(P\) & Motor pole pairs \\
\hline \(T_{f w}\) & Field weakening torque \\
\hline \(T_{\text {mtpa }}\) & Torque MTPA breakpoints \\
\hline
\end{tabular}

\section*{Current Regulators}

The block regulates the current with an anti-windup feature. Classic proportionalintegrator (PI) current regulators do not consider the d-axis and q-axis coupling or the back-electromagnetic force (EMF) coupling. As a result, transient performance deteriorates. To account for the coupling, the block implements the complex vector current regulator (CVCR) in the scalar format of the rotor reference frame. The CVCR decouples:
- d-axis and q-axis current cross-coupling
- Back-EMF cross-coupling

The current frequency response is a first-order system, with a bandwidth of \(E V_{\text {current }}\).
The block implements these equations.
\begin{tabular}{|c|c|}
\hline Calculation & Equations \\
\hline Motor voltage, in the rotor reference frame & \[
\begin{aligned}
& L_{d} \frac{d i_{d}}{d t}=v_{d}-R_{s} i_{d}+p \omega_{m} L_{q} i_{q} \\
& L_{d} \frac{d i_{q}}{d t}=v_{q}-R_{s} i_{q}-p \omega_{m} L_{d} i_{d}-p \omega_{m} \lambda_{p m}
\end{aligned}
\] \\
\hline Current regulator gains & \[
\begin{aligned}
& \omega_{b}=2 \pi E V_{\text {current }} \\
& K_{p_{-} d}=L_{d} \omega_{b} \\
& K_{p_{-} q}=L_{q} \omega_{b} \\
& K_{i}=R_{s} \omega_{b}
\end{aligned}
\] \\
\hline Transfer functions & \[
\begin{aligned}
& \frac{i_{d}}{i_{\text {dref }}}=\frac{\omega_{b}}{s+\omega_{b}} \\
& \frac{i_{q}}{i_{q r e f}}=\frac{\omega_{b}}{s+\omega_{b}}
\end{aligned}
\] \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(E V_{\text {current }}\) & Current regulator bandwidth \\
\(i_{d}\) & d-axis current \\
\(i_{q}\) & q-axis current \\
\(K_{p_{-} d}\) & Current regulator d-axis gain \\
\(K_{p_{-} q}\) & Current regulator q-axis gain \\
\(L_{d}\) & d -axis winding inductance \\
\(L_{q}\) & q -axis winding inductance \\
\(R_{s}\) & Stator phase winding resistance \\
\(\omega_{m}\) & Rotor speed \\
\(v_{d}\) & d-axis voltage \\
\(v_{q}\) & q-axis voltage
\end{tabular}
\begin{tabular}{ll}
\(\lambda_{p m}\) & Permanent magnet flux linkage \\
\(P\) & Motor pole pairs
\end{tabular}

\section*{Transforms}

To calculate the voltages and currents in balanced three-phase \((a, b)\) quantities, quadrature two-phase \((\alpha, \beta)\) quantities, and rotating \((d, q)\) reference frames, the block uses the Clarke and Park Transforms.

In the transform equations.
\[
\begin{aligned}
& \omega_{e}=P \omega_{m} \\
& \frac{d \theta_{e}}{d t}=\omega_{e}
\end{aligned}
\]
\begin{tabular}{|l|l|l|}
\hline Transform & Description & Equations \\
\hline Clarke & \begin{tabular}{l} 
Converts balanced three-phase \\
quantities \((a, b)\) into balanced two- \\
phase quadrature quantities \((\alpha, \beta)\).
\end{tabular} & \begin{tabular}{l}
\(x_{\alpha}=\) \\
\(x_{\beta}=\)
\end{tabular}\(\frac{2}{3} x_{a}-\quad \frac{1}{3} x_{b} \quad-\frac{1}{3} x_{b}-\quad \frac{\sqrt{3}}{2} x_{C}\)
\end{tabular}

The transforms use these variables.
\(\omega_{m} \quad\) Rotor speed
\begin{tabular}{ll}
\(P\) & Motor pole pairs \\
\(\omega_{e}\) & Rotor electrical speed \\
\(\Theta_{e}\) & Rotor electrical angle \\
\(x\) & Phase current or voltage
\end{tabular}

\section*{Motor}

The block uses the phase currents and phase voltages to estimate the DC bus current. Positive current indicates battery discharge. Negative current indicates battery charge. The block uses these equations.
\begin{tabular}{|l|l|}
\hline Load power & \(L d_{P w r}=v_{a} \quad i_{a}+\quad v_{b} \quad i_{b}+\quad v_{c} \quad i_{C}\) \\
\hline Source power & \(S r c_{P w r}=L d_{P w r}+P w r_{L o s s}\) \\
\hline DC bus current & \(i_{b u s}=\frac{S r c_{P w r}}{v_{b u s}}\) \\
\hline Estimated rotor torque & \(M t r T r q_{e s t}=1.5 P\left[\lambda i_{q}+\left(L_{d}-L_{q}\right) i_{d} i_{q}\right]\) \\
\hline \begin{tabular}{l} 
Power loss for single efficiency \\
source to load
\end{tabular} & \(P w r_{L o s s}=\frac{100-E f f}{E f f} \cdot L d_{P w r}\) \\
\hline \begin{tabular}{l} 
Power loss for single efficiency \\
load to source
\end{tabular} & \(P w r_{L o s s}=\frac{100-E f f}{100} \cdot\left|L d_{P w r}\right|\) \\
\hline \begin{tabular}{l} 
Power loss for tabulated \\
efficiency
\end{tabular} & \(P w r_{L o s s}=f\left(\omega_{m}, M t r T r q_{e s t}\right)\) \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(v_{a}, v_{b}, v_{c}\) & Stator phase a, b, c voltages \\
\(v_{\text {bus }}\) & Estimated DC bus voltage \\
\(i_{a}, i_{b}, i_{c}\) & Stator phase a, b, c currents \\
\(i_{b u s}\) & Estimated DC bus current \\
\(E f f\) & Overall inverter efficiency \\
\(\omega_{m}\) & Rotor mechanical speed \\
\(L_{q}\) & q-axis winding inductance \\
\(L_{d}\) & d-axis winding inductance
\end{tabular}
\begin{tabular}{ll}
\(i_{q}\) & q -axis current \\
\(i_{d}\) & d-axis current \\
\(\lambda\) & Permanent magnet flux linkage \\
\(P\) & Motor pole pairs
\end{tabular}

\section*{Electrical Losses}

To specify the electrical losses, on the Electrical Losses tab, for Parameterize losses by, select one of these options.
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline \begin{tabular}{l} 
Single efficiency \\
measurement
\end{tabular} & \begin{tabular}{l} 
Electrical loss calculated using a constant value for \\
inverter efficiency.
\end{tabular} \\
\hline Tabulated loss data & \begin{tabular}{l} 
Electrical loss calculated as a function of motor speeds \\
and load torques.
\end{tabular} \\
\hline \begin{tabular}{l} 
Tabulated efficiency \\
data
\end{tabular} & \begin{tabular}{l} 
Electrical loss calculated using inverter efficiency that is a \\
function of motor speeds and load torques.
\end{tabular} \\
& \begin{tabular}{ll} 
- \begin{tabular}{l} 
Converts the efficiency values you provide into losses \\
and uses the tabulated losses for simulation.
\end{tabular} \\
& \begin{tabular}{l} 
Ignores efficiency values you provide for zero speed or \\
zero torque. Losses are assumed zero when either \\
torque or speed is zero.
\end{tabular} \\
& - \begin{tabular}{l} 
Uses linear interpolation to determine losses. Provide \\
tabulated data for low speeds and low torques, as \\
required, to get the desired level of accuracy for lower \\
power conditions.
\end{tabular} \\
& \begin{tabular}{l} 
Does not extrapolate loss values for speed and torque \\
magnitudes that exceed the range of the table.
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}

For best practice, use Tabulated loss data instead of Tabulated efficiency data:
- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

\section*{Ports}

\section*{Input}

\section*{SpdReq - Rotor speed command scalar}

Rotor speed command, \(\omega^{*}\), in rad/s.

\section*{Dependencies}

To create this port, select Speed Control for the Control Type parameter.

\section*{TrqCmd - Torque command scalar}

Torque command, \(T^{*}\), in \(N \cdot m\).

\section*{Dependencies}

To create this port, select Torque Control for the Control Type parameter.

\section*{BusVolt - DC bus voltage}
scalar
DC bus voltage, \(v_{\text {bus }}\), in \(V\).
PhaseCurrA - Current scalar

Stator current phase a, \(i_{a}\), in A.

\section*{PhaseCurrB - Current} scalar

Stator current phase \(b, i_{b}\), in A.
SpdFdbk - Rotor speed scalar

Rotor speed, \(\omega_{m}\), in rad/s.

\section*{PosFdbk - Rotor electrical angle}
scalar
Rotor electrical angle, \(\Theta_{m}\), in rad.

\section*{Output}

\section*{Info - Bus signal \\ bus}

Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|}
\hline Signal & Description & Units \\
\hline SrcPwr & Source power & W \\
\hline LdPwr & Load power & W \\
\hline PwrLoss & Power loss & W \\
\hline MtrTrqEst & Estimated motor torque & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline
\end{tabular}

\section*{BusCurr - Bus current}
scalar
Estimated DC bus current, \(i_{\text {bus }}\), in A.

\section*{PhaseVolt - Stator terminal voltages}
array
Stator terminal voltages, \(V_{a}, V_{b}\), and \(V_{c}\), in V .

\section*{Parameters}

\section*{Block Options}

Control Type - Select control
Speed Control (default) | Torque Control
If you select Torque Control, the block does not implement the speed controller.
This table summarizes the port configurations.
\begin{tabular}{|l|l|}
\hline Port Configuration & Creates Ports \\
\hline Speed Control & SpdReq \\
\hline Torque Control & TrqCmd \\
\hline
\end{tabular}

\section*{Motor Parameters}

\section*{Stator resistance, Rs - Resistance \\ scalar}

Stator phase winding resistance, \(R_{S}\), in ohm.
Dependencies
This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Used to Derive \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l} 
Stator resistance, \\
Rs
\end{tabular} & \begin{tabular}{l} 
D and Q axis integral gain, \\
Ki
\end{tabular} & Current Controller \\
\hline
\end{tabular}

\section*{D-axis inductance, Ld - Inductance scalar}

D-axis winding inductance, \(L_{d}\), in H .

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Used to Derive & Tab \\
\cline { 2 - 3 } & Parameter & Id and Iq Calculation \\
\hline \begin{tabular}{l} 
D-axis inductance, \\
Ld
\end{tabular} & \begin{tabular}{l} 
Torque Breakpoints, \\
T_mtpa \\
D-axis table data, id_mtpa \\
Q-axis table data, iq_mtpa
\end{tabular} & \\
\hline \begin{tabular}{l} 
D, q, and max current \\
limits, idq_limits
\end{tabular} & \\
\hline
\end{tabular}

Q-axis inductance, Lq - Inductance

\section*{scalar}

Q -axis winding inductance, \(L_{q}\), in H .

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Used to Derive & \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l} 
Q-axis inductance, \\
Lq
\end{tabular} & \begin{tabular}{l} 
Torque Breakpoints, \\
T_mtpa \\
D-axis table data, id_mtpa \\
Q-axis table data, iq_mtpa
\end{tabular} & \\
\hline \begin{tabular}{l} 
D, Q, and max current \\
limits, idq_limits
\end{tabular} & \\
\hline
\end{tabular}

\section*{Permanent magnet flux, lambda_pm - Flux}

\section*{scalar}

Permanent magnet flux, \(\lambda_{p m}\), in Wb.

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Used to Derive & Tab \\
\cline { 2 - 3 } & Parameter & Id and Iq Calculation \\
\hline \begin{tabular}{l} 
Permanent magnet \\
flux, lambda_pm
\end{tabular} & \begin{tabular}{l} 
Torque Breakpoints, \\
T_mtpa \\
D-axis table data, id_mtpa \\
Q-axis table data, iq_mtpa
\end{tabular} & \\
\hline \begin{tabular}{l} 
D, Q, and max current \\
limits, idq_limits
\end{tabular} & \\
\hline
\end{tabular}

\section*{Number of pole pairs, PolePairs - Poles scalar}

Motor pole pairs, \(P\).

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Used to Derive & Tab \\
\cline { 2 - 3 } & Parameter & Id and Iq Calculation \\
Number of pole & \begin{tabular}{l} 
Torque Breakpoints, \\
T_mtpa \\
D-axis table data, id_mtpa \\
Q-axis table data, iq_mtpa
\end{tabular} & \\
\hline & \begin{tabular}{l} 
D, Q, and max current \\
limits, idq_limits
\end{tabular} & \\
\hline
\end{tabular}

Physical inertia, viscous damping, static friction, Mechanical Inertia, damping, friction
vector
Mechanical properties of the motor:
- Motor inertia, \(F_{v}\), in \(\mathrm{kgm}^{\wedge} 2\)
- Viscous friction torque constant, \(F_{v}\), in \(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})\)
- Static friction torque constant, \(F_{s}\), in \(\mathrm{N} \cdot \mathrm{m}\)

\section*{Dependencies}

To enable this parameter, set the Control Type parameter to Speed Control.
For the gain calculations, the block uses the inertia from the Physical inertia, viscous damping, static friction parameter value that is on the Motor Parameters tab.

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline Parameter & Used to Derive & Tab \\
\cline { 2 - 3 } & Parameter & Speed Controller \\
\begin{tabular}{l} 
Physical inertia, \\
viscous damping, \\
static friction, \\
Mechanical
\end{tabular} & \begin{tabular}{l} 
Proportional gain, ba \\
Angular gain, Ksa \\
Rotational gain, Kisa \\
Inertia compensation, \\
Jcomp \\
Viscous damping \\
compensation, Fv \\
Static friction, Fs
\end{tabular} & \\
\hline
\end{tabular}

Id and Iq Calculation
```

Maximum torque, T_max - Torque
scalar

```

Maximum torque, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Used to Derive & Tab \\
\cline { 2 - 3 } & Parameter & Id and Iq Calculation \\
T_max & \begin{tabular}{l} 
Torque Breakpoints, \\
T_mtpa \\
D-axis table data, id_mtpa \\
Q-axis table data, iq_mtpa
\end{tabular} & \\
& \begin{tabular}{l} 
D, Q, and max current \\
limits, idq_limits
\end{tabular} & \\
\hline
\end{tabular}

MTPA table breakpoints, bp - Number of breakpoints scalar

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline Parameter & Used to Derive & Tab \\
\hline \begin{tabular}{l} 
MTPA table \\
breakpoints, pb
\end{tabular} & \begin{tabular}{l} 
Torque Breakpoints, \\
T_mtpa \\
D-axis table data, id_mtpa \\
Q-axis table data, iq_mtpa
\end{tabular} & Id and Iq Calculation \\
& \begin{tabular}{l} 
D, Q, and max current \\
limits, idq_limits
\end{tabular} & \\
\hline
\end{tabular}

Calculate MTPA Table Data - Derive parameters
button
Click to derive parameters.

\section*{Dependencies}

On the Id and Iq Calculation tab, when you select Calculate MPTA Table data, the block calculates derived parameters. The table summarizes the derived parameter dependencies on other block parameters.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Derived Parameter on Id and Iq Calculation tab}} & \multicolumn{2}{|l|}{Depends On} \\
\hline & & Parameter & Tab \\
\hline Torque Breakpoints, T_mtpa & \[
\begin{aligned}
& T_{m t p a}=\frac{3}{2} P\left(\lambda_{p m} i_{q}\right. \\
& \left.+\left(L_{d}-L_{q}\right) i_{d} i_{q}\right)
\end{aligned}
\] & \begin{tabular}{l}
Maximum torque, T_max \\
MTPA table breakpoints, pb
\end{tabular} & Id and Iq Calculation \\
\hline D-axis table data, id_mtpa & \[
\begin{aligned}
& I_{m}=\frac{2 T_{\max }}{3 P \lambda_{p m}} \\
& i_{d_{-} m t p a}=\frac{\lambda_{p m}}{4\left(L_{q}-L_{d}\right)}-\sqrt{\frac{\lambda_{p m}^{2}}{16\left(L_{q}-L_{d}\right)}}
\end{aligned}
\] & Permanent magnet flux, lambda_pm \(I_{m}^{2}\) すtaxis inductance, Ld & Motor Parameters \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Derived Parameter on Id and Iq Calculation tab}} & \multicolumn{2}{|l|}{Depends On} \\
\hline & & Parameter & Tab \\
\hline Q-axis table data, iq_mtpa & \multirow[t]{2}{*}{\[
i_{q_{-} m t p a}=\sqrt{I_{m}^{2}-\left(i_{m t p a}\right)^{2}}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
Q-axis inductance, Lq \\
Number of pole pairs, PolePairs
\end{tabular}} & \\
\hline \(D, Q\), and max current limits, idq_limits & & & \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(i_{\max }\) & Maximum phase current \\
\(i_{d}\) & d -axis current \\
\(i_{q}\) & q -axis current \\
\(i_{d_{-} \max }\) & Maximum d-axis phase current \\
\(i_{q-m a x}\) & Maximum q-axis phase current \\
\(i_{d \_m t p a}\) & d -axis phase current MTPA table \\
\(i_{q-m t p a}\) & q -axis phase current MTPA table \\
\(\lambda_{p m}\) & Permanent magnet flux linkage \\
\(L_{d}\) & d-axis winding inductance \\
\(L_{q}\) & q -axis winding inductance \\
\(P\) & Motor pole pairs \\
\(T_{m t p a}\) & Torque MTPA breakpoints \\
\(I_{m}\) & Estimated maximum current
\end{tabular}

\section*{Torque Breakpoints, T_mtpa - Derived \\ vector}

Derived torque breakpoints, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{|l|}{ Parameter } & Dependency \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l} 
Torque \\
Breakpoints, \\
T_mtpa
\end{tabular} & \begin{tabular}{l} 
Maximum torque, T_max \\
MTPA table breakpoints, \\
pb
\end{tabular} & Id and Iq Calculation \\
\hline & \begin{tabular}{l} 
Permanent magnet flux, \\
lambda_pm \\
D-axis inductance, Ld \\
Q-axis inductance, Lq
\end{tabular} & Motor Parameters \\
& \begin{tabular}{l} 
Number of pole pairs, \\
PolePairs
\end{tabular} & \\
\hline
\end{tabular}

D-axis table data, id_mtpa - Derived
vector
Derived d-axis table data, in A.

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Dependency & Tab \\
\cline { 2 - 3 } & Parameter & Id and Iq Calculation \\
\hline \begin{tabular}{l} 
D-axis table data, \\
id_mtpa
\end{tabular} & \begin{tabular}{l} 
Maximum torque, T_max \\
MTPA table breakpoints, \\
pb
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Parameter & Dependency & Tab \\
\cline { 2 - 4 } & Parameter & Motor Parameters \\
\hline & \begin{tabular}{l} 
Permanent magnet flux, \\
lambda_pm \\
D-axis inductance, Ld \\
Q-axis inductance, Lq
\end{tabular} & \\
\begin{tabular}{l} 
Number of pole pairs, \\
PolePairs
\end{tabular} & \\
\hline
\end{tabular}

Q-axis table data, iq_mtpa - Derived vector

Derived q-axis table data, in A.

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Dependency & Tab \\
\cline { 2 - 3 } & Parameter & Id and Iq Calculation \\
\hline \begin{tabular}{l} 
D-axis table data, \\
id_mtpa
\end{tabular} & \begin{tabular}{l} 
Maximum torque, T_max \\
MTPA table breakpoints, \\
pb
\end{tabular} & Motor Parameters \\
\hline \begin{tabular}{l} 
Permanent magnet flux, \\
lambda_pm \\
\\
D-axis inductance, Ld \\
Q-axis inductance, Lq
\end{tabular} & Mot \\
\begin{tabular}{l} 
Number of pole pairs, \\
PolePairs
\end{tabular} & \\
\hline
\end{tabular}

D, Q, and max current limits, idq_limits - Derived
array
Derived d, q, and maximum current limits, in A.

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline Parameter & Dependency & Tab \\
\hline & Parameter & Maximum torque, T_max \\
\begin{tabular}{l} 
D, Q, and max \\
current limits, \\
idq_limits
\end{tabular} & \begin{tabular}{l} 
MTPA table breakpoints, \\
pb
\end{tabular} & \\
\hline \begin{tabular}{l} 
Permanent magnet flux, \\
lambda_pm
\end{tabular} & Motor Parameters \\
& \begin{tabular}{l} 
D-axis inductance, Ld \\
Q-axis inductance, Lq
\end{tabular} & \\
\hline \begin{tabular}{l} 
Number of pole pairs, \\
PolePairs
\end{tabular} & \\
\hline
\end{tabular}

\section*{Current Controller}

\section*{Bandwidth of the current regulator, EV_current - Bandwidth scalar}

Derived current regulator bandwidth, in Hz .

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Used to Derive \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l} 
Bandwidth of the \\
current regulator, \\
EV_current
\end{tabular} & \begin{tabular}{l} 
D-axis proportional gain, \\
Kp_d \\
Q-axis proportional gain, \\
Kp_q \\
D and Q axis proportional \\
gain, Ki
\end{tabular} & \\
\hline
\end{tabular}

Sample time for the torque control, Tst - Time scalar

Derived torque control sample time, in s.

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Used to Derive \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l} 
Sample time for \\
the torque \\
control, Tst
\end{tabular} & Speed time constant, Ksf & Speed Controller \\
\hline
\end{tabular}

\section*{Calculate Current Regulator Gains - Derive parameters \\ button}

Click to derive parameters.

\section*{Dependencies}

On the Current Controller tab, when you select Calculate Current Regulator Gains, the block calculates derived parameters. The table summarizes the derived parameter dependencies on other block parameters.
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
Derived \\
Parameter on \\
Current Controller \\
tab
\end{tabular} & Dependency \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l} 
D-axis \\
proportional gain, \\
Kp_d
\end{tabular} & \begin{tabular}{l} 
Bandwidth of the current \\
regulator, EV_current
\end{tabular} & Current Controller \\
\begin{tabular}{l} 
Q-axis \\
proportional gain, \\
Kp_q
\end{tabular} & Stator resistance, Rs & Motor Parameters \\
\begin{tabular}{l} 
D and Q axis \\
integral gain, Ki
\end{tabular} & & \\
\hline
\end{tabular}

D-axis proportional gain, Kp_d - Derived
scalar
Derived d-axis proportional gain, in V/A.

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Dependency \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l} 
D-axis \\
proportional gain, \\
Kp_d
\end{tabular} & \begin{tabular}{l} 
Bandwidth of the current \\
regulator, EV_current
\end{tabular} & Current Controller \\
\hline
\end{tabular}

Q-axis proportional gain, Kp_q - Derived
scalar
Derived q-axis proportional gain, in V/A.

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Dependency \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l} 
Q-axis \\
proportional gain, \\
Kp_q
\end{tabular} & \begin{tabular}{l} 
Bandwidth of the current \\
regulator, EV_current
\end{tabular} & Current Controller \\
\hline
\end{tabular}

D and Q axis integral gain, Ki - Derived scalar

Derived d- and q- axis integral gains, in V/A•s.

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Dependency \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l} 
D and Q axis \\
integral gain, Ki
\end{tabular} & Stator resistance, Rs & Motor Parameters \\
\hline
\end{tabular}

\section*{Speed Controller}

\section*{Bandwidth of the motion controller, EV_motion - Bandwidth} vector

Motion controller bandwidth, in Hz. Set the first element of the vector to the desired cutoff frequency. Set the second and third elements of the vector to the higher-order cut off frequencies. You can set the value of the next element to \(1 / 5\) the value of the previous element. For example, if the desired cutoff frequency is 20 Hz , specify [ 2040.8 ].

\section*{Dependencies}

The parameter is enabled when the Control Type parameter is set to Speed Control.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Used to Derive \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l} 
Bandwidth of the \\
motion controller, \\
EV_motion
\end{tabular} & Proportional gain, ba & Speed Controller \\
Angular gain, Ksa \\
Rotational gain, Kisa
\end{tabular}\(\quad . \quad\).

Bandwidth of the state filter, EV_sf - Bandwidth
scalar
State filter bandwidth, in Hz .

\section*{Dependencies}

The parameter is enabled when the Control Type parameter is set to Speed Control.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Used to Derive & Tab \\
\cline { 2 - 3 } & Parameter & Speed Controller \\
\hline \begin{tabular}{l} 
Bandwidth of the \\
state filter, EV_sf
\end{tabular} & Speed time constant, Ksf & \\
\hline
\end{tabular}

\section*{Calculate Speed Regulator Gains - Derive parameters}
button
Click to derive parameters.

\section*{Dependencies}

On the Speed Controller tab, when you select Calculate Speed Regulator Gains, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Derived Parameter on Speed Controller tab}} & \multicolumn{2}{|l|}{Depends On} \\
\hline & & Parameter & Tab \\
\hline Proportional gain, ba & \[
b_{a}=\frac{J_{p}-J_{p} p_{1} p_{2} p_{3}}{T_{s m}}
\] & \begin{tabular}{l}
Bandwidth of the motion controller, EV_motion \\
Bandwidth of the state filter, EV_sf
\end{tabular} & Speed Controller \\
\hline Angular gain, Ksa & \multicolumn{2}{|l|}{\[
\begin{array}{ll}
K_{s a} & \begin{array}{l}
\text { the torque } \\
\text { the }
\end{array} \\
=\frac{J_{p}\left(p_{1} p_{2}+p_{2} p_{3}+p_{3} p_{1}\right)-3 J_{p}+2 b_{a} T \text { son }}{2} & T_{s m}^{2}
\end{array}
\]} & Current Controller \\
\hline Rotational gain, Kisa & \multicolumn{2}{|l|}{} & Motor Parameters \\
\hline Speed time constant, Ksf & \[
K_{s f}=\frac{1-\exp \left(-T_{s m} 2 \pi E V_{s f}\right)}{T_{s m}}
\] & & \\
\hline \begin{tabular}{l}
Inertia compensatio \\
n, Jcomp
\end{tabular} & \(J_{\text {comp }}=J_{p}\) & \multirow[t]{3}{*}{Physical inertia, viscous damping, static friction, Mechanical} & \multirow[t]{3}{*}{Motor Parameters} \\
\hline Viscous damping compensatio n, Fv & \(F_{v}\) & & \\
\hline Static friction, Fs & \(F_{s}\) & & \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(P\) & Motor pole pairs \\
\(b_{a}\) & Speed regulator proportional gain
\end{tabular}
\begin{tabular}{ll}
\(K_{s a}\) & Speed regulator integral gain \\
\(K_{\text {isa }}\) & Speed regulator double integral gain \\
\(K_{s f}\) & Speed regulator time constant \\
\(J_{p}\) & Motor inertia \\
\(E V_{s f}\) & State filter bandwidth \\
\(E V_{\text {motion }}\) & Motion controller bandwidth
\end{tabular}

Proportional gain, ba - Derived
scalar
Derived proportional gain, in \(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})\).

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Dependency \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l} 
Proportional gain, \\
ba
\end{tabular} & \begin{tabular}{l} 
Physical inertia, viscous \\
damping, static friction, \\
Mechanical
\end{tabular} & Motor Parameters \\
\cline { 1 - 3 } & \begin{tabular}{l} 
Bandwidth of the motion \\
controller, EV_motion
\end{tabular} & Speed Controller \\
\hline
\end{tabular}

Angular gain, Ksa - Derived
scalar
Derived angular gain, in \(\mathrm{N} \cdot \mathrm{m} / \mathrm{rad}\).

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Dependency \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline Angular gain, Ksa & \begin{tabular}{l} 
Physical inertia, viscous \\
damping, static friction, \\
Mechanical
\end{tabular} & Motor Parameters \\
\cline { 2 - 3 } & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Dependency \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline & \begin{tabular}{l} 
Bandwidth of the motion \\
controller, EV_motion
\end{tabular} & Speed Controller \\
\hline
\end{tabular}

Rotational gain, Kisa - Derived
scalar
Derived rotational gain, in \(\mathrm{N} \cdot \mathrm{m} /\left(\mathrm{rad}^{*} \mathrm{~s}\right)\).

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Dependency \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l} 
Rotational gain, \\
Kisa
\end{tabular} & \begin{tabular}{l} 
Physical inertia, viscous \\
damping, static friction, \\
Mechanical
\end{tabular} & Motor Parameters \\
\hline & \begin{tabular}{l} 
Bandwidth of the motion \\
controller, EV_motion
\end{tabular} & Speed Controller \\
\hline
\end{tabular}

Speed time constant, Ksf - Derived
scalar
Derived speed time constant, in 1/s.
Dependencies
This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Dependency & Tab \\
\cline { 2 - 3 } & Parameter & Current Controller \\
\hline \begin{tabular}{l} 
Speed time \\
constant, Ksf
\end{tabular} & \begin{tabular}{l} 
Sample time for the \\
torque control, Tst
\end{tabular} & \begin{tabular}{l} 
Speed Controller \\
Bandwidth of the state \\
filter, EV_sf
\end{tabular} \\
\hline
\end{tabular}

\section*{Inertia compensation, Jcomp - Derived scalar}

Derived inertia compensation, in \(\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2\).

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Dependency \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l} 
Inertia \\
compensation, \\
Jcomp
\end{tabular} & \begin{tabular}{l} 
Physical inertia, viscous \\
damping, static friction, \\
Mechanical
\end{tabular} & Motor Parameters \\
\hline
\end{tabular}

Viscous damping compensation, Fv - Derived scalar

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Dependency \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l} 
Viscous damping \\
compensation, Fv
\end{tabular} & \begin{tabular}{l} 
Physical inertia, viscous \\
damping, static friction, \\
Mechanical
\end{tabular} & Motor Parameters \\
\hline
\end{tabular}

\section*{Static friction, Fs - Derived \\ scalar}

Derived static friction, in \(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})\).

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Dependency \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline Static friction, Fs & \begin{tabular}{l} 
Physical inertia, viscous \\
damping, static friction, \\
Mechanical
\end{tabular} & Motor Parameters \\
\hline
\end{tabular}

\section*{Electrical Losses}

\section*{Parameterize losses by - Select type}

Single efficiency measurement (default)|Tabulated loss data|Tabulated efficiency data
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline \begin{tabular}{l} 
Single efficiency \\
measurement
\end{tabular} & \begin{tabular}{l} 
Electrical loss calculated using a constant value for \\
inverter efficiency.
\end{tabular} \\
\hline Tabulated loss data & \begin{tabular}{l} 
Electrical loss calculated as a function of motor speeds \\
and load torques.
\end{tabular} \\
\hline \begin{tabular}{l} 
Tabulated efficiency \\
data
\end{tabular} & \begin{tabular}{l} 
Electrical loss calculated using inverter efficiency that is a \\
function of motor speeds and load torques.
\end{tabular} \\
& \begin{tabular}{ll} 
- \begin{tabular}{l} 
Converts the efficiency values you provide into losses \\
and uses the tabulated losses for simulation.
\end{tabular} \\
& \begin{tabular}{l} 
Ignores efficiency values you provide for zero speed or \\
zero torque. Losses are assumed zero when either \\
torque or speed is zero.
\end{tabular} \\
& - \begin{tabular}{l} 
Uses linear interpolation to determine losses. Provide \\
tabulated data for low speeds and low torques, as \\
required, to get the desired level of accuracy for lower \\
power conditions.
\end{tabular} \\
& \begin{tabular}{l} 
Does not extrapolate loss values for speed and torque \\
magnitudes that exceed the range of the table.
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}

For best practice, use Tabulated loss data instead of Tabulated efficiency data:
- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

\section*{Overall inverter efficiency, eff - Constant scalar}

Overall inverter efficiency, Eff, in \%.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated loss data.
Vector of speeds (w) for tabulated loss, w_loss_bp - Breakpoints 1-by-M matrix

Speed breakpoints for lookup table when calculating losses, in rad/s.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated loss data.
```

Vector of torques (T) for tabulated loss, T_loss_bp - Breakpoints
1-by-N matrix

```

Torque breakpoints for lookup table when calculating losses, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated loss data.

\section*{Corresponding losses, losses_table - Table}

M-by-N matrix
Array of values for electrical losses as a function of M speeds and \(N\) torques, in W. Each value specifies the losses for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated loss data.
Vector of speeds (w) for tabulated efficiency, w_eff_bp - Breakpoints 1-by-M matrix

Speed breakpoints for lookup table when calculating efficiency, in rad/s.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.

\section*{Vector of torques (T) for tabulated efficiency, T_eff_bp Breakpoints}

1-by-N matrix
Torque breakpoints for lookup table when calculating efficiency, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.

\section*{Corresponding efficiency, efficiency_table - Table}

M-by-N matrix
Array of efficiency as a function of \(M\) speeds and \(N\) torque, in \%. Each value specifies the efficiency for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

The block ignores efficiency values for zero speed or zero torque. Losses are zero when either torque or speed is zero. The block uses linear interpolation.

To get the desired level of accuracy for lower power conditions, you can provide tabulated data for low speeds and low torques.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.

\section*{References}
[1] Lorenz, Robert D., Thomas Lipo, and Donald W. Novotny. "Motion control with induction motors." Proceedings of the IEEE, Vol. 82, Issue 8, August 1994, pp. 1215-1240.
[2] Morimoto, Shigeo, Masayuka Sanada, and Yoji Takeda. "Wide-speed operation of interior permanent magnet synchronous motors with high-performance current
regulator." IEEE Transactions on Industry Applications, Vol. 30, Issue 4, July/ August 1994, pp. 920-926.
[3] Li, Muyang. "Flux-Weakening Control for Permanent-Magnet Synchronous Motors Based on Z-Source Inverters." Master's Thesis, Marquette University, ePublications@Marquette, Fall 2014.
[4] Briz, Fernando, Michael W. Degner, and Robert D. Lorenz. "Analysis and design of current regulators using complex vectors." IEEE Transactions on Industry Applications, Vol. 36, Issue 3, May/June 2000, pp. 817-825.
[5] Briz, Fernando, et al. "Current and flux regulation in field-weakening operation [of induction motors]."IEEE Transactions on Industry Applications, Vol. 37, Issue 1, Jan/Feb 2001, pp. 42-50.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

Flux-Based PM Controller | IM Controller | Interior PMSM | Surface Mount PM Controller
Introduced in R2017a

\section*{Flux-Based PMSM}

Flux-based permanent magnet synchronous motor
Library: Powertrain Blockset / Propulsion / Electric Motors


\section*{Description}

The Flux-Based PMSM block implements a flux-based three-phase permanent magnet synchronous motor (PMSM) with a tabular-based electromotive force. The block uses the three-phase input voltages to regulate the individual phase currents, allowing control of the motor torque or speed.

Flux-based motor models take into account magnetic saturation and iron losses. To calculate the magnetic saturation and iron loss, the Flux-Based PMSM block uses the inverse of the flux linkages. To obtain the block parameters, you can use finite-element analysis (FEA) or measure phase voltages using a dynamometer.

By default, the block sets the Simulation Type parameter to Continuous to use a continuous sample time during simulation. If you want to generate code for fixed-step double- and single-precision targets, considering setting the parameter to Discrete. Then specify a Sample Time, Ts parameter.

To enable power loss calculations suitable for code generation targets that limit memory, select Enable memory optimized 2D LUT.

\section*{Three-Phase Sinusoidal Model Electrical System}

The block implements equations that are expressed in a stationary rotor reference (dq) frame. The \(d\)-axis aligns with the \(a\)-axis. All quantities in the rotor reference frame are referred to the stator.


The block uses these equations.
\begin{tabular}{|l|l|}
\hline Calculation & Equation \\
\hline\(q\) - and \(d\)-axis voltage & \(v_{d}=\frac{d \psi_{d}}{d t}+R_{s} i_{d}-\omega_{e} \psi_{q}\) \\
& \(v_{q}=\frac{d \psi_{q}}{d t}+R_{s} i_{q}+\omega_{e} \psi_{d}\) \\
\hline\(q\) - and \(d\)-axis current & \begin{tabular}{l}
\(i_{d}=f\left(\psi_{d}, \psi_{q}\right)\) \\
\\
\(i_{q}=g\left(\psi_{d}, \psi_{q}\right)\)
\end{tabular} \\
\hline Electromechanical torque & \(T_{e}=1.5 P\left[\psi_{d} i_{q}-\psi_{q} i_{d}\right]\) \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(\omega_{m}\) & Rotor mechanical speed \\
\(\omega_{e}\) & Rotor electrical speed
\end{tabular}
\begin{tabular}{ll}
\(\Theta_{d a}\) & dq stator electrical angle with respect to the rotor a-axis \\
\(R_{s}, R_{r}\) & Resistance of the stator and rotor windings, respectively \\
\(i_{q}, i_{d}\) & \(q\) - and \(d\)-axis current, respectively \\
\(v_{q}, v_{d}\) & \(q\) - and \(d\)-axis voltage, respectively \\
\(\Psi_{q}, \Psi_{d}\) & \(q\) - and \(d\)-axis magnet flux, respectively \\
\(P\) & Number of pole pairs \\
\(T_{e}\) & Electromagnetic torque
\end{tabular}

\section*{Transforms}

To calculate the voltages and currents in balanced three-phase \((a, b)\) quantities, quadrature two-phase \((\alpha, \beta)\) quantities, and rotating \((d, q)\) reference frames, the block uses the Clarke and Park Transforms.

In the transform equations.
\[
\begin{aligned}
& \omega_{e}=P \omega_{m} \\
& \frac{d \theta_{e}}{d t}=\omega_{e}
\end{aligned}
\]
\begin{tabular}{|l|l|l|l|}
\hline Transform & Description & Equations \\
\hline Clarke & \begin{tabular}{l} 
Converts balanced three-phase \\
quantities \((a, b)\) into balanced two- \\
phase quadrature quantities \((\alpha, \beta)\).
\end{tabular} & \begin{tabular}{l}
\(x_{\alpha}=\) \\
\(x_{\beta}=\)
\end{tabular}\(\frac{2}{3} x_{a}-\quad \frac{\sqrt{3}}{3} x_{b}-\quad \frac{\sqrt{3}}{2} x_{C}\)
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Transform & Description & Equations \\
\hline Inverse Park & \begin{tabular}{l} 
Converts an orthogonal rotating \\
reference frame \((d, q)\) into \\
balanced two-phase orthogonal \\
stationary quantities \((\alpha, \beta)\).
\end{tabular} & \begin{tabular}{llll}
\(x_{\alpha}=\) & \(x_{d} \cos \theta_{e}-\) & \(x_{q} \sin \theta_{e}\) \\
\(x_{\beta}=\) & \(x_{d} \sin \theta_{e}+\) & \(x_{q} \cos \theta_{e}\)
\end{tabular} \\
\hline
\end{tabular}

The transforms use these variables.
\begin{tabular}{ll}
\(\omega_{m}\) & Rotor mechanical speed \\
\(P\) & Motor pole pairs \\
\(\omega_{e}\) & Rotor electrical speed \\
\(\Theta_{e}\) & Rotor electrical angle \\
\(x\) & Phase current or voltage
\end{tabular}

\section*{Mechanical System}

The rotor angular velocity is given by:
\[
\begin{gathered}
\frac{d}{d t} \omega_{m}=\frac{1}{J}\left(T_{e}-T_{f}-F \omega_{m}-T_{m}\right) \\
\frac{d \theta_{m}}{d t}=\omega_{m}
\end{gathered}
\]

The equations use these variables.
\begin{tabular}{ll}
\(J\) & Combined inertia of rotor and load \\
\(F\) & Combined viscous friction of rotor and load \\
\(\theta_{m}\) & Rotor mechanical angular position \\
\(T_{m}\) & Rotor shaft torque \\
\(T_{e}\) & Electromagnetic torque \\
\(T_{f}\) & Combined rotor and load friction torque \\
\(\omega_{m}\) & Rotor mechanical speed
\end{tabular}

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Varia & Equations \\
\hline \multirow[t]{5}{*}{} & \multirow[t]{2}{*}{\begin{tabular}{l}
PwrTrnsfrd - Power transferred between blocks \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block
\end{tabular}} & PwrMtr & Mechanical power & \(P_{\text {mot }}\) & \(P_{\text {mot }}=-\omega_{m} T_{e}\) \\
\hline & & PwrBus & Electrical power & \(P_{\text {bus }}\) & \[
\begin{aligned}
& P_{b u s}=v_{a n} i_{a}+ \\
& v_{b n} i_{b}+v_{c n} i_{c}
\end{aligned}
\] \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
PwrNotTrnsfrd - Power crossing the block boundary, but not transferred \\
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular}} & PwrEle cLoss & Resistive power loss & \(P_{\text {elec }}\) & \[
\begin{aligned}
& P_{\text {elec }}=\quad-\frac{3}{2}\left(R_{s} i_{s d}^{2}\right. \\
& \left.+R_{s} i_{s q}^{2}\right)
\end{aligned}
\] \\
\hline & & PwrMec hLoss & Mechanical power loss & \(P_{\text {mech }}\) & \begin{tabular}{l}
When Port Configuration is set to Torque:
\[
\begin{aligned}
& P_{m e c h}=- \\
& \left(\omega_{m}^{2} F+\left|\omega_{m}\right| T_{f}\right)
\end{aligned}
\] \\
When Port Configuration is set to Speed:
\[
P_{\text {mech }}=0
\]
\end{tabular} \\
\hline & \begin{tabular}{l}
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular} & PwrMtr Stored & Stored motor power & \(P_{\text {str }}\) & \[
\begin{aligned}
& P_{\text {str }}=P_{\text {bus }}+P_{\text {mot }} \\
& +P_{\text {elec }}+P_{\text {mech }}
\end{aligned}
\] \\
\hline
\end{tabular}

The equations use these variables.
\(R_{s} \quad\) Stator resistance
\(i_{a}, i_{b}, i_{c} \quad\) Stator phase \(\mathrm{a}, \mathrm{b}\), and c current
\(i_{s q}, i_{s d} \quad\) Stator \(q\) - and d-axis currents
\begin{tabular}{ll}
\(v_{a n}, v_{b n}, v_{c n}\) & Stator phase \(\mathrm{a}, \mathrm{b}\), and c voltage \\
\(\omega_{m}\) & Angular mechanical velocity of the rotor \\
\(F\) & Combined motor and load viscous damping \\
\(T_{e}\) & Electromagnetic torque \\
\(T_{f}\) & Combined motor and load friction torque
\end{tabular}

\section*{Lookup Table Memory Optimization}

The data for the Corresponding d-axis current, id and Corresponding \(\mathbf{q}\)-axis current, iq lookup tables are functions of the \(d\) - and \(q\)-axis flux.

To enable current calculations suitable for code generation targets that limit memory, select Enable memory optimized 2D LUT. The block uses linear interpolation to optimize the current lookup table values for code generation. This table summarizes the optimization implementation.
\begin{tabular}{|l|l|}
\hline Use Case & Implementation \\
\hline \begin{tabular}{l}
\(d\) - and \(q\)-axis flux aligns with the lookup table \\
breakpoint values.
\end{tabular} & \begin{tabular}{l} 
Memory-optimized current is current \\
lookup table value at intersection of flux \\
values.
\end{tabular} \\
\hline \begin{tabular}{l}
\(d\) - and \(q\)-axis flux does not align with the \\
lookup table breakpoint values, but is within \\
range.
\end{tabular} & \begin{tabular}{l} 
Memory-optimized current is linear \\
interpolation between corresponding flux \\
values.
\end{tabular} \\
\hline \begin{tabular}{l}
\(d\) - and \(q\)-axis flux does not align with the \\
lookup table breakpoint values, and is out of \\
range.
\end{tabular} & \begin{tabular}{l} 
Cannot compute an memory-optimized \\
current. Block uses extrapolated data.
\end{tabular} \\
\hline
\end{tabular}

\section*{Extrapolation}

The lookup tables optimized for code generation do not support extrapolation for data that is out of range. However, you can include pre-calculated extrapolation values in the power loss lookup table by selecting Specify Extrapolation.

The block uses the endpoint parameters to resize the table data.


\section*{Ports}

\section*{Input}

\section*{LdTrq - Rotor shaft torque}
scalar
Rotor shaft input torque, \(T_{m}\), in \(\mathrm{N} \cdot \mathrm{m}\).
Dependencies
To create this port, select Torque for the Port Configuration parameter.
Spd - Rotor shaft speed
scalar
Angular velocity of the rotor, \(\omega_{\mathrm{m}}\), in rad/s.

\section*{Dependencies}

To create this port, select Speed for the Port Configuration parameter.

\section*{PhaseVolt - Stator terminal voltages}

\section*{1-by-3 array}

Stator terminal voltages, \(V_{a}, V_{b}\), and \(V_{c}\), in \(V\).

\section*{Dependencies}

To create this port, select Speed or Torque for the Port Configuration parameter.

\section*{Output}

\section*{Info - Bus signal \\ bus}

The bus signal contains these block calculations.
\begin{tabular}{|l|l|l|l|}
\hline Signal & Description & Variable & Units \\
\hline IaStator & Stator phase current A & \(i_{a}\) & A \\
\hline IbStator & Stator phase current B & \(i_{b}\) & A \\
\hline IcStator & Stator phase current C & \(i_{c}\) & A \\
\hline IdSync & Direct axis current & \(i_{d}\) & A \\
\hline IqSync & Quadrature axis current & \(i_{q}\) & A \\
\hline VdSync & Direct axis voltage & \(v_{d}\) & V \\
\hline VqSync & Quadrature axis voltage & \(v_{q}\) & V \\
\hline MtrSpd & \begin{tabular}{l} 
Angular mechanical \\
velocity of the rotor
\end{tabular} & \(\omega_{m}\) & \(\mathrm{rad} / \mathrm{s}\) \\
\hline MtrPos & \begin{tabular}{l} 
Rotor mechanical angular \\
position
\end{tabular} & \(\theta_{m}\) & rad \\
\hline MtrTrq & Electromagnetic torque & \(T_{e}\) & \(\mathrm{~N} \cdot \mathrm{~m}\) \\
\hline \begin{tabular}{l} 
PwrInf \\
o
\end{tabular} & \begin{tabular}{l} 
PwrTrnsf \\
rd
\end{tabular} & PwrMtr & Mechanical power \\
\hline & PwrBus & Electrical power & \(P_{\text {mot }}\) \\
W \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline Signal & & Description & Variable & Units \\
\hline \multirow{4}{*}{\begin{tabular}{l} 
PwrNotTr \\
nsfrd
\end{tabular}} & PwrElecLoss & Resistive power loss & \(P_{\text {elec }}\) & W \\
\cline { 2 - 6 } & PwrMechLoss & Mechanical power loss & \(P_{\text {mech }}\) & W \\
\cline { 2 - 6 } & \begin{tabular}{l} 
PwrStore \\
d
\end{tabular} & PwrMtrStored & Stored motor power & \(P_{\text {str }}\) & W \\
\hline
\end{tabular}

\section*{PhaseCurr - Phase a, b, c current}

1-by-3 array
Phase a, b, c current, \(i_{a}, i_{b}\), and \(i_{c}\), in A.

\section*{MtrTrq - Motor torque}
scalar
Motor torque, \(T_{m t r}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To create this port, select Speed for the Port configuration parameter.

\section*{MtrSpd - Motor speed}
scalar
Angular speed of the motor, \(\omega_{m t r}\), in rad/s.

\section*{Dependencies}

To create this port, select Torque for the Port configuration parameter.

\section*{Parameters}

\section*{Block Options}

\section*{Simulation Type - Select simulation type \\ Continuous (default)|Discrete}

By default, the block uses a continuous sample time during simulation. If you want to generate code for single-precision targets, considering setting the parameter to Discrete.

\section*{Dependencies}

Setting Simulation Type to Discrete creates the Sample Time, Ts parameter.

\section*{Sample Time, Ts - Sample time for discrete integration} scalar

Integration sample time for discrete simulation, in s.

\section*{Dependencies}

Setting Simulation Type to Discrete creates the Sample Time, Ts parameter.

\section*{Port Configuration - Select port configuration}

Torque (default) | Speed
This table summarizes the port configurations.
\begin{tabular}{|l|l|l|}
\hline Port Configuration & Creates Input Port & Creates Output Port \\
\hline Torque & LdTrq & MtrSpd \\
\hline Speed & Spd & MtrTrq \\
\hline
\end{tabular}

\section*{Enable memory optimized 2D LUT - Selection}
off (default) | on
Enable generation of optimized lookup tables, suitable code generation targets that limit memory.

\section*{Vector of d-axis flux, flux_d - Flux breakpoints 1-by-M vector}
\(d\)-axis flux, \(\Psi_{d}\), breakpoints, in Wb .
Resample storage size for flux_d, n1 - Flux bit size 2 (default) | 4 | 8 | 16 | 32 | 64 | 128 | 256

Flux breakpoint storage size, n1, dimensionless. The block resamples the Corresponding d-axis current, id and Corresponding \(q\)-axis current, iq data based on the storage size.

\section*{Dependencies}

To create this parameter, select Enable memory optimized 2D LUT.

\section*{Vector of q-axis flux, flux_q-Flux breakpoints 1-by-N vector \\ \(q\)-axis flux, \(\Psi_{q}\), breakpoints, in Wb. \\ Resample storage size for flux_q, n2 - Flux bit size 2 (default) | 4 | 8 | 16 | 32 | 64 | 128 | 256}

Flux breakpoint storage size, \(n 2\), dimensionless. The block resamples the Corresponding d-axis current, id and Corresponding q-axis current, iq data based on the storage size.

\section*{Dependencies}

To create this parameter, select Enable memory optimized 2D LUT.

\section*{Corresponding \(\mathbf{d}\)-axis current, id - 2D lookup table}

M-by-N array
Array of values for \(d\)-axis current, \(i_{d}\), as a function of \(\mathrm{M} d\)-fluxes, \(\Psi_{d}\), and \(\mathrm{N} q\)-fluxes, \(\Psi_{q}\), in A. Each value specifies the current for a specific combination of \(d\) - and \(q\)-axis flux. The array size must match the dimensions defined by the flux vectors.

If you set Enable memory optimized 2D LUT, the block converts the data to single precision.

\section*{Corresponding q-axis current, iq - 2D lookup table}

M-by-N array
Array of values for \(q\)-axis current, \(i_{d}\), as a function of \(\mathrm{M} d\)-fluxes, \(\Psi_{d}\), and \(\mathrm{N} q\)-fluxes, \(\Psi_{q}\), in A. Each value specifies the current for a specific combination of \(d\) - and \(q\)-axis flux. The array size must match the dimensions defined by the flux vectors.

If you set Enable memory optimized 2D LUT, the block converts the data to single precision.

\section*{flux_d max endpoint, ulmax - Flux breakpoint}
scalar
Flux breakpoint maximum extrapolation endpoint, u1 max, in Wb.

\section*{Dependencies}

\section*{To create this parameter, select Enable memory optimized 2D LUT and Specify} Extrapolation.
flux_d min endpoint, ulmin - Flux breakpoint scalar

Flux breakpoint minimum extrapolation endpoint, u1min, in Wb.

\section*{Dependencies}

To create this parameter, select Enable memory optimized 2D LUT and Specify Extrapolation.
flux_q max endpoint, ulmax - Flux breakpoint scalar

Flux breakpoint maximum extrapolation endpoint, u2max, in Wb.

\section*{Dependencies}

To create this parameter, select Enable memory optimized 2D LUT and Specify Extrapolation.
flux_q min endpoint, ulmin - Flux breakpoint scalar

Flux breakpoint minimum extrapolation endpoint, u2min, in Wb.

\section*{Dependencies}

To create this parameter, select Enable memory optimized 2D LUT and Specify
Extrapolation.
Stator phase resistance, Rs - Resistance scalar

Stator phase resistance, \(R_{s}\), in ohm.
Number of pole pairs, P - Pole pairs scalar

Motor pole pairs, \(P\).

\section*{Initial flux, fluxdq0 - Flux \\ vector}

Initial \(d\) - and \(q\)-axis flux, \(\Psi_{q 0}\) and \(\Psi_{d 0}\), in Wb.

\section*{Initial mechanical position, theta_init - Angle scalar}

Initial rotor angular position, \(\theta_{m 0}\), in rad.

\section*{Initial mechanical speed, omega_init - Speed scalar}

Initial angular velocity of the rotor, \(\omega_{m 0}\), in rad/s.

\section*{Dependencies}

To enable this parameter, select the Torque configuration parameter.

\section*{Physical inertia, viscous damping, and static friction, mechanical Inertia, damping, friction}
vector
Mechanical properties of the rotor:
- Inertia, \(J\), in kgm^2
- Viscous damping, \(F\), in \(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})\)
- Static friction, \(T_{f}\), in \(\mathrm{N} \cdot \mathrm{m}\)

Dependencies
To enable this parameter, select the Torque configuration parameter.

\section*{References}
[1] Hu, Dakai, Yazan Alsmadi, and Longya Xu. "High fidelity nonlinear IPM modeling based on measured stator winding flux linkage." IEEE Transactions on Industry Applications, Vol. 51, No. 4, July/August 2015.
[2] Chen, Xiao, Jiabin Wang, Bhaskar Sen, Panagiotis Lasari, Tianfu Sun. "A High-Fidelity and Computationally Efficient Model for Interior Permanent-Magnet Machines

Considering the Magnetic Saturation, Spatial Harmonics, and Iron Loss Effect." IEEE Transactions on Industrial Electronics, Vol. 62, No. 7, July 2015.
[3] Ottosson, J., M. Alakula. "A compact field weakening controller implementation." International Symposium on Power Electronics, Electrical Drives, Automation and Motion, July, 2006.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR} \mathrm{Coder}^{\mathrm{TM}}\).

\section*{See Also}

Flux-Based PM Controller | Induction Motor | Interior PMSM | Mapped Motor | Surface Mount PMSM

\section*{Topics}
"Generate Parameters for Flux-Based Blocks"

Introduced in R2017b

\section*{Flux-Based PM Controller}

Controller for a flux-based permanent magnet synchronous motor
Library: Powertrain Blockset / Propulsion / Electric Motor Controllers


\section*{Description}

The Flux Based PM Controller block implements a flux-based, field-oriented controller for an interior permanent magnet synchronous motor (PMSM) with an optional outer-loop speed controller. The internal torque control implements strategies for achieving maximum torque per ampere (MTPA) and weakening the magnetic flux. You can specify either the speed or torque control type.

The Flux Based PM Controller implements equations for speed control, torque determination, regulators, transforms, and motors.

The figure illustrates the information flow in the block.


The block implements equations using these variables.
\begin{tabular}{ll}
\(\omega\) & Rotor speed \\
\(\omega^{*}\) & Rotor speed command \\
\(T^{*}\) & Torque command \\
\(i_{d}\) & \(d\)-axis current \\
\(i^{*}{ }_{d}\) & \(d\)-axis current command \\
\(i_{q}\) & \(q\)-axis current \\
\(i^{*}{ }_{q}\) & \(q\)-axis current command \\
\(v_{d}\), & \(d\)-axis voltage \\
\(v^{*}{ }_{d}\) & \(d\)-axis voltage command \\
\(v_{q}\) & \(q\)-axis voltage \\
\(v^{*}{ }_{q}\) & \(q\)-axis voltage command \\
\(v_{a}, v_{b}, v_{c}\) & Stator phase a, b, c voltages \\
\(i_{a}, i_{b}, i_{c}\) & Stator phase a, b, c currents
\end{tabular}

\section*{Speed Controller}

To implement the speed controller, select the Control Type parameter Speed Control. If you select the Control Type parameter Torque Control, the block does not implement the speed controller.

The speed controller determines the torque command by implementing a state filter, and calculating the feedforward and feedback commands. If you do not implement the speed controller, input a torque command to the Flux Based PM Controller block.


\section*{State Filter}

The state filter is a low-pass filter that generates the acceleration command based on the speed command. The discrete form of characteristic equation is given by:
\[
z+K_{s f} T_{s m}-1
\]

The filter calculates the gain using this equation.
\[
K_{s f}=\frac{1-\exp \left(-T_{s m} 2 \pi E V_{s f}\right)}{T_{S m}}
\]

The equations use these variables.
\begin{tabular}{ll}
\(E V_{s f}\) & Bandwidth of the speed command filter \\
\(T_{s m}\) & Motion controller sample time \\
\(K_{s f}\) & Speed regulator time constant
\end{tabular}

\section*{State Feedback}

To generate the state feedback torque, the block uses the filtered speed error signal from the state filter. To filter the speed, the block uses a proportional integral (PI) controller.
\[
T_{c m d}=K p_{\omega}\left(\omega_{m}^{*}-\omega_{m}\right)+K i_{\omega} \frac{z T_{s m}}{z-1}\left(\omega_{m}^{*}-\omega_{m}\right)
\]

The equations use these variables.
\begin{tabular}{ll}
\(\omega_{m}\) & Rotor speed \\
\(\omega^{*}{ }_{m}\) & Rotor speed command \\
\(T_{c m d}\) & Torque command \\
\(K p_{\omega}\) & Speed regulator proportional gain \\
\(K i_{\omega}\) & Speed regulator integral gain \\
\(T_{s m}\) & Speed regulator sample rate
\end{tabular}

\section*{Command Feedforward}

To generate the state feedforward torque, the block uses the filtered speed and acceleration from the state filter. Also, the feedforward torque calculation uses the inertia, viscous damping, and static friction. To achieve zero tracking error, the torque command is the sum of the feedforward and feedback torque commands.

The feedforward torque command uses this equation.
\[
T_{\text {cmd_ff }}=\quad J_{p} \dot{\omega}_{m}+F_{v} \omega_{m}+F_{s} \frac{\omega_{m}}{\left|\omega_{m}\right|}
\]
where:
\begin{tabular}{ll}
\(J_{p}\) & Rotor inertia \\
\(T_{c m d f f}\) & Torque command feedforward \\
\(F_{s}\) & Static friction torque constant \\
\(F_{v}\) & Viscous friction torque constant \\
\(F_{s}\) & Static friction torque constant \\
\(\omega_{m}\) & Rotor speed
\end{tabular}

\section*{Current Command}

The block uses lookup tables to determine the \(d\)-axis and \(q\)-axis current commands. The lookup tables are functions of mechanical speed and torque. To determine the lookup tables, you can use an external finite element analysis (FEA) models or dynamometer test results.
\[
\begin{aligned}
& i_{\text {dref }}=f\left(\left|\omega_{m}\right|,\left|T_{\text {ref }}\right|\right) \\
& i_{\text {qref }}=\operatorname{sign}\left(T_{\text {ref }}\right) * f\left(\left|\omega_{m}\right|,\left|T_{r e f}\right|\right)
\end{aligned}
\]

The equations use these variables.
\begin{tabular}{ll}
\(\omega_{m}\) & Rotor speed \\
\(T_{\text {ref }}\) & Torque command \\
\(i_{\text {dref }}, i_{\text {qref }}\) & \(d\) - and \(q\)-axis reference current, respectively
\end{tabular}

\section*{Voltage Command}

The block uses these equations to calculate the voltage in the motor reference frame.
\[
\begin{aligned}
& v_{d}=\frac{d \psi_{d}}{d t}+R_{s} i_{d}-\omega_{e} \psi_{q} \\
& v_{q}=\frac{d \psi_{q}}{d t}+R_{s} i_{q}+\omega_{e} \psi_{d} \\
& \frac{d \psi_{d}}{d t}+R_{s} i_{d}=K p_{d}\left(i_{d}^{*}-i_{d}\right)+K i_{d} \frac{z T_{s t}}{z-1}\left(i_{d}^{*}-i_{d}\right) \\
& \frac{d \psi_{q}}{d t}+R_{s} i_{q}=K p_{q}\left(i_{q}^{*}-i_{q}\right)+K i_{q} \frac{z T_{s t}}{z-1}\left(i_{q}^{*}-i_{q}\right) \\
& v_{d}=K p_{i}\left(i_{d}^{*}-i_{d}\right)+K i_{d} \frac{z T_{s t}}{z-1}\left(i_{d}^{*}-i_{d}\right)+\omega_{e} \psi_{q} \\
& v_{q}=K p_{i}\left(i_{q}^{*}-i_{q}\right)+K i_{q} \frac{z T_{s t}}{z-1}\left(i_{q}^{*}-i_{q}\right)-\omega_{e} \psi_{d} \\
& \psi_{q}=f\left(i_{d}, i_{q}\right) \\
& \psi_{d}=f\left(i_{d}, i_{q}\right)
\end{aligned}
\]

The equations use these variables.
\begin{tabular}{ll}
\(\omega_{m}\) & Rotor mechanical speed \\
\(\omega_{e}\) & Rotor electrical speed \\
\(R_{s}, R_{r}\) & Resistance of the stator and rotor windings, respectively \\
\(i_{q}, i_{d}\) & \(q\) - and \(d\)-axis current, respectively \\
\(v_{q}, v_{d}\) & \(q\) - and \(d\)-axis voltage, respectively \\
\(\Psi_{q}, \Psi_{d}\) & \(q\) - and \(d\)-axis magnet flux, respectively
\end{tabular}
\begin{tabular}{ll}
\(T_{s t}\) & Current regulator sample rate \\
\(K i_{d}, K i_{q}\) & \(d\) - and \(q\) - axis integral gain, respectively \\
\(K p_{d}, K p_{q}\) & \(d\) - and \(q\) - axis proportional gain, respectively
\end{tabular}

\section*{Transforms}

To calculate the voltages and currents in balanced three-phase \((a, b)\) quantities, quadrature two-phase \((\alpha, \beta)\) quantities, and rotating \((d, q)\) reference frames, the block uses the Clarke and Park Transforms.

In the transform equations.
\[
\begin{aligned}
& \omega_{e}=P \omega_{m} \\
& \frac{d \theta_{e}}{d t}=\omega_{e}
\end{aligned}
\]
\begin{tabular}{|l|l|l|}
\hline Transform & Description & Equations \\
\hline Clarke & \begin{tabular}{l} 
Converts balanced three-phase \\
quantities \((a, b)\) into balanced two- \\
phase quadrature quantities \((\alpha, \beta)\).
\end{tabular} & \begin{tabular}{l}
\(x_{\alpha}=\quad \frac{2}{3} x_{a}-\quad \frac{1}{3} x_{b} \quad-\frac{1}{3} x_{C}\) \\
\(x_{\beta}=\)
\end{tabular}\(\frac{\sqrt{3}}{2} x_{b}-\quad \frac{\sqrt{3}}{2} x_{C}\)
\end{tabular}

The transforms use these variables.
\begin{tabular}{ll}
\(\omega_{m}\) & Rotor speed \\
\(P\) & Rotor pole pairs \\
\(\omega_{e}\) & Rotor electrical speed \\
\(\Theta_{e}\) & Rotor electrical angle \\
\(x\) & Phase current or voltage
\end{tabular}

\section*{Motor}

The block uses the phase currents and phase voltages to estimate the DC bus current. Positive current indicates battery discharge. Negative current indicates battery charge.

The block uses these equations.
\begin{tabular}{|l|l|}
\hline Load power & \(L d_{P w r}=v_{a} i_{a}+\quad v_{b} \quad i_{b}+\quad v_{c} i_{c}\) \\
\hline Source power & \(S r c_{P w r}=L d_{P w r}+P w r_{L o s s}\) \\
\hline DC bus current & \(i_{b u s}=\frac{S r c_{P w r}}{v_{b u s}}\) \\
\hline Estimated rotor torque & \(T_{e}=1.5 P\left[\psi_{d} i_{q}-\psi_{q} i_{d}\right]\) \\
\hline \begin{tabular}{l} 
Power loss for single efficiency \\
source to load
\end{tabular} & \(P w r_{L o s s}=\frac{100-E f f}{E f f} \cdot L d_{P w r}\) \\
\hline \begin{tabular}{l} 
Power loss for single efficiency \\
load to source
\end{tabular} & \(P w r_{L o s s}=\frac{100-E f f}{100} \cdot\left|L d_{P w r}\right|\) \\
\hline \begin{tabular}{l} 
Power loss for tabulated \\
efficiency
\end{tabular} & \(P w r_{L o s s}=f\left(\omega_{m}, M t r T r q_{e s t}\right)\) \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(v_{a}, v_{b}, v_{c}\) & Stator phase a, b, c voltages \\
\(v_{b u s}\) & Estimated DC bus voltage \\
\(i_{a}, i_{b}, i_{c}\) & Stator phase a, b, c currents \\
\(i_{b u s}\) & Estimated DC bus current \\
\(E f f\) & Overall inverter efficiency \\
\(\omega_{m}\) & Rotor mechanical speed
\end{tabular}
\begin{tabular}{ll}
\(L_{q}, L_{d}\) & \(q\) - and \(d\)-axis winding inductance, respectively \\
\(\Psi_{q}, \Psi_{d}\) & \(q\) - and \(d\)-axis magnet flux, respectively \\
\(i_{q}, i_{d}\) & \(q\) - and \(d\)-axis current, respectively \\
\(\lambda\) & Permanent magnet flux linkage \\
\(P\) & Rotor pole pairs
\end{tabular}

\section*{Electrical Losses}

To specify the electrical losses, on the Electrical Losses tab, for Parameterize losses by, select one of these options.
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline \begin{tabular}{l} 
Single efficiency \\
measurement
\end{tabular} & \begin{tabular}{l} 
Electrical loss calculated using a constant value for \\
inverter efficiency.
\end{tabular} \\
\hline Tabulated loss data & \begin{tabular}{l} 
Electrical loss calculated as a function of motor speeds \\
and load torques.
\end{tabular} \\
\hline \begin{tabular}{l} 
Tabulated efficiency \\
data
\end{tabular} & \begin{tabular}{l} 
Electrical loss calculated using inverter efficiency that is a \\
function of motor speeds and load torques.
\end{tabular} \\
& \begin{tabular}{ll} 
- Converts the efficiency values you provide into losses \\
and uses the tabulated losses for simulation.
\end{tabular} \\
& \begin{tabular}{l} 
Ignores efficiency values you provide for zero speed or \\
zero torque. Losses are assumed zero when either \\
torque or speed is zero.
\end{tabular} \\
& - \begin{tabular}{l} 
Uses linear interpolation to determine losses. Provide \\
tabulated data for low speeds and low torques, as \\
required, to get the desired level of accuracy for lower \\
power conditions.
\end{tabular} \\
& \begin{tabular}{l} 
Does not extrapolate loss values for speed and torque \\
magnitudes that exceed the range of the table.
\end{tabular} \\
\hline
\end{tabular}

For best practice, use Tabulated loss data instead of Tabulated efficiency data:
- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

\section*{Ports}

\section*{Input}

\section*{SpdReq - Rotor speed command scalar}

Rotor speed command, \(\omega^{*}\), in rad/s.

\section*{Dependencies}

To create this port, select Speed Control for the Control Type parameter.

\section*{TrqCmd - Torque command scalar}

Torque command, \(T^{*}\), in \(N \cdot m\).

\section*{Dependencies}

To create this port, select Torque Control for the Control Type parameter.

\section*{BusVolt - DC bus voltage}
scalar
DC bus voltage, \(v_{\text {bus }}\), in \(V\).
PhaseCurrA - Current scalar

Stator current phase a, \(i_{a}\), in A.

\section*{PhaseCurrB - Current} scalar

Stator current phase \(b, i_{b}\), in A.
SpdFdbk - Rotor speed scalar

Rotor speed, \(\omega_{m}\), in rad/s.

\section*{PosFdbk - Rotor electrical angle}
scalar
Rotor electrical angle, \(\Theta_{m}\), in rad.

\section*{Output}

\section*{Info - Bus signal \\ bus}

Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|}
\hline Signal & Description & Units \\
\hline SrcPwr & Source power & W \\
\hline LdPwr & Load power & W \\
\hline PwrLoss & Power loss & W \\
\hline MtrTrqEst & Estimated motor torque & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline
\end{tabular}

\section*{BusCurr - Bus current}
scalar
Estimated DC bus current, \(i_{\text {bus }}\), in A.

\section*{PhaseVolt - Stator terminal voltages}
array
Stator terminal voltages, \(V_{a}, V_{b}\), and \(V_{c}\), in \(V\).

\section*{Parameters}

\section*{Block Options}

Control Type - Select control
Speed Control (default) | Torque Control
If you select Torque Control, the block does not implement the speed controller.
This table summarizes the port configurations.
\begin{tabular}{|l|l|}
\hline Port Configuration & Creates Ports \\
\hline Speed Control & SpdReq \\
\hline Torque Control & TrqCmd \\
\hline
\end{tabular}

\section*{Motor Parameters}

Number of pole pairs, PolePairs - Poles
scalar
Motor pole pairs, \(P\).

\section*{Vector of d-axis current breakpoints, id_index - Current vector}
\(d\)-axis current, \(i_{d-i n d e x}\), in A.
Vector of q-axis current breakpoints, iq_index - current vector
\(q\)-axis current, \(i_{q_{-} \text {index }}\) in A.
Corresponding d-axis flux, lambda_d - Flux vector
\(d\)-axis flux, \(\lambda_{d}\), in Wb .
Corresponding q-axis flux, lambda_q - Flux vector
\(q\)-axis flux, \(\lambda_{q}\), in Wb.

\section*{Current Controller}

Sample time for the torque control, Tst - Time scalar

Torque control sample time, \(T_{s t}\), in s.
D-axis proportional gain, Kp_d - Gain scalar
\(d\)-axis proportional gain, \(K p_{d}\), in V/A.

Q-axis proportional gain, Kp_q - Gain scalar
\(q\)-axis proportional gain, \(K p_{q}\), in V/A.
D-axis integral gain, Ki_d-Gain scalar
\(d\)-axis integral gain, \(K i_{d}\), in V/A•s.
Q-axis integral gain, Ki_q - Gain scalar
\(q\) - axis integral gain, \(K i_{q}\), in V/A•s.
Vector of speed breakpoints, wpb - Breakpoints vector

Speed breakpoints, \(\omega_{b p}\), in rad/s.
```

Vector of torque breakpoints, tpb - Breakpoints
vector

```

Torque breakpoints, \(T_{b p}\), in \(\mathrm{N} \cdot \mathrm{m}\).
Corresponding d-axis current reference, id_ref - Current vector
\(d\)-axis reference current, \(i_{\text {dref }}\), in A.
Corresponding \(q\)-axis current reference, iq_ref - Current vector
\(q\)-axis reference current, \(i_{\text {qref }}\), in A.

\section*{Speed Controller}

Speed time constant, Ksf - Time scalar

Speed regulator time constant, \(K_{s f}\), in \(1 / \mathrm{s}\).

\section*{Dependencies}

To enable this parameter, for the Control Type parameter, select Speed Control.

\section*{Proportional gain, Kp_w - Gain \\ scalar}

Proportional gain, \(K p_{\omega}\), in \(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})\).

\section*{Dependencies}

To enable this parameter, for the Control Type parameter, select Speed Control.
Integral gain, Ki_w - Gain
scalar
Integral gain, \(K i_{\omega} \mathrm{N} \cdot \mathrm{m} / \mathrm{rad}\).

\section*{Dependencies}

To enable this parameter, for the Control Type parameter, select Speed Control.
Inertia compensation, Jcomp - Inertia
scalar
Inertia compensation, in \(\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2\).

\section*{Dependencies}

To enable this parameter, for the Control Type parameter, select Speed Control.

\section*{Static friction, Fs - Friction}
scalar
Static friction, in \(N \cdot m\).

\section*{Dependencies}

To enable this parameter, for the Control Type parameter, select Speed Control.
Viscous damping compensation, Fv - Dampint scalar

Viscous damping compensation, in \(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})\).

\section*{Dependencies}

To enable this parameter, for the Control Type parameter, select Speed Control.
Electrical Losses
Parameterize losses by - Select type
Single efficiency measurement (default)|Tabulated loss data|Tabulated efficiency data
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline \begin{tabular}{l} 
Single efficiency \\
measurement
\end{tabular} & \begin{tabular}{l} 
Electrical loss calculated using a constant value for \\
inverter efficiency.
\end{tabular} \\
\hline Tabulated loss data & \begin{tabular}{l} 
Electrical loss calculated as a function of motor speeds \\
and load torques.
\end{tabular} \\
\hline \begin{tabular}{l} 
Tabulated efficiency \\
data
\end{tabular} & \begin{tabular}{l} 
Electrical loss calculated using inverter efficiency that is a \\
function of motor speeds and load torques.
\end{tabular} \\
& \begin{tabular}{ll} 
- \begin{tabular}{l} 
Converts the efficiency values you provide into losses \\
and uses the tabulated losses for simulation.
\end{tabular} \\
& \begin{tabular}{l} 
Ignores efficiency values you provide for zero speed or \\
zero torque. Losses are assumed zero when either \\
torque or speed is zero.
\end{tabular} \\
& - \begin{tabular}{l} 
Uses linear interpolation to determine losses. Provide \\
tabulated data for low speeds and low torques, as \\
required, to get the desired level of accuracy for lower \\
power conditions.
\end{tabular} \\
& \begin{tabular}{l} 
Does not extrapolate loss values for speed and torque \\
magnitudes that exceed the range of the table.
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}

For best practice, use Tabulated loss data instead of Tabulated efficiency data:
- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

Overall inverter efficiency, eff - Constant
scalar
Overall inverter efficiency, Eff, in \%.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated loss data.
Vector of speeds (w) for tabulated loss, w_loss_bp - Breakpoints 1-by-M matrix

Speed breakpoints for lookup table when calculating losses, in rad/s.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated loss data.

\section*{Vector of torques ( T ) for tabulated loss, T_loss_bp - Breakpoints 1-by-N matrix}

Torque breakpoints for lookup table when calculating losses, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated loss data.

\section*{Corresponding losses, losses_table - Table}

M-by-N matrix
Array of values for electrical losses as a function of M speeds and \(N\) torques, in W. Each value specifies the losses for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated loss data.
```

Vector of speeds (w) for tabulated efficiency, w_eff_bp - Breakpoints 1-by-M matrix

```

Speed breakpoints for lookup table when calculating efficiency, in rad/s.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.

\section*{Vector of torques (T) for tabulated efficiency, T_eff_bp Breakpoints}

\section*{1-by-N matrix}

Torque breakpoints for lookup table when calculating efficiency, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.

\section*{Corresponding efficiency, efficiency_table - Table}

M-by-N matrix
Array of efficiency as a function of \(M\) speeds and \(N\) torque, in \%. Each value specifies the efficiency for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

The block ignores efficiency values for zero speed or zero torque. Losses are zero when either torque or speed is zero. The block uses linear interpolation.

To get the desired level of accuracy for lower power conditions, you can provide tabulated data for low speeds and low torques.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.

\section*{References}
[1] Hu, Dakai, Yazan Alsmadi, and Longya Xu. "High fidelity nonlinear IPM modeling based on measured stator winding flux linkage." IEEE Transactions on Industry Applications, Vol. 51, No. 4, July/August 2015.
[2] Chen, Xiao, Jiabin Wang, Bhaskar Sen, Panagiotis Lasari, Tianfu Sun. "A High-Fidelity and Computationally Efficient Model for Interior Permanent-Magnet Machines Considering the Magnetic Saturation, Spatial Harmonics, and Iron Loss Effect." IEEE Transactions on Industrial Electronics, Vol. 62, No. 7, July 2015.
[3] Ottosson, J., M. Alakula. "A compact field weakening controller implementation." International Symposium on Power Electronics, Electrical Drives, Automation and Motion, July, 2006.

\section*{Extended Capabilities}

\author{
C/C++ Code Generation \\ Generate \(C\) and \(C++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\text {TM }}\).
}

\author{
See Also \\ \section*{Topics} \\ "Generate Parameters for Flux-Based Blocks" \\ Introduced in R2017b
}

Flux-Based PMSM | IM Controller | Interior PM Controller | Surface Mount PM Controller

\section*{Induction Motor}

Three-phase induction motor
Library: Powertrain Blockset / Propulsion / Electric Motors


\section*{Description}

The Induction Motor block implements a three-phase induction motor. The block uses the three-phase input voltages to regulate the individual phase currents, allowing control of the motor torque or speed.

By default, the block sets the Simulation Type parameter to Continuous to use a continuous sample time during simulation. If you want to generate code for fixed-step double- and single-precision targets, considering setting the parameter to Discrete. Then specify a Sample Time, Ts parameter.

\section*{Three-Phase Sinusoidal Model Electrical System}

The block implements equations that are expressed in a stationary rotor reference (qd) frame. The d-axis aligns with the a-axis. All quantities in the rotor reference frame are referred to the stator.


The block uses these equations to calculate the electrical speed ( \(\omega_{\text {em }}\) ) and slip speed ( \(\omega_{\text {slip }}\) ).
\[
\begin{aligned}
& \omega_{e m}=P \omega_{m} \\
& \omega_{\text {slip }}=\omega_{s y n}-\omega_{e m}
\end{aligned}
\]

To calculate the dq rotor electrical speed with respect to the rotor A-axis ( \(d A\) ), the block uses the difference between the stator a-axis (da) speed and slip speed:
\[
\omega_{d A}=\omega_{d a}-\omega_{e m}
\]

To simplify the equations for the flux, voltage, and current transformations, the block uses a stationary reference frame:
\[
\begin{aligned}
& \omega_{d a}=0 \\
& \omega_{d A}=-\omega_{e m}
\end{aligned}
\]
\begin{tabular}{|c|c|}
\hline Calculation & Equation \\
\hline Flux & \[
\begin{aligned}
& \frac{d}{d t}\left[\begin{array}{l}
\lambda_{s d} \\
\lambda_{s q}
\end{array}\right]=\left[\begin{array}{ll}
v_{s d} \\
v_{s q}
\end{array}\right]-R_{s}\left[\begin{array}{l}
i_{s d} \\
i_{s q}
\end{array}\right]-\omega_{d a}\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
\lambda_{s d} \\
\lambda_{s q}
\end{array}\right] \\
& \frac{d}{d t}\left[\begin{array}{l}
\lambda_{r d} \\
\lambda_{r q}
\end{array}\right]=\left[\begin{array}{ll}
v_{r d} \\
v_{r q}
\end{array}\right]-R_{r}\left[\begin{array}{l}
i_{r d} \\
i_{r q}
\end{array}\right]-\omega_{d A}\left[\begin{array}{cc}
0 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
\lambda_{r d} \\
\lambda_{r q}
\end{array}\right] \\
& {\left[\begin{array}{c}
\lambda_{s d} \\
\lambda_{s q} \\
\lambda_{r d} \\
\lambda_{r q}
\end{array}\right]=\left[\begin{array}{cccc}
L_{s} & 0 & L_{m} & 0 \\
0 & L_{s} & 0 & L_{m} \\
L_{m} & 0 & L_{r} & 0 \\
0 & L_{m} & 0 & L_{r}
\end{array}\right]\left[\begin{array}{l}
i_{s d} \\
i_{s q} \\
i_{r d} \\
i_{r q}
\end{array}\right]}
\end{aligned}
\] \\
\hline Current & \(\left[\begin{array}{l}i_{s d} \\ i_{s q} \\ i_{r d} \\ i_{r q}\end{array}\right]=\left(\frac{1}{L_{m}^{2}-L_{r} L_{s}}\right)\left[\begin{array}{cccc}-L_{r} & 0 & L_{m} & 0 \\ 0 & -L_{r} & 0 & L_{m} \\ L_{m} & 0 & -L_{s} & 0 \\ 0 & L_{m} & 0 & -L_{s}\end{array}\right]\left[\begin{array}{c}\lambda_{s d} \\ \lambda_{s q} \\ \lambda_{r d} \\ \lambda_{r q}\end{array}\right]\) \\
\hline Inductance & \[
\begin{aligned}
& L_{s}=L_{l s}+L_{m} \\
& L_{r}=L_{l r}+L_{m}
\end{aligned}
\] \\
\hline Electromagnetic torque & \(T_{e}=P L_{m}\left(i_{s q} i_{r d}-i_{s d} i_{r q}\right)\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Calculation & Equation \\
\hline \begin{tabular}{l} 
Power invariant dq transformation \\
to ensure that the dq and three \\
phase powers are equal
\end{tabular} & {\(\left[\begin{array}{l}v_{s d} \\
v_{s q}\end{array}\right]=\sqrt{\frac{2}{3}}\)} \\
& {\(\left[\begin{array}{ccc}\cos \left(\Theta_{d a}\right) & \cos \left(\Theta_{d a}-\frac{2 \pi}{3}\right) & \cos \left(\Theta_{d a}+\frac{2 \pi}{3}\right) \\
-\sin \left(\Theta_{d a}\right)-\sin \left(\Theta_{d a}-\frac{2 \pi}{3}\right)-\sin \left(\Theta_{d a}+\frac{2 \pi}{3}\right)\end{array}\right]\left[\begin{array}{l}v_{a} \\
v_{b} \\
v_{c}\end{array}\right]\)} \\
& {\(\left[\begin{array}{l}i_{a} \\
i_{b} \\
i_{c}\end{array}\right]=\sqrt{\frac{2}{3}}\left[\begin{array}{cc}\cos \left(\Theta_{d a}\right) & -\sin \left(\Theta_{d a}\right) \\
\cos \left(\Theta_{d a}-\frac{2 \pi}{3}\right)-\sin \left(\Theta_{d a}-\frac{2 \pi}{3}\right) \\
\cos \left(\Theta_{d a}+\frac{2 \pi}{3}\right)-\sin \left(\Theta_{d a}+\frac{2 \pi}{3}\right)\end{array}\right]\)} \\
& {\(\left[\begin{array}{l}i_{s d} \\
i_{s q}\end{array}\right]\)} \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(\omega_{m}\) & Angular velocity of the rotor \\
\(\omega_{e m}\) & Electrical rotor speed \\
\(\omega_{s l i p}\) & Electrical rotor slip speed \\
\(\omega_{s y n}\) & Synchronous rotor speed \\
\(\omega_{d a}\) & dq stator electrical speed with respect to the rotor a-axis \\
\(\omega_{d A}\) & dq stator electrical speed with respect to the rotor A-axis \\
\(\Theta_{d a}\) & dq stator electrical angle with respect to the rotor a-axis \\
\(\Theta_{d A}\) & dq stator electrical angle with respect to the rotor A-axis \\
\(L_{q}, L_{d}\) & q - and d-axis inductances \\
\(L_{s}\) & Stator inductance \\
\(L_{r}\) & Rotor inductance \\
\(L_{m}\) & Magnetizing inductance \\
\(L_{l s}\) & Stator leakage inductance
\end{tabular}
\begin{tabular}{ll}
\(L_{l r}\) & Rotor leakage inductance \\
\(v_{s q}, v_{s d}\) & Stator q-and d-axis voltages \\
\(i_{s q}, i_{s d}\) & Stator q-and d-axis currents \\
\(\lambda_{s q}, \lambda_{s d}\) & Stator q - and d-axis flux \\
\(i_{r q} i_{r d}\) & Rotor q-and d-axis currents \\
\(\lambda_{r q}, \lambda_{r d}\) & Rotor q-and d-axis flux \\
\(\nu_{a}, v_{b}, v_{c}\) & Stator voltage phases a, b, c \\
\(i_{a}, i_{b}, i_{c}\) & Stator currents phases a, b, c \\
\(R_{s}\) & Resistance of the stator windings \\
\(R_{r}\) & Resistance of the rotor windings \\
\(P\) & Number of pole pairs \\
\(T_{e}\) & Electromagnetic torque
\end{tabular}

\section*{Mechanical System}

The motor angular velocity is given by:
\[
\begin{gathered}
\frac{d}{d t} \omega_{m}=\frac{1}{J}\left(T_{e}-T_{f}-F \omega_{m}-T_{m}\right) \\
\frac{d \theta_{m}}{d t}=\omega_{m}
\end{gathered}
\]

The equations use these variables.
\begin{tabular}{ll}
\(J\) & Combined inertia of motor and load \\
\(F\) & Combined viscous friction of motor and load \\
\(\theta_{m}\) & Motor mechanical angular position \\
\(T_{m}\) & Motor shaft torque \\
\(T_{e}\) & Electromagnetic torque \\
\(T_{f}\) & Motor shaft static friction torque \\
\(\omega_{m}\) & Angular mechanical velocity of the motor
\end{tabular}

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Varia & Equations \\
\hline \multirow[t]{5}{*}{} & \multirow[t]{2}{*}{\begin{tabular}{l}
PwrTrnsfrd - Power transferred between blocks \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block
\end{tabular}} & PwrMtr & Mechanical power & \(P_{\text {mot }}\) & \(P_{\text {mot }}=-\omega_{m} T_{e}\) \\
\hline & & PwrBus & Electrical power & \(P_{\text {bus }}\) & \[
\begin{aligned}
& P_{b u s}=v_{a n} i_{a}+ \\
& v_{b n} i_{b}+v_{c n} i_{c}
\end{aligned}
\] \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
PwrNotTrnsfrd - Power crossing the block boundary, but not transferred \\
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular}} & PwrEle cLoss & Resistive power loss & \(P_{\text {elec }}\) & \[
\begin{aligned}
& P_{\text {elec }}=-\left(R_{s} i_{s d}^{2}\right. \\
& +R_{s} i_{s q}^{2}+-R_{r} i_{r d}^{2} \\
& \left.+R_{r} i_{r q}^{2}\right)
\end{aligned}
\] \\
\hline & & PwrMec hLoss & Mechanical power loss & \(P_{\text {mech }}\) & \begin{tabular}{l}
When Port Configuration is set to Torque:
\[
\begin{aligned}
& P_{\text {mech }}=- \\
& \left(\omega_{m}^{2} F+\left|\omega_{m}\right| T_{f}\right)
\end{aligned}
\] \\
When Port Configuration is set to Speed:
\[
P_{\text {mech }}=0
\]
\end{tabular} \\
\hline & \begin{tabular}{l}
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular} & PwrMtr Stored & Stored motor power & \(P_{\text {str }}\) & \[
\begin{aligned}
& P_{\text {str }}=\quad P_{\text {bus }}+P_{\text {mot }} \\
& +P_{\text {elec }}+P_{\text {mech }}
\end{aligned}
\] \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(R_{s}\) & Stator resistance \\
\(R_{r}\) & Motor resistance \\
\(i_{a}, i_{b}, i_{c}\) & Stator phase \(\mathrm{a}, \mathrm{b}\), and c current \\
\(i_{s q}, i_{s d}\) & Stator q- and d-axis currents \\
\(v_{a n}, v_{b n}, v_{c n}\) & Stator phase \(\mathrm{a}, \mathrm{b}\), and c voltage \\
\(\omega_{m}\) & Angular mechanical velocity of the rotor \\
\(F\) & Combined motor and load viscous damping \\
\(T_{e}\) & Electromagnetic torque \\
\(T_{f}\) & Combined motor and load friction torque
\end{tabular}

\section*{Ports}

\section*{Input}

\section*{LdTrq - Rotor shaft torque \\ scalar}

Rotor shaft input torque, \(T_{m}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To create this port, select Torque for the Port configuration parameter.

\section*{Spd - Rotor shaft speed scalar}

Angular velocity of the rotor, \(\omega_{m}\), in rad/s.

\section*{Dependencies}

To create this port, select Speed for the Port configuration parameter.

\section*{PhaseVolt - Stator terminal voltages \\ 1-by-3 array}

Stator terminal voltages, \(V_{a}, V_{b}\), and \(V_{c}\), in \(V\).

\section*{Output}

\section*{Info - Bus signal \\ bus}

The bus signal contains these block calculations.
\begin{tabular}{|l|l|l|l|}
\hline Signal & Description & Variable & Units \\
\hline IaStator & Stator phase current A & \(i_{a}\) & A \\
\hline IbStator & Stator phase current B & \(i_{b}\) & A \\
\hline IcStator & Stator phase current C & \(i_{c}\) & A \\
\hline IdSync & Direct axis current & \(i_{d}\) & A \\
\hline IqSync & Quadrature axis current & \(i_{q}\) & A \\
\hline VdSync & Direct axis voltage & \(v_{d}\) & V \\
\hline VqSync & Quadrature axis voltage & \(v_{q}\) & V \\
\hline MtrSpd & \begin{tabular}{l} 
Angular mechanical velocity of \\
the rotor
\end{tabular} & \(\omega_{m}\) & \(\mathrm{rad} / \mathrm{s}\) \\
\hline MtrPos & \begin{tabular}{l} 
Rotor mechanical angular \\
position
\end{tabular} & \(\theta_{m}\) & rad \\
\hline MtrTrq & Electromagnetic torque & \(T_{e}\) & \(\mathrm{~N} \cdot \mathrm{~m}\) \\
\hline \begin{tabular}{l} 
PwrInf \\
o
\end{tabular} & \begin{tabular}{l} 
PwrTrnsfr \\
d
\end{tabular} & PwrMtr & Mechanical power
\end{tabular}

\section*{PhaseCurr - Phase a, b, c current}

1-by-3 array
Phase a, b, c current, \(i_{a}, i_{b}\), and \(i_{c}\), in A.

\section*{MtrTrq - Motor torque}
scalar
Motor torque, \(T_{m t r}\), in \(\mathrm{N} \cdot \mathrm{m}\).
Dependencies
To create this port, select Speed for the Port configuration parameter.

\section*{MtrSpd - Motor speed}
scalar
Angular speed of the motor, \(\omega_{m t r}\), in rad/s.

\section*{Dependencies}

To create this port, select Torque for the Port configuration parameter.

\section*{Parameters}

\section*{Block Options}

\section*{Simulation Type - Select simulation type Continuous (default)|Discrete}

By default, the block uses a continuous sample time during simulation. If you want to generate code for single-precision targets, considering setting the parameter to Discrete.

\section*{Dependencies}

Setting Simulation Type to Discrete creates the Sample Time, Ts parameter.

\section*{Sample Time, Ts - Sample time for discrete integration scalar}

Integration sample time for discrete simulation, in s.

\section*{Dependencies}

Setting Simulation Type to Discrete creates the Sample Time, Ts parameter.

\section*{Port configuration - Select port configuration}

Torque (default) | Speed

This table summarizes the port configurations.
\begin{tabular}{|l|l|l|}
\hline Port Configuration & Creates Input Port & Creates Output Port \\
\hline Torque & LdTrq & MtrSpd \\
\hline Speed & Spd & MtrTrq \\
\hline
\end{tabular}

\section*{Stator resistance and leakage inductance, Zs - Resistance and inductance}
vector
Stator resistance, \(R_{S}\), in ohms and leakage inductance, \(L_{l s}\), in \(H\).
Rotor resistance and leakage inductance, Zr - Resistance and inductance vector

Rotor resistance, \(R_{r}\), in ohms and leakage inductance, \(L_{l r}\), in H .

\section*{Magnetizing inductance, Lm - Inductance \\ scalar}

Magnetizing inductance, \(L_{m}\), in \(H\).
Number of pole pairs, P - Pole pairs
scalar
Motor pole pairs, \(P\).
Initial mechanical position, theta_init - Angular position scalar

Initial rotor angular position, \(\theta_{m 0}\), in rad.
Initial mechanical speed, omega_init - Angular speed scalar

Initial angular velocity of the rotor, \(\omega_{m 0}\), in rad/s.

\section*{Dependencies}

To enable this parameter, select Torque for the Port configuration.

\author{
Physical inertia, viscous damping, static friction, mechanical Inertia, damping, friction \\ vector \\ Mechanical properties of the rotor: \\ - Inertia, \(J\), in \(\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2\) \\ - Viscous damping, \(F\), in \(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})\) \\ - Static friction, \(T_{f}\), in \(\mathrm{N} \cdot \mathrm{m}\) \\ \section*{Dependencies}
}

To enable this parameter, select Torque for the Port configuration.

\section*{References}
[1] Mohan, Ned. Advanced Electric Drives: Analysis, Control and Modeling Using Simulink. Minneapolis, MN: MNPERE, 2001.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\author{
See Also \\ Flux-Based PMSM | IM Controller | Interior PMSM | Mapped Motor | Surface Mount PMSM \\ Introduced in R2017a
}

\section*{IM Controller}

Internal torque-based, field-oriented controller for an induction motor with an optional outer-loop speed controller
Library: Powertrain Blockset / Propulsion / Electric Motor Controllers


\section*{Description}

The IM Controller block implements an internal torque-based, field-oriented controller for an induction motor (IM) with an optional outer-loop speed controller. The torque control implements a strategy to control the motor flux. You can specify either speed or torque control.

The IM Controller implements equations for speed control, torque determination, regulators, transforms, and motors.

The figure illustrates the information flow in the block.


The block implements equations that use these variables.
\begin{tabular}{ll}
\(\omega\) & Rotor speed \\
\(\omega^{*}\) & Rotor speed command \\
\(T^{*}\) & Torque command \\
\(i_{d}\) & d-axis current \\
\(i^{*}{ }_{d}\) & d-axis current command \\
\(i_{q}\) & q-axis current \\
\(i^{*}{ }_{q}\) & q -axis current command \\
\(v_{d}\), & d -axis voltage \\
\(v^{*}{ }_{d}\) & d-axis voltage command \\
\(v_{q}\) & q-axis voltage \\
\(v^{*}{ }_{q}\) & q-axis voltage command \\
\(v_{a}, v_{b}, v_{c}\) & Stator phase a, b, c voltages \\
\(i_{a}, i_{b}, i_{c}\) & Stator phase a, b, c currents
\end{tabular}

\section*{Speed Controller}

To implement the speed controller, select the Control Type parameter Speed Control. If you select the Control Type parameter Torque Control, the block does not implement the speed controller.

The speed controller determines the torque command by implementing a state filter, and calculating the feedforward and feedback commands. If you do not implement the speed controller, input a torque command to the IM Controller block.


\section*{State Filter}

The state filter is a low-pass filter that generates the acceleration command based on the speed command. On the Speed Controller tab:
- To make the speed-command lag time negligible, specify a Bandwidth of the state filter parameter.
- To calculate a Speed time constant, Ksf gain based on the state filter bandwidth, select Calculate Speed Regulator Gains.

The discrete form of characteristic equation is given by:
\[
z+K_{s f} T_{s m}-1
\]

The filter calculates the gain using this equation.
\[
K_{s f}=\frac{1-\exp \left(-T_{s m} 2 \pi E V_{s f}\right)}{T_{s m}}
\]

The equation uses these variables.
\(E V_{s f} \quad\) Bandwidth of the speed command filter
\(T_{s m} \quad\) Motion controller sample time
\(K_{s f} \quad\) Speed regulator time constant

\section*{State Feedback}

To generate the state feedback torque, the block uses the filtered speed error signal from the state filter. The feedback torque calculation also requires gains for speed regulator.

On the Speed Controller tab, select Calculate Speed Regulator Gains to compute:
- Proportional gain, ba
- Angular gain, Ksa
- Rotational gain, Kisa

For the gain calculations, the block uses the inertia from the Physical inertia, viscous damping, static friction parameter value on the Motor Parameter tab.

The gains for the state feedback are calculated using these equations.
\begin{tabular}{|l|l|}
\hline Calculation & Equations \\
\begin{tabular}{l} 
Discrete forms of \\
characteristic \\
equation
\end{tabular} & \begin{tabular}{l}
\(z^{3}+\frac{\left(-3 J_{p}+T_{s} b_{a}+T_{s}^{2} K_{s a}+T_{s}^{3} K_{i s a}\right)}{J_{p}} z^{2}+\frac{\left(3 J_{p}-2 T_{s} b_{a}-T_{s}^{2} K_{s a}\right)}{J_{p}} z\) \\
\(+\frac{-J_{p}+T_{s} b_{a}}{J_{p}}\) \\
\(\left(z-p_{1}\right)\left(z-p_{2}\right)\left(z-p_{3}\right)=z^{3}+\left(p_{1}+p_{2}+p_{3}\right) z^{2}+\left(p_{1} p_{2}+p_{2} p_{3}+p_{1} 3\right.\) \\
\() z^{2}-p_{1} p_{2} p_{3}\)
\end{tabular} \\
\hline \begin{tabular}{l} 
Speed regulator \\
proportional gain
\end{tabular} & \(b_{a}=\frac{J_{p}-J_{p} p_{1} p_{2} p_{3}}{T_{s m}}\) \\
\hline \begin{tabular}{l} 
Speed regulator \\
integral gain
\end{tabular} & \(K_{s a}=\frac{J_{p}\left(p_{1} p_{2}+p_{2} p_{3}+p_{3} p_{1}\right)-3 J_{p}+2 b_{a} T_{s m}}{T_{s m}^{2}}\) \\
\hline \begin{tabular}{l} 
Speed regulator \\
double integral gain
\end{tabular} & \(K_{i s a}=\frac{-J_{p}\left(p_{1}+p_{2}+p_{3}\right)+3 J_{p}-b_{a} T_{s m}-K_{s a} T_{s m}^{2}}{T_{s m}^{3}}\) \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(P\) & Motor pole pairs \\
\(b_{a}\) & Speed regulator proportional gain \\
\(K_{s a}\) & Speed regulator integral gain
\end{tabular}
\begin{tabular}{ll}
\(K_{i s a}\) & Speed regulator double integral gain \\
\(J_{p}\) & Motor inertia \\
\(T_{s m}\) & Motion controller sample time
\end{tabular}

\section*{Command Feedforward}

To generate the state feedforward torque, the block uses the filtered speed and acceleration from the state filter. Also, the feedforward torque calculation uses the inertia, viscous damping, and static friction. To achieve zero tracking error, the torque command is the sum of the feedforward and feedback torque commands.

Selecting Calculate Speed Regulator Gains on the Speed Controller tab updates the inertia, viscous damping, and static friction with the Physical inertia, viscous damping, static friction parameter values on the Motor Parameter tab.

The feedforward torque command uses this equation.
\[
T_{c m d_{-} f f}=J_{p} \dot{\omega}_{m}+F_{\nu} \omega_{m}+F_{s} \frac{\omega_{m}}{\left|\omega_{m}\right|}
\]

The equation uses these variables.
\begin{tabular}{ll}
\(J_{p}\) & Motor inertia \\
\(T_{c m d f f}\) & Torque command feedforward \\
\(F_{s}\) & Static friction torque constant \\
\(F_{v}\) & Viscous friction torque constant \\
\(F_{s}\) & Static friction torque constant \\
\(\omega_{m}\) & Rotor mechanical speed
\end{tabular}

\section*{Torque Determination}

The block uses a quadrature current to determine the base speed and the current commands. The motor ratings determine the rated electrical speed.
\begin{tabular}{|c|c|}
\hline Calculation & Equations \\
\hline Current commands & \[
\begin{aligned}
& i_{\text {qref }}=\frac{T_{\text {cmd }}}{i_{\text {sq_0 }} \cdot P \cdot\left(\frac{L_{m}^{2}}{L_{r}}\right)} \\
& \text { If }\left|\omega_{e}\right| \leq \omega_{\text {rated }} \\
& i_{\text {dref }}=\quad i_{\text {sd_ }} 0 \\
& \text { Else } \\
& \text { End }
\end{aligned}
\] \\
\hline Inductance & \[
\begin{gathered}
L_{r}=L_{l r}+L_{m} \\
L_{s}=L_{l s}+L_{m}
\end{gathered}
\] \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(i_{\text {dref }}\) & d-axis reference current \\
\(i_{\text {qref }}\) & q-axis reference current \\
\(i_{s d_{-} 0}\) & d-axis rated current \\
\(i_{s q_{-} 0}\) & q-axis rated current \\
\(\omega_{e}\) & Rotor electrical speed \\
\(\omega_{\text {rated }}\) & Rated electrical speed \\
\(L_{l r}\) & Rotor leaking inductance \\
\(L_{r}\) & Rotor winding inductance \\
\(L_{l s}\) & Stator leaking inductance \\
\(L_{s}\) & Stator winding inductance \\
\(L_{m}\) & Motor magnetizing inductance \\
\(P\) & Motor pole pairs \\
\(T_{c m d}\) & Commanded motor maximum torque
\end{tabular}

\section*{Current Regulators}

The block regulates the current with an anti-windup feature. Classic proportionalintegrator (PI) current regulators do not consider the d-axis and q-axis coupling or the
back-electromagnetic force (EMF) coupling. As a result, transient performance deteriorates. To account for the coupling, the block implements the complex vector current regulator (CVCR) in the scalar format of the rotor reference frame. The CVCR decouples:
- d-axis and q-axis current cross-coupling
- Back-EMF cross-coupling

The current frequency response is a first-order system, with a bandwidth of \(E V_{\text {current }}\).
The block implements these equations.
\begin{tabular}{|c|c|}
\hline Calculation & Equations \\
\hline Motor voltage, in the stator reference frame & \[
\begin{aligned}
& \sigma=1-\frac{L^{2}{ }_{m}}{L_{s} L_{r}} \\
& v_{s d}=R_{s} i_{s d}+\sigma L_{s} \frac{d i_{s d}}{d t}+\frac{L_{m}}{L_{r}} \frac{d \lambda_{r d}}{d t}-P \omega_{m} \sigma L_{s} i_{s q} \\
& v_{s q}=R_{s} i_{s q}+\sigma L_{s} \frac{d i_{s q}}{d t}+\omega_{d} \frac{L_{m}}{L_{r}} \frac{d \lambda_{r d}}{d t}+P \omega_{m} \sigma L_{s} i_{s d}
\end{aligned}
\] \\
\hline Current regulator gains & \[
\begin{aligned}
& \omega_{b}=2 \Pi E V_{\text {current }} \\
& K_{p}=\sigma L_{d} \omega_{b} \\
& K_{i}=R_{s} \omega_{b}
\end{aligned}
\] \\
\hline Transfer functions & \[
\begin{aligned}
& \frac{i_{d}}{i_{\text {dref }}}=\frac{\omega_{b}}{s+\omega_{b}} \\
& \frac{i_{q}}{i_{q \text { ref }}}=\frac{\omega_{b}}{s+\omega_{b}}
\end{aligned}
\] \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(E V_{\text {current }}\) & Current regulator bandwidth \\
\(i_{d}\) & d-axis current \\
\(i_{q}\) & q-axis current \\
\(i_{s q}\) & Stator q-axis current \\
\(i_{s d}\) & Stator d-axis current \\
\(v_{s d}\) & Stator d-axis voltage
\end{tabular}
\begin{tabular}{ll}
\(v_{s q}\) & Stator q-axis voltage \\
\(K_{p}\) & Current regulator d-axis gain \\
\(K_{i}\) & Current regulator integrator gain \\
\(L_{s}\) & Stator winding inductance \\
\(L_{m}\) & Motor magnetizing inductance \\
\(L_{r}\) & Rotor winding inductance \\
\(R_{s}\) & Stator phase winding resistance \\
\(\lambda_{r d}\) & Rotor d-axis magnetic flux \\
\(\sigma\) & Leakage factor \\
\(p\) & Motor pole pairs
\end{tabular}

\section*{Transforms}

To calculate the voltages and currents in balanced three-phase \((a, b)\) quantities, quadrature two-phase \((\alpha, \beta)\) quantities, and rotating \((d, q)\) reference frames, the block uses the Clarke and Park Transforms.

In the transform equations.
\[
\begin{aligned}
& \omega_{e}=P \omega_{m} \\
& \frac{d \theta_{e}}{d t}=\omega_{e}
\end{aligned}
\]
\begin{tabular}{|l|l|l|}
\hline Transform & Description & Equations \\
\hline Clarke & \begin{tabular}{l} 
Converts balanced three-phase \\
quantities \((a, b)\) into balanced two- \\
phase quadrature quantities \((\alpha, \beta)\).
\end{tabular} & \(x_{\alpha}=\frac{2}{3} x_{a}-\quad \frac{1}{3} x_{b} \quad-\frac{1}{3} x_{C}\) \\
\(x_{\beta}=\frac{\sqrt{3}}{2} x_{b}-\quad \frac{\sqrt{3}}{2} x_{c}\) \\
\hline Park & \begin{tabular}{l} 
Converts balanced two-phase \\
orthogonal stationary quantities \\
\((\alpha, \beta)\) into an orthogonal rotating \\
reference frame \((d, q)\).
\end{tabular} & \begin{tabular}{llll}
\(x_{d}=\) & \(x_{\alpha} \cos \theta_{e}+\quad x_{\beta} \sin \theta_{e}\) \\
\(x_{q}=\) & \(-x_{\alpha} \sin \theta_{e}+\quad x_{\beta} \cos \theta_{e}\) \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Transform & Description & Equations \\
\hline Inverse Clarke & \begin{tabular}{l} 
Converts balanced two-phase \\
quadrature quantities \((\alpha, \beta)\) into \\
balanced three-phase quantities \\
\((a, b)\).
\end{tabular} & \begin{tabular}{llll}
\(x_{a}=\) & \(x_{a}\) \\
\(x_{b}=\) & \(-\frac{1}{2} x_{\alpha}+\quad \frac{\sqrt{3}}{2} x_{\beta}\) \\
\(x_{c}=\quad-\frac{1}{2} x_{\alpha}-\quad \frac{\sqrt{3}}{2} x_{\beta}\) \\
\hline Inverse Park & \begin{tabular}{l} 
Converts an orthogonal rotating \\
reference frame \((d, q)\) into \\
balanced two-phase orthogonal \\
stationary quantities \((\alpha, \beta)\).
\end{tabular} & \begin{tabular}{llll}
\(x_{\alpha}=\) & \(x_{d} \cos \theta_{e}-\quad x_{q} \sin \theta_{e}\) \\
\(x_{\beta}=\) & \(x_{d} \sin \theta_{e}+\quad x_{q} \cos \theta_{e}\)
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}

The transforms use these variables.
\begin{tabular}{ll}
\(\omega_{m}\) & Rotor mechanical speed \\
\(P\) & Motor pole pairs \\
\(\omega_{e}\) & Rotor electrical speed \\
\(\Theta_{e}\) & Rotor electrical angle \\
\(x\) & Phase current or voltage
\end{tabular}

\section*{Motor}

The block uses the phase currents and phase voltages to estimate the DC bus current. Positive current indicates battery discharge. Negative current indicates battery charge. The block uses these equations.
\begin{tabular}{|l|l|}
\hline Load power & \(L d_{P w r}=v_{a} \quad i_{a}+\quad v_{b} \quad i_{b}+\quad v_{c} \quad i_{c}\) \\
\hline Source power & \(S r C_{P w r}=L d_{P w r}+P w r_{L o s s}\) \\
\hline DC bus current & \(i_{b u s}=\frac{S r c P w r}{v_{b u s}}\) \\
\hline Estimated rotor torque & \(M t r T r q_{e s t}=P \lambda_{r d} i_{s q} \frac{L_{m}}{L_{r}}\) \\
\hline \begin{tabular}{l} 
Power loss for single efficiency \\
source to load
\end{tabular} & \(P w r_{L o s s}=\frac{100-E f f}{E f f} \cdot L d_{P w r}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Power loss for single efficiency \\
load to source
\end{tabular} & \(P w r_{\text {Loss }}=\frac{100-E f f}{100} \cdot\left|L d_{P w r}\right|\) \\
\hline \begin{tabular}{l} 
Power loss for tabulated \\
efficiency
\end{tabular} & \(P w r_{\text {Loss }}=f\left(\omega_{m}, M t r T r q_{e s t}\right)\) \\
\hline
\end{tabular}

The equations use these variables.
\(v_{a}, v_{b}, v_{c} \quad\) Stator phase \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) voltages
\begin{tabular}{ll}
\(v_{\text {bus }}\) & Estimated DC bus voltage \\
\(i_{a}, i_{b}, i_{c}\) & Stator phase a, b, c currents \\
\(i_{\text {bus }}\) & Estimated DC bus current \\
\(E f f\) & Overall inverter efficiency \\
\(\omega_{m}\) & Rotor mechanical speed \\
\(L_{r}\) & Rotor winding inductance \\
\(L_{m}\) & Motor magnetizing inductance \\
\(\lambda_{r d}\) & Rotor d-axis magnetic flux \\
\(i_{s q}\) & q-axis current \\
\(P\) & Motor pole pairs
\end{tabular}

\section*{Electrical Losses}

To specify the electrical losses, on the Electrical Losses tab, for Parameterize losses by, select one of these options.
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline \begin{tabular}{l} 
Single efficiency \\
measurement
\end{tabular} & \begin{tabular}{l} 
Electrical loss calculated using a constant value for \\
inverter efficiency.
\end{tabular} \\
\hline Tabulated loss data & \begin{tabular}{l} 
Electrical loss calculated as a function of motor speeds \\
and load torques.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline \begin{tabular}{l} 
Tabulated efficiency \\
data
\end{tabular} & \begin{tabular}{l} 
Electrical loss calculated using inverter efficiency that is a \\
function of motor speeds and load torques.
\end{tabular} \\
& \begin{tabular}{ll} 
- \begin{tabular}{l} 
Converts the efficiency values you provide into losses \\
and uses the tabulated losses for simulation. \\
Ignores efficiency values you provide for zero speed or \\
zero torque. Losses are assumed zero when either \\
torque or speed is zero.
\end{tabular} \\
& \begin{tabular}{l} 
Uses linear interpolation to determine losses. Provide \\
tabulated data for low speeds and low torques, as \\
required, to get the desired level of accuracy for lower \\
power conditions. \\
Does not extrapolate loss values for speed and torque \\
magnitudes that exceed the range of the table.
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}

For best practice, use Tabulated loss data instead of Tabulated efficiency data:
- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

\section*{Ports}

\section*{Input}

\section*{SpdReq - Rotor mechanical speed command scalar}

Rotor mechanical speed command, \(\omega^{*}{ }_{m}\), in rad/s.

\section*{Dependencies}

To create this port, select Speed Control for the Control Type parameter.

\section*{TrqCmd - Torque command \\ scalar}

Torque command, \(T^{*}\), in \(N \cdot m\).

\section*{Dependencies}

To create this port, select Torque Control for the Control Type parameter.

\section*{BusVolt - DC bus voltage}

\section*{scalar}

DC bus voltage \(v_{\text {bus }}\), in V .

\section*{PhaseCurrA - Current}

\section*{scalar}

Stator current phase a, \(i_{a}\), in \(A\).

\section*{PhaseCurrB - Current}
scalar
Stator current phase b, \(i_{b}\), in A.

\section*{SpdFdbk - Rotor mechanical speed}
scalar
Rotor mechanical speed, \(\omega_{m}\), in rad/s.

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|}
\hline Signal & Description & Units \\
\hline SrcPwr & Source power & W \\
\hline LdPwr & Load power & W \\
\hline PwrLoss & Power loss & W \\
\hline MtrTrqEst & Estimated motor torque & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline
\end{tabular}

\section*{BusCurr - Bus current}
scalar
Estimated DC bus current, \(i_{\text {bus }}\), in A.

\section*{PhaseVolt - Stator terminal voltages \\ array}

Stator terminal voltages, \(V_{a}, V_{b}\), and \(V_{c}\), in \(V\).

\section*{Parameters}

\section*{Block Options}

\section*{Control Type - Select control}

Speed Control (default) | Torque Control
If you select Torque Control, the block does not implement the speed controller.
This table summarizes the port configurations.
\begin{tabular}{|l|l|}
\hline Port Configuration & Creates Ports \\
\hline Speed Control & SpdReq \\
\hline Torque Control & TrqCmd \\
\hline
\end{tabular}

\section*{Motor}

\section*{Stator resistance, Rs - Resistance}
scalar
Stator phase winding resistance, \(R_{S}\), in ohm.

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Parameter} & \multicolumn{2}{|l|}{Used to Derive} \\
\hline & Parameter & Tab \\
\hline Stator resistance, Rs & \begin{tabular}{l}
D-axis rated current, Isd_0 \\
Q-axis rated current, Isq_0 \\
Torque at rated current, Tem
\end{tabular} & Id and Iq Calculation \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & \multicolumn{2}{|l|}{ Used to Derive } \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline & \begin{tabular}{l} 
D and Q axis integral gain, \\
Ki
\end{tabular} & Current Controller \\
\hline
\end{tabular}

\section*{Stator leakage inductance, Lls - Inductance scalar}

Stator leakage inductance, \(L_{l s}\), in H .

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Used to Derive & Tab \\
\cline { 2 - 4 } & Parameter & \\
\hline \begin{tabular}{l} 
Stator leakage \\
inductance, Lls
\end{tabular} & \begin{tabular}{l} 
D-axis rated current, Isd_0 \\
Q-axis rated current, Isq_0 \\
Torque at rated current, \\
Tem
\end{tabular} & Id and Iq Calculation \\
\hline & \begin{tabular}{l} 
D and Q axis proportional \\
gain, Kp \\
D and Q axis integral gain, \\
Ki
\end{tabular} & Current Controller \\
\hline
\end{tabular}

\section*{Rotor resistance, Rr - Resistance scalar}

Rotor resistance, \(R_{r}\), in ohm.

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Used to Derive \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline Rotor resistance, & D-axis rated current, Isd_0 & Id and Iq Calculation \\
Rr & \begin{tabular}{l} 
Q-axis rated current, Isq_0 \\
Torque at rated current, \\
Tem
\end{tabular} & \\
\hline
\end{tabular}

\section*{Rotor leakage inductance, Llr - Inductance}

\section*{scalar}

Rotor leakage inductance, \(L_{l r}\), in H.

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & \multicolumn{2}{|l|}{ Used to Derive } \\
\cline { 2 - 4 } & Parameter & Tab \\
\hline \begin{tabular}{l} 
Rotor leakage \\
inductance, Llr
\end{tabular} & \begin{tabular}{l} 
D-axis rated current, Isd_0 \\
Q-axis rated current, Isq_0
\end{tabular} & Id and Iq Calculation \\
& \begin{tabular}{l} 
Torque at rated current, \\
Tem
\end{tabular} & \\
\hline \begin{tabular}{l} 
D and Q axis proportional \\
gain, Kp
\end{tabular} & Current Controller \\
\hline
\end{tabular}

\section*{Rotor magnetizing inductance, Lm - Inductance} scalar

Rotor magnetizing inductance, \(L_{m}\), in H .

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & \multicolumn{2}{|l|}{ Used to Derive } \\
\cline { 2 - 4 } & Parameter & Tab \\
\hline \begin{tabular}{l} 
Rotor leakage \\
inductance, Llr
\end{tabular} & \begin{tabular}{l} 
D-axis rated current, Isd_0 \\
Q-axis rated current, Isq_0
\end{tabular} & Id and Iq Calculation \\
& \begin{tabular}{l} 
Torque at rated current, \\
Tem
\end{tabular} & \\
\hline \begin{tabular}{l} 
D and Q axis proportional \\
gain, Kp
\end{tabular} & Current Controller \\
\hline
\end{tabular}

Number of pole pairs, PolePairs - Poles
scalar
Motor pole pairs, \(P\).

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Used to Derive & Tab \\
\cline { 2 - 3 } & Parameter & Id and Iq Calculation \\
\hline \begin{tabular}{l} 
Rotor leakage \\
inductance, Llr
\end{tabular} & \begin{tabular}{l} 
Torque at rated current, \\
Tem
\end{tabular} & \\
\hline
\end{tabular}

Physical inertia, viscous damping, static friction, Mechanical Mechanical properties of motor vector

Mechanical properties of the motor:
- Motor inertia, \(F_{v}\), in \(\mathrm{kgm}^{\wedge} 2\)
- Viscous friction torque constant, \(F_{v}\), in \(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})\)
- Static friction torque constant, \(F_{s}\), in \(\mathrm{N} \cdot \mathrm{m}\)

\section*{Dependencies}

To enable this parameter, set the Control Type parameter to Speed Control.

For the gain calculations, the block uses the inertia from the Physical inertia, viscous damping, static friction parameter value that is on the Motor Parameters tab.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{|l|}{ Parameter } & Used to Derive & Tab \\
\hline & Parameter & Speed Controller \\
\hline \begin{tabular}{l} 
Physical inertia, \\
viscous damping, \\
static friction, \\
Mechanical
\end{tabular} & Proportional gain, ba & Angular gain, Ksa \\
Rotational gain, Kisa \\
& \begin{tabular}{l} 
Inertia compensation, \\
Jcomp \\
Viscous damping \\
compensation, Fv \\
Static friction, Fs
\end{tabular} & \\
& & \\
\hline
\end{tabular}

Id and Iq Calculation
Rated synchronous speed, Frate - Motor frequency
scalar
Motor-rated electrical frequency, \(F_{\text {rate }}\), in Hz .

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Used to Derive & Tab \\
\cline { 2 - 3 } & Parameter & \begin{tabular}{l} 
Rated synchronous \\
speed, Frate
\end{tabular} \\
D-axis rated current, Isd_0 & Id and Iq Calculation \\
& \begin{tabular}{l} 
Torque at rated current, \\
Tem
\end{tabular} & \\
\hline
\end{tabular}

Rated line to line voltage RMS, Vrate - Motor voltage scalar

Motor-rated line-to-line voltage, \(V_{\text {rate }}\), in V .

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & \multicolumn{2}{|l|}{ Used to Derive } \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l} 
Rated synchronous \\
speed, Frate
\end{tabular} & \begin{tabular}{l} 
D-axis rated current, Isd_0 \\
Q-axis rated current, Isq_0
\end{tabular} & Id and Iq Calculation \\
& \begin{tabular}{l} 
Torque at rated current, \\
Tem
\end{tabular} & \\
\hline
\end{tabular}

\section*{Rated slip, Srate - Motor slip speed}
scalar
Motor-rated slip speed, \(S_{\text {rate }}\), dimensionless.

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Used to Derive & Tab \\
\cline { 2 - 3 } & Parameter & Rated slip, Srate \\
& \begin{tabular}{l} 
D-axis rated current, Isd_0 \\
\\
\\
Q-axis rated current, Isq_o \\
Torque at rated current, \\
Tem
\end{tabular} & \\
\hline
\end{tabular}

\section*{Calculate Rated Stator Flux Current - Derive parameters \\ button}

Click to derive parameters.

\section*{Dependencies}

On the Id and Iq Calculation tab, when you select Calculate Rated Stator Flux Current, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
Derived \\
Parameter on Id \\
and Iq Calculation \\
tab
\end{tabular} & Dependency & Parameter \\
\hline \begin{tabular}{l} 
D-axis rated \\
current, Isd_0
\end{tabular} & \begin{tabular}{l} 
Rated synchronous speed, \\
Frate
\end{tabular} & Id and Iq Calculation \\
\begin{tabular}{l} 
Q-axis rated \\
current, Isq_0
\end{tabular} & \begin{tabular}{l} 
Rated line to line voltage \\
RMS, Vrate
\end{tabular} & \\
\begin{tabular}{l} 
Torque at rated \\
current, Tem
\end{tabular} & \begin{tabular}{l} 
Rated slip, Srate
\end{tabular} & \begin{tabular}{l} 
Stator resistance, Rs \\
Stator leakage inductance, \\
Lls
\end{tabular} \\
& \begin{tabular}{l} 
Rotor resistance, Rr \\
Rotor leakage inductance, \\
Llr \\
Rotor magnetizing \\
inductance, Lm
\end{tabular} & \\
\hline
\end{tabular}

D-axis rated current, Isd_0 - Derived
scalar

Derived d-axis rated current, in A.

\section*{Dependencies}

On the Id and Iq Calculation tab, when you select Calculate Rated Stator Flux
Current, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Derived Parameter on Id and Iq Calculation tab} & \multicolumn{2}{|l|}{Dependency} \\
\hline & Parameter & Tab \\
\hline \begin{tabular}{|l}
\hline D-axis rated \\
current, Isd_0 \\
Q-axis rated \\
current, Isq_0 \\
Torque at rated
\end{tabular} & \begin{tabular}{l}
Rated synchronous speed, Frate \\
Rated line to line voltage RMS, Vrate \\
Rated slip, Srate
\end{tabular} & Id and Iq Calculation \\
\hline cur & \begin{tabular}{l}
Stator resistance, Rs \\
Stator leakage inductance, Lls \\
Rotor resistance, \(\mathbf{R r}\) \\
Rotor leakage inductance, Llr \\
Rotor magnetizing inductance, Lm
\end{tabular} & Motor Parameters \\
\hline
\end{tabular}

Q-axis rated current, Isq_0 - Derived scalar

Derived q-axis rated current, in A.

\section*{Dependencies}

On the Id and Iq Calculation tab, when you select Calculate Rated Stator Flux Current, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
Derived \\
Parameter on Id \\
and Iq Calculation \\
tab
\end{tabular} & Dependency & Parameter \\
\hline \begin{tabular}{l} 
D-axis rated \\
current, Isd_0 \\
Q-axis rated \\
current, Isq_0
\end{tabular} & \begin{tabular}{l} 
Rated synchronous speed, \\
Frate
\end{tabular} & \begin{tabular}{l} 
Ra and Iq Calculation \\
RMS, Vrate
\end{tabular} \\
\begin{tabular}{l} 
Torque at rated \\
current, Tem
\end{tabular} & Rated slip, Srate
\end{tabular}\(\quad\)\begin{tabular}{l} 
Stator resistance, Rs \\
\\
\hline \begin{tabular}{l} 
Stator leakage inductance, \\
Lls \\
Rotor resistance, Rr \\
Rotor leakage inductance, \\
Llr \\
Rotor magnetizing \\
inductance, Lm
\end{tabular} \\
\hline
\end{tabular}

\section*{Torque at rated current, Tem - Derived scalar}

Torque at rated current, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

On the Id and Iq Calculation tab, when you select Calculate Rated Stator Flux Current, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Derived \\
Parameter on Id and Iq Calculation tab
\end{tabular}} & \multicolumn{2}{|l|}{Dependency} \\
\hline & Parameter & Tab \\
\hline \begin{tabular}{l}
D-axis rated current, Isd_0 \\
Q-axis rated current, Isq_0 \\
Torque at rated
\end{tabular} & \begin{tabular}{l}
Rated synchronous speed, Frate \\
Rated line to line voltage RMS, Vrate \\
Rated slip, Srate
\end{tabular} & Id and Iq Calculation \\
\hline current, Tem & \begin{tabular}{l}
Stator resistance, Rs \\
Stator leakage inductance, Lls \\
Rotor resistance, Rr \\
Rotor leakage inductance, Llr \\
Rotor magnetizing inductance, \(\mathbf{L m}\)
\end{tabular} & Motor Parameters \\
\hline
\end{tabular}

\section*{Current Controller}

\section*{Bandwidth of the current regulator, EV_current - Bandwidth scalar}

Current regulator bandwidth, in Hz.

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Used to Derive \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l} 
Bandwidth of the \\
current regulator, \\
EV_current
\end{tabular} & \begin{tabular}{l} 
D and Q axis integral gain, \\
Ki
\end{tabular} & Current Controller \\
\begin{tabular}{l} 
D and Q axis proportional \\
gain, Kp
\end{tabular} & \\
\hline
\end{tabular}

\section*{Sample time for the torque control, Tst - Time scalar}

Torque control sample time, in s.

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline Parameter & Used to Derive & \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l} 
Sample time for \\
the torque control, \\
Tst
\end{tabular} & Speed time constant, Ksf & Speed Controller \\
\hline
\end{tabular}

\section*{Calculate Current Regulator Gains - Derive parameters \\ button}

Click to derive parameters.

\section*{Dependencies}

On the Current Controller tab, when you select Calculate Current Regulator Gains, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
Derived \\
Parameter on \\
Current Controller \\
tab
\end{tabular} & Dependency \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l} 
D and Q axis \\
proportional gain, \\
Kp
\end{tabular} & \begin{tabular}{l} 
Bandwidth of the current \\
regulator, EV_current
\end{tabular} & Current Controller \\
\hline \begin{tabular}{l} 
D and Q axis \\
integral gain, Ki
\end{tabular} & \begin{tabular}{l} 
Stator resistance, Rs \\
Stator leakage inductance, \\
Lls
\end{tabular} & Motor Parameters \\
\hline Rotor resistance, Rr \\
Rotor leakage inductance, \\
Llr \\
Rotor magnetizing \\
inductance, Lm
\end{tabular}\(\quad\).

D and \(\mathbf{Q}\) axis proportional gain, Kp - Derived
scalar
Derived proportional gain, in V/A.

\section*{Dependencies}

On the Current Controller tab, when you select Calculate Current Regulator Gains, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
Derived \\
Parameter on \\
Current Controller \\
tab
\end{tabular} & Dependency & Parameter \\
\hline \begin{tabular}{l} 
D and Q axis \\
proportional gain, \\
Kp
\end{tabular} & \begin{tabular}{l} 
Bandwidth of the current \\
regulator, EV_current
\end{tabular} & Current Controller \\
\begin{tabular}{l} 
D and Q axis \\
integral gain, Ki
\end{tabular} & & \\
\cline { 2 - 3 } & &
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
Derived \\
Parameter on \\
Current Controller \\
tab
\end{tabular} & Dependency \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline & \begin{tabular}{l} 
Stator resistance, Rs \\
Stator leakage inductance, \\
Lls \\
Rotor resistance, Rr
\end{tabular} & Motor Parameters \\
\begin{tabular}{l} 
Rotor leakage inductance, \\
Llr
\end{tabular} & \begin{tabular}{l} 
Rotor magnetizing \\
inductance, Lm
\end{tabular} & \\
\hline
\end{tabular}

\section*{D and Q axis integral gain, Ki - Derived scalar}

Derived integral gain, in V/A*s.

\section*{Dependencies}

On the Current Controller tab, when you select Calculate Current Regulator Gains, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
Derived \\
Parameter on \\
Current Controller \\
tab
\end{tabular} & Dependency \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l} 
D and Q axis \\
proportional gain, \\
Kp
\end{tabular} & \begin{tabular}{l} 
Bandwidth of the current \\
regulator, EV_current
\end{tabular} & Current Controller \\
\begin{tabular}{l} 
D and Q axis \\
integral gain, Ki
\end{tabular} & & \\
\cline { 2 - 3 } & &
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
Derived \\
Parameter on \\
Current Controller \\
tab
\end{tabular} & Dependency & Parameter \\
\hline & \begin{tabular}{l} 
Stator resistance, Rs \\
Stator leakage inductance, \\
Lls
\end{tabular} & Motor Parameters \\
\hline & \begin{tabular}{l} 
Rotor resistance, Rr \\
Rotor leakage inductance, \\
Llr
\end{tabular} & \begin{tabular}{l} 
Rotor magnetizing \\
inductance, Lm
\end{tabular}
\end{tabular}

\section*{Speed Controller}

Bandwidth of the motion controller, EV_motion - Bandwidth vector

Motion controller bandwidth, in Hz. Set the first element of the vector to the desired cutoff frequency. Set the second and third elements of the vector to the higher-order cut off frequencies. You can set the value of the next element to \(1 / 5\) the value of the previous element. For example, if the desired cutoff frequency is 20 Hz , specify [20 40.8 ].

\section*{Dependencies}

The parameter is enabled when the Control Type parameter is set to Speed Control.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{|l|}{ Parameter } & Used to Derive & Tab \\
\cline { 2 - 3 } & Parameter & Speed Controller \\
\hline \begin{tabular}{l} 
Bandwidth of the \\
motion controller, \\
EV_motion
\end{tabular} & \begin{tabular}{l} 
Proportional gain, ba \\
\end{tabular} & \begin{tabular}{l} 
Angular gain, Ksa \\
Rotational gain, Kisa
\end{tabular}
\end{tabular}

\footnotetext{
Bandwidth of the state filter, EV_sf - Bandwidth
scalar
}

State filter bandwidth, in Hz.

\section*{Dependencies}

The parameter is enabled when the Control Type parameter is set to Speed Control.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Used to Derive \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l} 
Bandwidth of the \\
state filter, EV_sf
\end{tabular} & Speed time constant, Ksf & Speed Controller \\
\hline
\end{tabular}

\section*{Calculate Speed Regulator Gains - Derive parameters}
button
Click to derive parameters.

\section*{Dependencies}

On the Speed Controller tab, when you select Calculate Speed Regulator Gains, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Derived Parameter on Speed Controller tab}} & \multicolumn{2}{|l|}{Depends On} \\
\hline & & Parameter & Tab \\
\hline Proportional gain, ba & \[
b_{a}=\frac{J_{p}-J_{p} p_{1} p_{2} p_{3}}{T_{s m}}
\] & \begin{tabular}{l}
Bandwidth of the motion controller, EV_motion \\
Bandwidth of the state filter, EV_sf
\end{tabular} & Speed Controller \\
\hline Angular gain, Ksa & \[
\begin{aligned}
& K_{s a} \\
& =\frac{J_{p}\left(p_{1} p_{2}+p_{2} p_{3}+p_{3} p_{1}\right)-3 J_{p}+2}{T_{s m}^{2}}
\end{aligned}
\] & Sample time for the torque Gigntrol, Tst & Current Controller \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Derived Parameter on Speed Controller tab}} & \multicolumn{2}{|l|}{Depends On} \\
\hline & & Parameter & Tab \\
\hline Rotational gain, Kisa & \[
\left\{\begin{array}{l}
K_{\text {isa }} \\
=\frac{-J_{p}\left(p_{1}+p_{2}+p_{3}\right)+3 J_{p}-b_{a} T_{S I}}{T_{s m}^{3}}
\end{array}\right.
\] & Physical inertia, viscous damping, static Kifietion, Mechanical & \multirow[t]{2}{*}{Motor Parameters} \\
\hline Speed time constant, Ksf & \[
K_{s f}=\frac{1-\exp \left(-T_{s m} 2 \pi E V_{s f}\right)}{T_{s m}}
\] & Mechanical & \\
\hline Inertia compensatio n, Jcomp & \(J_{\text {comp }}=J_{p}\) & \multirow[t]{3}{*}{Physical inertia, viscous damping, static friction, Mechanical} & \multirow[t]{3}{*}{Motor Parameters} \\
\hline Viscous damping compensatio n, Fv & \(F_{v}\) & & \\
\hline Static friction, Fs & \(F_{s}\) & & \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(P\) & Motor pole pairs \\
\(b_{a}\) & Speed regulator proportional gain \\
\(K_{s a}\) & Speed regulator integral gain \\
\(K_{i s a}\) & Speed regulator double integral gain \\
\(K_{s f}\) & Speed regulator time constant \\
\(J_{p}\) & Motor inertia \\
\(E V_{s f}\) & State filter bandwidth \\
\(E V_{\text {motion }}\) & Motion controller bandwidth
\end{tabular}

Proportional gain, ba - Derived
scalar
Derived proportional gain, in \(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})\).

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Dependency \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l} 
Proportional gain, \\
ba
\end{tabular} & \begin{tabular}{l} 
Physical inertia, viscous \\
damping, static friction, \\
Mechanical
\end{tabular} & Motor Parameters \\
\hline & \begin{tabular}{l} 
Bandwidth of the motion \\
controller, EV_motion
\end{tabular} & Speed Controller \\
\hline
\end{tabular}

Angular gain, Ksa - Derived
scalar
Derived angular gain, in \(\mathrm{N} \cdot \mathrm{m} / \mathrm{rad}\).

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Dependency \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline Angular gain, Ksa & \begin{tabular}{l} 
Physical inertia, viscous \\
damping, static friction, \\
Mechanical
\end{tabular} & Motor Parameters \\
\hline & \begin{tabular}{l} 
Bandwidth of the motion \\
controller, EV_motion
\end{tabular} & Speed Controller \\
\hline
\end{tabular}

Rotational gain, Kisa - Derived
scalar
Derived rotational gain, in \(\mathrm{N} \cdot \mathrm{m} /\left(\mathrm{rad}^{*} \mathrm{~s}\right)\).

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Dependency \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l} 
Rotational gain, \\
Kisa
\end{tabular} & \begin{tabular}{l} 
Physical inertia, viscous \\
damping, static friction, \\
Mechanical
\end{tabular} & Motor Parameters \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Bandwidth of the motion \\
controller, EV_motion
\end{tabular} & Speed Controller \\
\hline
\end{tabular}

Speed time constant, Ksf - Derived
scalar
Derived speed time constant, in \(1 / \mathrm{s}\).

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Dependency \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l} 
Speed time \\
constant, Ksf
\end{tabular} & \begin{tabular}{l} 
Sample time for the \\
torque control, Tst
\end{tabular} & Current Controller \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Bandwidth of the state \\
filter, EV_sf
\end{tabular} & Speed Controller \\
\hline
\end{tabular}

Inertia compensation, Jcomp - Derived
scalar
Derived inertia compensation, in \(\mathrm{kg} \cdot \mathrm{m} \wedge 2\).

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Dependency \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l} 
Inertia \\
compensation, \\
Jcomp
\end{tabular} & \begin{tabular}{l} 
Physical inertia, viscous \\
damping, static friction, \\
Mechanical
\end{tabular} & Motor Parameters \\
\hline
\end{tabular}

\section*{Viscous damping compensation, Fv - Derived scalar}

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Dependency \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l} 
Viscous damping \\
compensation, Fv
\end{tabular} & \begin{tabular}{l} 
Physical inertia, viscous \\
damping, static friction, \\
Mechanical
\end{tabular} & Motor Parameters \\
\hline
\end{tabular}

\section*{Static friction, Fs - Derived}
scalar
Derived static friction, in \(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})\).

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Dependency \\
\cline { 2 - 3 } Static friction, Fs & \begin{tabular}{l} 
Parameter \\
Physical inertia, viscous \\
damping, static friction, \\
Mechanical
\end{tabular} & Motor Parameters \\
\hline
\end{tabular}

\section*{Electrical Losses}

\section*{Parameterize losses by - Select type}

Single efficiency measurement (default)|Tabulated loss data|Tabulated efficiency data
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline \begin{tabular}{l} 
Single efficiency \\
measurement
\end{tabular} & \begin{tabular}{l} 
Electrical loss calculated using a constant value for \\
inverter efficiency.
\end{tabular} \\
\hline Tabulated loss data & \begin{tabular}{l} 
Electrical loss calculated as a function of motor speeds \\
and load torques.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline \begin{tabular}{l} 
Tabulated efficiency \\
data
\end{tabular} & \begin{tabular}{l} 
Electrical loss calculated using inverter efficiency that is a \\
function of motor speeds and load torques.
\end{tabular} \\
& \begin{tabular}{ll} 
- \\
& Converts the efficiency values you provide into losses \\
and uses the tabulated losses for simulation. \\
Ignores efficiency values you provide for zero speed or \\
zero torque. Losses are assumed zero when either \\
torque or speed is zero.
\end{tabular} \\
& \begin{tabular}{l} 
- Uses linear interpolation to determine losses. Provide \\
tabulated data for low speeds and low torques, as \\
required, to get the desired level of accuracy for lower \\
power conditions. \\
Does not extrapolate loss values for speed and torque \\
magnitudes that exceed the range of the table.
\end{tabular} \\
\hline
\end{tabular}

For best practice, use Tabulated loss data instead of Tabulated efficiency data:
- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

\section*{Overall inverter efficiency, eff - Constant \\ scalar}

Overall inverter efficiency, Eff, in \%.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated loss data.

\section*{Vector of speeds (w) for tabulated loss, w_loss_bp - Breakpoints} 1-by-M matrix

Speed breakpoints for lookup table when calculating losses, in rad/s.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated loss data.

\section*{Vector of torques ( T ) for tabulated loss, T_loss_bp - Breakpoints 1-by-N matrix}

Torque breakpoints for lookup table when calculating losses, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated loss data.

\section*{Corresponding losses, losses_table - Table M-by-N matrix}

Array of values for electrical losses as a function of M speeds and \(N\) torques, in W. Each value specifies the losses for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated loss data.

\section*{Vector of speeds (w) for tabulated efficiency, w_eff_bp - Breakpoints} 1-by-M matrix

Speed breakpoints for lookup table when calculating efficiency, in rad/s.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.

\section*{Vector of torques (T) for tabulated efficiency, T_eff_bp Breakpoints}

\section*{1-by-N matrix}

Torque breakpoints for lookup table when calculating efficiency, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.

Corresponding efficiency, efficiency_table - Table M-by-N matrix

Array of efficiency as a function of \(M\) speeds and \(N\) torque, in \%. Each value specifies the efficiency for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

The block ignores efficiency values for zero speed or zero torque. Losses are zero when either torque or speed is zero. The block uses linear interpolation.

To get the desired level of accuracy for lower power conditions, you can provide tabulated data for low speeds and low torques.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.

\section*{References}
[1] Lorenz, Robert D., Thomas Lipo, and Donald W. Novotny. "Motion control with induction motors." Proceedings of the IEEE, Vol. 82, Issue 8, August 1994, pp. 1215-1240.
[2] Shigeo Morimoto, Masayuka Sanada, Yoji Takeda. "Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator." IEEE Transactions on Industry Applications, Vol. 30, Issue 4, July/ August 1994, pp. 920-926.
[3] Muyang Li. "Flux-Weakening Control for Permanent-Magnet Synchronous Motors Based on Z-Source Inverters." Master's Thesis, Marquette University, ePublications@Marquette, Fall 2014.
[4] Briz, Fernando, Michael W. Degner, and Robert D. Lorenz. "Analysis and design of current regulators using complex vectors." IEEE Transactions on Industry Applications, Vol. 36, Issue 3, May/June 2000, pp. 817-825.
[5] Briz, Fernando, et al. "Current and flux regulation in field-weakening operation [of induction motors]."IEEE Transactions on Industry Applications, Vol. 37, Issue 1, Jan/Feb 2001, pp. 42-50.

\section*{Extended Capabilities}

\author{
C/C++ Code Generation \\ Generate \(C\) and \(C++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\text {TM }}\).
}

\section*{See Also}

Flux-Based PM Controller | Induction Motor | Interior PM Controller | Surface Mount PM Controller

Introduced in R2017a

\section*{Surface Mount PMSM}

Three-phase exterior permanent magnet synchronous motor with sinusoidal back electromotive force
Library: Powertrain Blockset / Propulsion / Electric Motors


\section*{Description}

The Surface Mount PMSM block implements a three-phase exterior permanent magnet synchronous motor (PMSM) with sinusoidal back electromotive force. The block uses the three-phase input voltages to regulate the individual phase currents, allowing control of the motor torque or speed.

By default, the block sets the Simulation type parameter to Continuous to use a continuous sample time during simulation. If you want to generate code for fixed-step double- and single-precision targets, considering setting the parameter to Discrete. Then specify a Sample Time, Ts parameter.

On the Parameters tab, if you select Back-emf or Torque constant, the block implements one of these equations to calculate the permanent flux linkage constant.
\begin{tabular}{|l|l|}
\hline Setting & Equation \\
\hline Back-emf & \(\lambda_{p m}=\frac{1}{\sqrt{3}} \cdot \frac{K_{e}}{1000 P} \cdot \frac{60}{2 \Pi}\) \\
\hline Torque constant & \(\lambda_{p m}=\frac{2}{3} \cdot \frac{K_{t}}{P}\) \\
\hline
\end{tabular}

\section*{Motor Construction}

This figure shows the motor construction with a single pole pair on the motor.


The motor magnetic field due to the permanent magnets creates a sinusoidal rate of change of flux with motor angle.

For the axes convention, the \(a\)-phase and permanent magnet fluxes are aligned when motor angle \(\theta_{r}\) is zero.

\section*{Three-Phase Sinusoidal Model Electrical System}

The block implements these equations, expressed in the motor flux reference frame (dq frame). All quantities in the motor reference frame are referred to the stator.
\[
\begin{aligned}
& \omega_{e}=P \omega_{m} \\
& \frac{d}{d t} i_{d}=\frac{1}{L_{d}} v_{d}-\frac{R}{L_{d}} i_{d}+\frac{L_{q}}{L_{d}} P \omega_{m} i_{q} \\
& \frac{d}{d t} i_{q}=\frac{1}{L_{q}} v_{q}-\frac{R}{L_{q}} i_{q}-\frac{L_{d}}{L_{q}} P \omega_{m} i_{d}-\frac{\lambda_{p m} P \omega_{m}}{L_{q}} \\
& T_{e}=1.5 P\left[\lambda_{p m} i_{q}+\left(L_{d}-L_{q}\right) i_{d} i_{q}\right]
\end{aligned}
\]

The \(L_{q}\) and \(L_{d}\) inductances represent the relation between the phase inductance and the motor position due to the saliency of the motor magnets. For the surface mount PMSM, \(L_{d}=L_{q}\).

The equations use these variables.
\begin{tabular}{ll}
\(L_{q}, L_{d}\) & q- and d-axis inductances \\
\(R\) & Resistance of the stator windings \\
\(i_{q}, i_{d}\) & q- and d-axis currents \\
\(v_{q}, v_{d}\) & q- and d-axis voltages \\
\(\omega_{m}\) & Angular mechanical velocity of the motor \\
\(\omega_{e}\) & Angular electrical velocity of the motor \\
\(\lambda_{p m}\) & Permanent magnet flux linkage \\
\(K_{e}\) & Back electromotive force (EMF) \\
\(K_{t}\) & Torque constant \\
\(P\) & Number of pole pairs \\
\(T_{e}\) & Electromagnetic torque \\
\(\Theta_{e}\) & Electrical angle
\end{tabular}

\section*{Mechanical System}

The motor angular velocity is given by:
\[
\begin{gathered}
\frac{d}{d t} \omega_{m}=\frac{1}{J}\left(T_{e}-T_{f}-F \omega_{m}-T_{m}\right) \\
\frac{d \theta_{m}}{d t}=\omega_{m}
\end{gathered}
\]

The equations use these variables.
\begin{tabular}{ll}
\(J\) & Combined inertia of motor and load \\
\(F\) & Combined viscous friction of motor and load \\
\(\theta_{m}\) & Motor mechanical angular position \\
\(T_{m}\) & Motor shaft torque \\
\(T_{e}\) & Electromagnetic torque \\
\(T_{f}\) & Motor shaft static friction torque \\
\(\omega_{m}\) & Angular mechanical velocity of the motor
\end{tabular}

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Varia & Equations \\
\hline \multirow[t]{5}{*}{} & \multirow[t]{5}{*}{\begin{tabular}{l}
PwrTrnsfrd - Power transferred between blocks \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block \\
PwrNotTrnsfrd - Power crossing the block boundary, but not transferred \\
- Positive signals indicate an input \\
- Negative signals indicate a loss \\
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular}} & PwrMtr & Mechanical power & \(P_{\text {mot }}\) & \(P_{\text {mot }}=-\omega_{m} T_{e}\) \\
\hline & & PwrBus & Electrical power & \(P_{\text {bus }}\) & \[
\begin{aligned}
& P_{b u s}=v_{a n} i_{a}+ \\
& v_{b n} i_{b}+v_{c n} i_{c}
\end{aligned}
\] \\
\hline & & PwrEle cLoss & Resistive power loss & \(P_{\text {elec }}\) & \[
\begin{aligned}
& P_{\text {elec }}=-\frac{3}{2}\left(R_{S} i_{s d}^{2}\right. \\
& \left.+R_{S} i_{s q}^{2}\right)
\end{aligned}
\] \\
\hline & & PwrMec hLoss & Mechanical power loss & \(P_{\text {mech }}\) & \begin{tabular}{l}
When Port Configuration is set to Torque:
\[
\begin{aligned}
& P_{\text {mech }}=- \\
& \left(\omega_{m}^{2} F+\left|\omega_{m}\right| T_{f}\right)
\end{aligned}
\] \\
When Port Configuration is set to Speed:
\[
P_{\text {mech }}=0
\]
\end{tabular} \\
\hline & & PwrMtr Stored & Stored motor power & \(P_{\text {str }}\) & \[
\begin{aligned}
& P_{\text {str }}=\quad P_{\text {bus }}+P_{\text {mot }} \\
& +P_{\text {elec }}+P_{\text {mech }}
\end{aligned}
\] \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(R_{s}\) & Stator resistance \\
\(i_{a}, i_{b}, i_{c}\) & Stator phase a, b, and c current \\
\(i_{s q}, i_{s d}\) & Stator q- and d-axis currents \\
\(v_{a n}, v_{b n}, v_{c n}\) & Stator phase a, b, and c voltage \\
\(\omega_{m}\) & Angular mechanical velocity of the motor \\
\(F\) & Combined motor and load viscous damping \\
\(T_{e}\) & Electromagnetic torque \\
\(T_{f}\) & Combined motor and load friction torque
\end{tabular}

\section*{Ports}

\section*{Input}

\section*{LdTrq - Motor shaft torque}
scalar
Motor shaft input torque, \(T_{m}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To create this port, select Torque for the Port Configuration parameter.

\section*{Spd - Motor shaft speed}
scalar
Angular velocity of the motor, \(\omega_{m}\), in rad/s.

\section*{Dependencies}

To create this port, select Speed for the Port Configuration parameter.

\section*{PhaseVolt - Stator terminal voltages}

1-by-3 array
Stator terminal voltages, \(V_{a}, V_{b}\), and \(V_{c}\), in V .

\section*{Output}

\section*{Info - Bus signal \\ bus}

The bus signal contains these block calculations.
\begin{tabular}{|l|l|l|l|}
\hline Signal & Description & Variable & Units \\
\hline IaStator & Stator phase current A & \(i_{a}\) & A \\
\hline IbStator & Stator phase current B & \(i_{b}\) & A \\
\hline IcStator & Stator phase current C & \(i_{c}\) & A \\
\hline IdSync & Direct axis current & \(i_{d}\) & A \\
\hline IqSync & Quadrature axis current & \(i_{q}\) & A \\
\hline VdSync & Direct axis voltage & \(v_{d}\) & V \\
\hline VqSync & Quadrature axis voltage & \(v_{q}\) & V \\
\hline MtrSpd & \begin{tabular}{l} 
Angular mechanical velocity of \\
the motor
\end{tabular} & \(\omega_{m}\) & \(\mathrm{rad} / \mathrm{s}\) \\
\hline MtrPos & \begin{tabular}{l} 
Motor mechanical angular \\
position
\end{tabular} & \(\theta_{m}\) & rad \\
\hline MtrTrq & Electromagnetic torque & \(T_{e}\) & \(\mathrm{~N} \cdot \mathrm{~m}\) \\
\hline \begin{tabular}{l} 
PwrInf \\
o
\end{tabular} & \begin{tabular}{l} 
PwrTrnsf \\
rd
\end{tabular} & PwrMtr & Mechanical power \\
\cline { 2 - 5 } & PwrBus & Electrical power & \(P_{m o t}\) \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
PwrNotTr \\
nsfrd
\end{tabular}} & \begin{tabular}{l} 
PwrElecL \\
oss
\end{tabular} & Resistive power loss & W \\
\cline { 2 - 5 } & \begin{tabular}{l} 
PwrMechL \\
oss
\end{tabular} & Mechanical power loss & \(P_{\text {bus }}\) \\
W \\
\hline
\end{tabular}

\section*{PhaseCurr - Phase a, b, c current}

1-by-3 array
Phase a, b, c current, \(i_{a}, i_{b}\), and \(i_{c}\), in A.

\section*{MtrTrq - Motor torque}
scalar
Motor torque, \(T_{m t r}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To create this port, select Speed for the Mechanical input configuration parameter.

\section*{MtrSpd - Motor speed}
scalar
Angular speed of the motor, \(\omega_{m t r}\), in rad/s.

\section*{Dependencies}

To create this port, select Torque for the Mechanical input configuration parameter.

\section*{Parameters}

\section*{Block Options}

\section*{Mechanical input configuration - Select port configuration} Torque (default) | Speed

This table summarizes the port configurations.
\begin{tabular}{|l|l|l|}
\hline Port Configuration & Creates Input Port & Creates Output Port \\
\hline Torque & LdTrq & MtrSpd \\
\hline Speed & Spd & MtrTrq \\
\hline
\end{tabular}

\section*{Simulation type - Select simulation type \\ Continuous (default)|Discrete}

By default, the block uses a continuous sample time during simulation. If you want to generate code for single-precision targets, considering setting the parameter to Discrete.

\section*{Dependencies}

Setting Simulation type to Discrete creates the Sample Time, Ts parameter.

\section*{Sample Time (Ts) - Sample time for discrete integration scalar}

Integration sample time for discrete simulation, in s.

\section*{Dependencies}

Setting Simulation type to Discrete creates the Sample Time, Ts parameter.

\section*{Parameters}

Number of pole pairs ( P ) - Pole pairs
scalar
Motor pole pairs, \(P\).

\section*{Stator phase resistance per phase (Rs) - Resistance scalar}

Stator phase resistance per phase, \(R_{s}\), in ohm.

\section*{Stator d-axis inductance (Ldq_) - Inductance} scalar

Stator inductance, \(L_{d q}\), in H .

\section*{Permanent flux linkage constant (lambda_pm) - Flux} scalar

Permanent flux linkage constant, \(\lambda_{p m}\), in Wb.

\section*{Back-emf constant (Ke) - Back electromotive force scalar}

Back electromotive force, EMF, \(K_{e}\), in peak Vpk_LL/krpm. Vpk_LL is the peak voltage line-to-line measurement.

To calculate the permanent flux linkage constant, the block implements this equation.
\[
\lambda_{p m}=\frac{1}{\sqrt{3}} \cdot \frac{K_{e}}{1000 P} \cdot \frac{60}{2 \pi}
\]

Torque constant (Kt) - Torque constant scalar

Torque constant, \(K_{t}\), in \(\mathrm{N} \cdot \mathrm{m} / \mathrm{A}\).
To calculate the permanent flux linkage constant, the block implements this equation.
\[
\lambda_{p m}=\frac{2}{3} \cdot \frac{K_{t}}{P}
\]

Physical inertia, viscous damping, and static friction (mechanical) - Inertia, damping, friction

\section*{vector}

Mechanical properties of the motor:
- Inertia, \(J\), in \(\mathrm{kgm}^{\wedge} 2\)
- Viscous damping, \(F\), in \(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})\)
- Static friction, \(T_{f}\), in \(\mathrm{N} \cdot \mathrm{m}\)

\section*{Dependencies}

To enable this parameter, select the Torque configuration parameter.

\section*{Initial Values}

\section*{Initial d-axis and \(q\)-axis current (idq0) - Current vector}

Initial q- and d-axis currents, \(i_{q}, i_{d}\), in A.

\section*{Initial mechanical position (theta_init) - Angle scalar}

Initial motor angular position, \(\theta_{m 0}\), in rad.

\section*{Initial mechanical speed (omega_init) - Speed scalar}

Initial angular velocity of the motor, \(\omega_{m 0}\), in rad/s.

\section*{Dependencies}

To enable this parameter, select the Torque configuration parameter.

\section*{References}
[1] Kundur, P. Power System Stability and Control. New York, NY: McGraw Hill, 1993.
[2] Anderson, P. M. Analysis of Faulted Power Systems. Hoboken, NJ: Wiley-IEEE Press, 1995.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

Flux-Based PMSM | Induction Motor | Interior PMSM | Mapped Motor | Surface Mount PM Controller

\section*{Introduced in R2017a}

\section*{Surface Mount PM Controller}

Torque-based, field-oriented controller for a surface mount permanent magnet synchronous motor

\author{
Library: Powertrain Blockset / Propulsion / Electric Motors
}


\section*{Description}

The Surface Mount PM Controller block implements a torque-based, field-oriented controller for a surface mount permanent magnet synchronous motor (PMSM) with an optional outer-loop speed controller. The torque control utilizes quadrature current and does not weaken the magnetic flux. You can specify either speed or torque control.

The Surface Mount PM Controller implements equations for speed control, torque determination, regulators, transforms, and motors.

The figure illustrates the information flow in the block.


The block implements equations that use these variables.
\begin{tabular}{ll}
\(\omega\) & Rotor speed \\
\(\omega^{*}\) & Rotor speed command \\
\(T^{*}\) & Torque command \\
\(i_{d}\) & d-axis current \\
\(i^{*}{ }_{d}\) & d-axis current command \\
\(i_{q}\) & q-axis current \\
\(i^{*}{ }_{q}\) & q -axis current command \\
\(v_{d}\), & d -axis voltage \\
\(v^{*}{ }_{d}\) & d-axis voltage command \\
\(v_{q}\) & q-axis voltage \\
\(v^{*}{ }_{q}\) & q-axis voltage command \\
\(v_{a}, v_{b}, v_{c}\) & Stator phase a, b, c voltages \\
\(i_{a}, i_{b}, i_{c}\) & Stator phase a, b, c currents
\end{tabular}

\section*{Speed Controller}

To implement the speed controller, select the Control Type parameter Speed Control. If you select the Control Type parameter Torque Control, the block does not implement the speed controller.

The speed controller determines the torque command by implementing a state filter, and calculating the feedforward and feedback commands. If you do not implement the speed controller, input a torque command to the Surface Mount PM Controller block.


\section*{State Filter}

The state filter is a low-pass filter that generates the acceleration command based on the speed command. On the Speed Controller tab:
- To make the speed-command lag time negligible, specify a Bandwidth of the state filter parameter.
- To calculate a Speed time constant, Ksf gain based on the state filter bandwidth, select Calculate Speed Regulator Gains.

The discrete form of characteristic equation is given by:
\[
z+K_{s f} T_{s m}-1
\]

The filter calculates the gain using this equation.
\[
K_{s f}=\frac{1-\exp \left(-T_{s m} 2 \pi E V_{s f}\right)}{T_{s m}}
\]

The equations use these variables.
\(E V_{s f} \quad\) Bandwidth of the speed command filter
\(T_{s m} \quad\) Motion controller sample time
\(K_{s f} \quad\) Speed regulator time constant

\section*{State Feedback}

To generate the state feedback torque, the block uses the filtered speed error signal from the state filter. The feedback torque calculation also requires gains for speed regulator.

On the Speed Controller tab, select Calculate Speed Regulator Gains to calculate:
- Proportional gain, ba
- Angular gain, Ksa

\section*{- Rotational gain, Kisa}

For the gain calculations, the block uses the inertia from the Physical inertia, viscous damping, static friction parameter value on the Motor Parameters tab.

The gains for the state feedback are calculated using these equations.
\begin{tabular}{|l|l|}
\hline Calculation & Equations \\
\begin{tabular}{l} 
Discrete forms of \\
characteristic \\
equation
\end{tabular} & \begin{tabular}{l}
\(z^{3}+\frac{\left(-3 J_{p}+T_{s} b_{a}+T_{s}^{2} K_{s a}+T_{s}^{3} K_{i s a}\right)}{J_{p}} z^{2}+\frac{\left(3 J_{p}-2 T_{s} b_{a}-T_{s}^{2} K_{s a}\right)}{J_{p}} z\) \\
\(+\frac{J_{p}+T_{s} b_{a}}{J_{p}}\) \\
\(\left(z-p_{1}\right)\left(z-p_{2}\right)\left(z-p_{3}\right)=z^{3}+\left(p_{1}+p_{2}+p_{3}\right) z^{2}+\left(p_{1} p_{2}+p_{2} p_{3}+p_{1} 3\right.\) \\
\() z^{2}-p_{1} p_{2} p_{3}\)
\end{tabular} \\
\hline \begin{tabular}{l} 
Speed regulator \\
proportional gain
\end{tabular} & \(b_{a}=\frac{J_{p}-J_{p} p_{1} p_{2} p_{3}}{T_{s m}}\) \\
\hline \begin{tabular}{l} 
Speed regulator \\
integral gain
\end{tabular} & \(K_{s a}=\frac{J_{p}\left(p_{1} p_{2}+p_{2} p_{3}+p_{3} p_{1}\right)-3 J_{p}+2 b_{a} T_{s m}}{T_{s m}^{2}}\) \\
\hline \begin{tabular}{l} 
Speed regulator \\
double integral gain
\end{tabular} & \(K_{i s a}=\frac{-J_{p}\left(p_{1}+p_{2}+p_{3}\right)+3 J_{p}-b_{a} T_{s m}-K_{s a} T_{s m}^{2}}{T_{s m}^{3}}\) \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(P\) & Motor pole pairs \\
\(b_{a}\) & Speed regulator proportional gain \\
\(K_{s a}\) & Speed regulator integral gain
\end{tabular}
\begin{tabular}{ll}
\(K_{\text {isa }}\) & Speed regulator double integral gain \\
\(J_{p}\) & Motor inertia \\
\(T_{s m}\) & Motion controller sample time
\end{tabular}

\section*{Command Feedforward}

To generate the state feedforward torque, the block uses the filtered speed and acceleration from the state filter. Also, the feedforward torque calculation uses the inertia, viscous damping, and static friction. To achieve zero tracking error, the torque command is the sum of the feedforward and feedback torque commands.

Selecting Calculate Speed Regulator Gains on the Speed Controller tab updates the inertia, viscous damping, and static friction with the Physical inertia, viscous damping, static friction parameter values on the Motor Parameters tab.

The feedforward torque command uses this equation.
\[
T_{c m d_{\_} f f}=J_{p} \dot{\omega}_{m}+F_{v} \omega_{m}+F_{s} \frac{\omega_{m}}{\left|\omega_{m}\right|}
\]

The equation uses these variables.
\begin{tabular}{ll}
\(J_{p}\) & Motor inertia \\
\(T_{c m d f f}\) & Torque command feedforward \\
\(F_{s}\) & Static friction torque constant \\
\(F_{v}\) & Viscous friction torque constant \\
\(F_{s}\) & Static friction torque constant \\
\(\omega_{m}\) & Rotor speed
\end{tabular}

\section*{Torque Determination}

The block uses a quadrature current to determine the base speed and the current commands. The available bus voltage determines the base speed. The direct (d) and quadrature ( q ) permanent magnet (PM) determines the induced voltage.
\begin{tabular}{|c|c|}
\hline Calculation & Equations \\
\hline Motor maximum torque & \(T_{\text {max }}=\frac{3}{2} P\left(\lambda_{p m} i_{q}+\left(L_{d}-L_{q}\right) i_{d} i_{q}\right)\) \\
\hline Maximum q-axis phase current & \[
i_{q_{-} \max }=\frac{T_{c m d}}{\frac{3}{2} P \lambda_{p m}}
\] \\
\hline Electrical base speed & \[
\omega_{\text {base }}=\frac{v_{\text {max }}}{\sqrt{\left(L_{q^{i} q}\right)^{2}+\left(\lambda_{p m}\right)^{2}}}
\] \\
\hline d-axis voltage & \(v_{d}=-\omega_{e} L_{q} i^{1} q_{-} \max\) \\
\hline q -axis voltage & \(v_{q}=\omega_{e} \lambda_{p m}\) \\
\hline Maximum phase current & \(i_{\text {max }}=\left|i_{q_{-} \max }\right|\) \\
\hline Maximum voltage & \[
v_{\max }=\frac{v_{\text {bus }}}{\sqrt{3}}
\] \\
\hline Current command &  \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(i_{\max }\) & Maximum phase current \\
\(i_{d}\) & d-axis current \\
\(i_{q}\) & q-axis current \\
\(i_{\text {dref }}\) & d-axis reference current
\end{tabular}
\begin{tabular}{ll}
\(i_{\text {aref }}\) & q -axis reference current \\
\(i_{q-\max }\) & Maximum q-axis phase current \\
\(\omega_{e}\) & Rotor electrical speed \\
\(\lambda_{p m}\) & Permanent magnet flux linkage \\
\(v_{d}\) & d-axis voltage \\
\(v_{q}\) & q -axis voltage \\
\(v_{\max }\) & Maximum line to neutral voltage \\
\(v_{b u s}\) & DC bus voltage \\
\(L_{d}\) & d-axis winding inductance \\
\(L_{q}\) & q -axis winding inductance \\
\(P\) & Motor pole pairs \\
\(T_{\max }\) & Motor maximum torque \\
\(T_{c m d}\) & Commanded motor maximum torque
\end{tabular}

\section*{Current Regulators}

The block regulates the current with an anti-windup feature. Classic proportionalintegrator (PI) current regulators do not consider the d-axis and q-axis coupling or the back-electromagnetic force (EMF) coupling. As a result, transient performance deteriorates. To account for the coupling, the block implements the complex vector current regulator (CVCR) in the scalar format of the rotor reference frame. The CVCR decouples:
- d-axis and q-axis current cross-coupling
- back-EMF cross-coupling

The current frequency response is a first-order system, with a bandwidth of \(E V_{\text {current }}\).
The block implements these equations.
\begin{tabular}{|l|l|}
\hline Calculation & Equations \\
\hline \begin{tabular}{l} 
Motor voltage, in the rotor \\
reference frame
\end{tabular} & \begin{tabular}{l}
\(L_{d} \frac{d i_{d}}{d t}=\quad v_{d}-R_{s} i_{d}+p \omega_{m} L_{q} i_{q}\) \\
\(L_{d} \frac{d i_{q}}{d t}=\quad v_{q}-R_{s} i_{q}-p \omega_{m} L_{d} i_{d}-p \omega_{m} \lambda_{p m}\) \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Calculation & Equations \\
\hline Current regulator gains & \(\omega_{b}=2 \Pi E V_{\text {current }}\) \\
& \(K_{p_{-} d}=L_{d} \omega_{b}\) \\
& \(K_{p_{-} q}=L_{q} \omega_{b}\) \\
& \(K_{i}=R_{s} \omega_{b}\) \\
\hline Transfer functions & \(\frac{i_{d}}{i_{d r e f}}=\frac{\omega_{b}}{s+\omega_{b}}\) \\
& \(\frac{i_{q}}{i_{q r e f}}=\frac{\omega_{b}}{s+\omega_{b}}\) \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(E V_{\text {current }}\) & Current regulator bandwidth \\
\(i_{d}\) & d-axis current \\
\(i_{q}\) & q-axis current \\
\(K_{p_{-} d}\) & Current regulator d-axis gain \\
\(K_{p_{-} q}\) & Current regulator q-axis gain \\
\(K_{i}\) & Current regulator integrator gain \\
\(L_{d}\) & d-axis winding inductance \\
\(L_{q}\) & q-axis winding inductance \\
\(R_{s}\) & Stator phase winding resistance \\
\(\omega_{m}\) & Rotor speed \\
\(v_{d}\) & d-axis voltage \\
\(v_{q}\) & q-axis voltage \\
\(\lambda_{p m}\) & Permanent magnet flux linkage \\
\(P\) & Motor pole pairs
\end{tabular}

\section*{Transforms}

To calculate the voltages and currents in balanced three-phase \((a, b)\) quantities, quadrature two-phase \((\alpha, \beta)\) quantities, and rotating \((d, q)\) reference frames, the block uses the Clarke and Park Transforms.

In the transform equations.
\[
\begin{aligned}
& \omega_{e}=P \omega_{m} \\
& \frac{d \theta_{e}}{d t}=\omega_{e}
\end{aligned}
\]
\begin{tabular}{|l|l|l|}
\hline Transform & Description & Equations \\
\hline Clarke & \begin{tabular}{l} 
Converts balanced three-phase \\
quantities \((a, b)\) into balanced two- \\
phase quadrature quantities \((\alpha, \beta)\).
\end{tabular} & \begin{tabular}{l}
\(x_{\alpha}=\quad \frac{2}{3} x_{a}-\quad \frac{1}{3} x_{b} \quad-\frac{1}{3} x_{c}\) \\
\(x_{\beta}=\)
\end{tabular}\(\frac{\sqrt{3}}{2} x_{b}-\quad \frac{\sqrt{3}}{2} x_{c}\)
\end{tabular}

The transforms use these variables.
\begin{tabular}{ll}
\(\omega_{m}\) & Rotor speed \\
\(P\) & Motor pole pairs \\
\(\omega_{e}\) & Rotor electrical speed \\
\(\Theta_{e}\) & Rotor electrical angle \\
\(x\) & Phase current or voltage
\end{tabular}

\section*{Motor}

The block uses the phase currents and phase voltages to estimate the DC bus current. Positive current indicates battery discharge. Negative current indicates battery charge. The block uses these equations.
\begin{tabular}{|l|l|}
\hline Load power & \(L d_{P w r}=v_{a} \quad i_{a}+\quad v_{b} \quad i_{b}+\quad v_{C} \quad i_{C}\) \\
\hline Source power & \(S r c_{P w r}=L d_{P w r}+P w r_{L o s s}\) \\
\hline DC bus current & \(i_{b u s}=\frac{S r c P w r}{v_{b u s}}\) \\
\hline Estimated rotor torque & \(M t r T r q_{e s t}=1.5 P\left[\lambda i_{q}+\left(L_{d}-L_{q}\right) i_{d} i_{q}\right]\) \\
\hline \begin{tabular}{l} 
Power loss for single efficiency \\
source to load
\end{tabular} & \(P w r_{L o s s}=\frac{100-E f f}{E f f} \cdot L d_{P w r}\) \\
\hline \begin{tabular}{l} 
Power loss for single efficiency \\
load to source
\end{tabular} & \(P w r_{L o s s}=\frac{100-E f f}{100} \cdot\left|L d_{P w r}\right|\) \\
\hline \begin{tabular}{l} 
Power loss for tabulated \\
efficiency
\end{tabular} & \(P w r_{L o s s}=f\left(\omega_{m}, M t r T r q_{e s t}\right)\) \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(v_{a}, v_{b}, v_{c}\) & Stator phase a, b, c voltages \\
\(v_{b u s}\) & Estimated DC bus voltage \\
\(i_{a}, i_{b}, i_{c}\) & Stator phase a, b, c currents \\
\(i_{b u s}\) & Estimated DC bus current \\
\(E f f\) & Overall inverter efficiency \\
\(\omega_{m}\) & Rotor mechanical speed \\
\(L_{q}\) & q-axis winding inductance \\
\(L_{d}\) & d-axis winding inductance \\
\(i_{q}\) & q -axis current \\
\(i_{d}\) & d-axis current \\
\(\lambda\) & Permanent magnet flux linkage \\
\(P\) & Motor pole pairs
\end{tabular}

\section*{Electrical Losses}

To specify the electrical losses, on the Electrical Losses tab, for Parameterize losses by, select one of these options.
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline \begin{tabular}{l} 
Single efficiency \\
measurement
\end{tabular} & \begin{tabular}{l} 
Electrical loss calculated using a constant value for \\
inverter efficiency.
\end{tabular} \\
\hline Tabulated loss data & \begin{tabular}{l} 
Electrical loss calculated as a function of motor speeds \\
and load torques.
\end{tabular} \\
\hline \begin{tabular}{l} 
Tabulated efficiency \\
data
\end{tabular} & \begin{tabular}{l} 
Electrical loss calculated using inverter efficiency that is a \\
function of motor speeds and load torques.
\end{tabular} \\
& - \begin{tabular}{l} 
Converts the efficiency values you provide into losses \\
and uses the tabulated losses for simulation.
\end{tabular} \\
& \begin{tabular}{l} 
- \begin{tabular}{l} 
Ignores efficiency values you provide for zero speed or \\
zero torque. Losses are assumed zero when either \\
torque or speed is zero.
\end{tabular} \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\hline
\end{tabular} \begin{tabular}{l} 
Uses linear interpolation to determine losses. Provide \\
tabulated data for low speeds and low torques, as \\
required, to get the desired level of accuracy for lower \\
power conditions. \\
Does not extrapolate loss values for speed and torque \\
magnitudes that exceed the range of the table.
\end{tabular} \\
\hline
\end{tabular}

For best practice, use Tabulated loss data instead of Tabulated efficiency data:
- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

\section*{Ports}

\section*{Input}

\section*{SpdReq - Rotor speed command \\ scalar}

Rotor speed command, \(\omega^{*}{ }_{m}\), in rad/s.

\section*{Dependencies}

To create this port, select Speed Control for the Control Type parameter.

\section*{TrqCmd - Torque command scalar}

Torque command, \(T^{*}\), in \(N \cdot m\).

\section*{Dependencies}

To create this port, select Torque Control for the Control Type parameter.

\section*{BusVolt - DC bus voltage}
scalar
DC bus voltage \(v_{\text {bus }}\), in V .

\section*{PhaseCurrA - Current \\ scalar}

Stator current phase \(\mathrm{a}, i_{a}\), in A.

\section*{PhaseCurrB - Current} scalar

Stator current phase b, \(i_{b}\), in A.

\section*{SpdFdbk - Rotor speed} scalar

Rotor speed, \(\omega_{m}\), in rad/s.

\section*{PosFdbk - Rotor electrical angle}
scalar
Rotor electrical angle, \(\Theta_{m}\), in rad.

\section*{Output}

Info - Bus signal
bus

Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|}
\hline Signal & Description & Units \\
\hline SrcPwr & Source power & W \\
\hline LdPwr & Load power & W \\
\hline PwrLoss & Power loss & W \\
\hline MtrTrqEst & Estimated motor torque & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline
\end{tabular}

\section*{BusCurr - Bus current}
scalar
Estimated DC bus current, \(i_{\text {bus }}\), in A.

\section*{PhaseVolt - Stator terminal voltages}
array
Stator terminal voltages, \(V_{a}, V_{b}\), and \(V_{c}\), in \(V\).

\section*{Parameters}

\section*{Configuration}

\section*{Control Type - Select control}

Speed Control (default)|Torque Control
If you select Torque Control, the block does not implement the speed controller.
This table summarizes the port configurations.
\begin{tabular}{|l|l|}
\hline Port Configuration & Creates Ports \\
\hline Speed Control & SpdReq \\
\hline Torque Control & TrqCmd \\
\hline
\end{tabular}

\section*{Motor Parameters}

\section*{Stator resistance, Rs - Resistance \\ scalar}

Stator phase winding resistance, \(R_{S}\), in ohm.

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Used to Derive \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l} 
Stator resistance, \\
Rs
\end{tabular} & \begin{tabular}{l} 
D and Q axis integral gain, \\
\(\mathbf{K i}\)
\end{tabular} & Current Controller \\
\hline
\end{tabular}

\section*{DQ axis inductance, Ldq - Inductance scalar}

D-axis winding inductance, \(L_{d q}\), in H .

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{|l|}{ Parameter } & Used to Derive \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l} 
DQ axis \\
inductance, Ldq
\end{tabular} & \begin{tabular}{l} 
D-axis proportional gain, \\
Kp_d \\
Q-axis proportional gain, \\
Kp_q \\
D and Q axis integral gain, \\
Ki
\end{tabular} & Current Controller \\
\hline
\end{tabular}

Permanent magnet flux, lambda_pm - Flux scalar

Permanent magnet flux, \(\lambda_{p m}\), in Wb .
Number of pole pairs, PolePairs - Poles scalar

Motor pole pairs, \(P\).

\section*{Physical inertia, viscous damping, static friction, Mechanical Inertia, damping, friction}
vector
Mechanical properties of the motor:
- Motor inertia, \(F_{v}\), in \(\mathrm{kgm}^{\wedge} 2\)
- Viscous friction torque constant, \(F_{v}\), in \(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})\)
- Static friction torque constant, \(F_{s}\), in \(\mathrm{N} \cdot \mathrm{m}\)

\section*{Dependencies}

To enable this parameter, set the Control Type parameter to Speed Control.
For the gain calculations, the block uses the inertia from the Physical inertia, viscous damping, static friction parameter value that is on the Motor Parameters tab.

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{|l|}{ Parameter } & Used to Derive & Tab \\
\hline & Parameter & Speed Controller \\
\hline \begin{tabular}{l} 
Physical inertia, \\
viscous damping, \\
static friction, \\
Mechanical
\end{tabular} & Proportional gain, ba & Angular gain, Ksa \\
Rotational gain, Kisa \\
Inertia compensation, \\
Jcomp \\
Viscous damping \\
compensation, Fv
\end{tabular}\(\quad\)\begin{tabular}{l} 
Static friction, Fs
\end{tabular}\(\quad\)\begin{tabular}{l} 
\\
\hline
\end{tabular}

\section*{Id and Iq Calculation}
```

Maximum torque, T_max - Torque
scalar

```

Maximum torque, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Current Controller}

\section*{Bandwidth of the current regulator, EV_current - Bandwidth} scalar

Current regulator bandwidth, in Hz.

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Used to Derive & Tab \\
\cline { 2 - 3 } & Parameter & Current Controller \\
\hline \begin{tabular}{l} 
Bandwidth of the \\
EV_current regulator, \\
EV_
\end{tabular} & \begin{tabular}{l} 
D-axis proportional gain, \\
Kp_d
\end{tabular} & \begin{tabular}{l} 
Q-axis proportional gain, \\
Kp_q \\
D and q axis proportional \\
gain, Ki
\end{tabular}
\end{tabular}

\section*{Sample time for the torque control, Tst - Time}
scalar
Torque control sample time, in s.

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline Parameter & Used to Derive & \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l} 
Sample time for \\
the torque control, \\
Tst
\end{tabular} & Speed time constant, Ksf & Speed Controller \\
\hline
\end{tabular}

Calculate Current Regulator Gains - Derive parameters button

Click to derive parameters.

\section*{Dependencies}

On the Current Controller tab, when you select Calculate Current Regulator Gains, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
Derived \\
Parameter on \\
Current Controller \\
tab
\end{tabular} & Dependency & Parameter \\
\hline \begin{tabular}{l} 
D-axis \\
proportional gain, \\
Kp_d
\end{tabular} & \begin{tabular}{l} 
Bandwidth of the current \\
regulator, EV_current
\end{tabular} & Current Controller \\
\cline { 2 - 3 } \begin{tabular}{l} 
Q-axis \\
proportional gain, \\
Kp_q
\end{tabular} & DQ-axis inductance, Ldq & Motor Parameters \\
\begin{tabular}{l} 
D and Q axis \\
integral gain, Ki
\end{tabular} & & \\
\hline
\end{tabular}

D-axis proportional gain, Kp_d - Derived

\section*{scalar}

Derived d-axis proportional gain, in V/A.

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline Parameter & Dependency & Tab \\
\cline { 2 - 3 } & Parameter & Current Controller \\
\hline \begin{tabular}{l} 
D-axis proportional \\
gain, Kp_d
\end{tabular} & \begin{tabular}{l} 
Bandwidth of the current \\
regulator, EV_current
\end{tabular} & Motor Parameters \\
\cline { 2 - 3 } & DQ-axis inductance, Ldq & Motor \\
\hline
\end{tabular}

Q-axis proportional gain, Kp_q-Derived scalar

Derived q-axis proportional gain, in V/A.

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Dependency \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l} 
Q-axis \\
proportional gain, \\
Kp_q
\end{tabular} & \begin{tabular}{l} 
Bandwidth of the current \\
regulator, EV_current
\end{tabular} & Current Controller \\
\cline { 2 - 3 } & DQ-axis inductance, Ldq & Motor Parameters \\
\hline
\end{tabular}

\section*{D and Q axis integral gain, Ki - Derived}
scalar
Derived axis integral gain, in V/A*s.

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline Parameter & Dependency \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l} 
D and Q axis \\
integral gain, Ki
\end{tabular} & \begin{tabular}{l} 
Bandwidth of the current \\
regulator, EV_current
\end{tabular} & Current Controller \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Stator resistance, Rs \\
DQ-axis inductance, Ldq
\end{tabular} & Motor Parameters \\
\hline
\end{tabular}

\section*{Speed Controller}

Bandwidth of the motion controller, EV_motion - Bandwidth vector

Motion controller bandwidth, in Hz. Set the first element of the vector to the desired cutoff frequency. Set the second and third elements of the vector to the higher-order cut off frequencies. You can set the value of the next element to \(1 / 5\) the value of the previous element. For example, if the desired cutoff frequency is 20 Hz , specify [ 2040.8 ].

\section*{Dependencies}

The parameter is enabled when the Control Type parameter is set to Speed Control.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Used to Derive \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l} 
Bandwidth of the \\
motion controller, \\
EV_motion
\end{tabular} & Proportional gain, ba & Speed Controller \\
Angular gain, Ksa \\
Rotational gain, Kisa
\end{tabular}\(\quad . \quad\).

Bandwidth of the state filter, EV_sf - Bandwidth
scalar
State filter bandwidth, in Hz .

\section*{Dependencies}

The parameter is enabled when the Control Type parameter is set to Speed Control.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Used to Derive & Tab \\
\cline { 2 - 3 } & Parameter & Speed Controller \\
\hline \begin{tabular}{l} 
Bandwidth of the \\
state filter, EV_sf
\end{tabular} & Speed time constant, Ksf & \\
\hline
\end{tabular}

\section*{Calculate Speed Regulator Gains - Derive parameters}
button
Click to derive parameters.

\section*{Dependencies}

On the Speed Controller tab, when you select Calculate Speed Regulator Gains, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Derived Parameter on Speed Controller tab}} & \multicolumn{2}{|l|}{Depends On} \\
\hline & & Parameter & Tab \\
\hline Proportional gain, ba & \[
b_{a}=\frac{J_{p}-J_{p} p_{1} p_{2} p_{3}}{T_{s m}}
\] & \begin{tabular}{l}
Bandwidth of the motion controller, EV_motion \\
Bandwidth of the state filter, EV_sf
\end{tabular} & Speed Controller \\
\hline Angular gain, Ksa & \[
\begin{aligned}
& K_{s a} \\
& =\frac{J_{p}\left(p_{1} p_{2}+p_{2} p_{3}+p_{3} p_{1}\right)-3 J_{p}+2 b_{a} T}{T_{s m}^{2}}
\end{aligned}
\] & Sample time for the torque sinntrol, Tst & Current Controller \\
\hline Rotational gain, Kisa & \[
\begin{aligned}
& K_{\text {isa }} \\
& =\frac{-J_{p}\left(p_{1}+p_{2}+p_{3}\right)+3 J_{p}-b_{a} T_{s m}-}{T_{s m}^{3}}
\end{aligned}
\] & Physical inertia, viscous damping, static friction, Mechanical & Motor Parameters \\
\hline Speed time constant, Ksf & \[
K_{s f}=\frac{1-\exp \left(-T_{s m} 2 \pi E V_{s f}\right)}{T_{s m}}
\] & & \\
\hline \begin{tabular}{l}
Inertia compensatio \\
n, Jcomp
\end{tabular} & \(J_{\text {comp }}=J_{p}\) & Physical inertia, viscous damping, static & Motor Parameters \\
\hline Viscous damping compensatio n, \(\mathbf{F v}\) & \(F_{v}\) & friction, Mechanical & \\
\hline Static friction, Fs & \(F_{s}\) & & \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(P\) & Motor pole pairs \\
\(b_{a}\) & Speed regulator proportional gain
\end{tabular}
\begin{tabular}{ll}
\(K_{s a}\) & Speed regulator integral gain \\
\(K_{\text {isa }}\) & Speed regulator double integral gain \\
\(K_{s f}\) & Speed regulator time constant \\
\(J_{p}\) & Motor inertia \\
\(E V_{s f}\) & State filter bandwidth \\
\(E V_{\text {motion }}\) & Motion controller bandwidth
\end{tabular}

Proportional gain, ba - Derived
scalar
Derived proportional gain, in \(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})\).

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Dependency \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l} 
Proportional gain, \\
ba
\end{tabular} & \begin{tabular}{l} 
Physical inertia, viscous \\
damping, static friction, \\
Mechanical
\end{tabular} & Motor Parameters \\
\cline { 1 - 3 } & \begin{tabular}{l} 
Bandwidth of the motion \\
controller, EV_motion
\end{tabular} & Speed Controller \\
\hline
\end{tabular}

Angular gain, Ksa - Derived
scalar
Derived angular gain, in \(\mathrm{N} \cdot \mathrm{m} / \mathrm{rad}\).

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Dependency \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline Angular gain, Ksa & \begin{tabular}{l} 
Physical inertia, viscous \\
damping, static friction, \\
Mechanical
\end{tabular} & Motor Parameters \\
\cline { 2 - 3 } & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Dependency \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline & \begin{tabular}{l} 
Bandwidth of the motion \\
controller, EV_motion
\end{tabular} & Speed Controller \\
\hline
\end{tabular}

Rotational gain, Kisa - Derived
scalar
Derived rotational gain, in \(\mathrm{N} \cdot \mathrm{m} /\left(\mathrm{rad}^{*} \mathrm{~s}\right)\).

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Dependency \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l} 
Rotational gain, \\
Kisa
\end{tabular} & \begin{tabular}{l} 
Physical inertia, viscous \\
damping, static friction, \\
Mechanical
\end{tabular} & Motor Parameters \\
\hline & \begin{tabular}{l} 
Bandwidth of the motion \\
controller, EV_motion
\end{tabular} & Speed Controller \\
\hline
\end{tabular}

Speed time constant, Ksf - Derived
scalar
Derived speed time constant, in 1/s.
Dependencies
This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Dependency & Tab \\
\cline { 2 - 3 } & Parameter & Current Controller \\
\hline \begin{tabular}{l} 
Speed time \\
constant, Ksf
\end{tabular} & \begin{tabular}{l} 
Sample time for the \\
torque control, Tst
\end{tabular} & \begin{tabular}{l} 
Bandwidth of the state \\
filter, EV_sf
\end{tabular} \\
\hline
\end{tabular}

\section*{Inertia compensation, Jcomp - Derived scalar}

Derived inertia compensation, in \(\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2\).

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Dependency \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l} 
Inertia \\
compensation, \\
Jcomp
\end{tabular} & \begin{tabular}{l} 
Physical inertia, viscous \\
damping, static friction, \\
Mechanical
\end{tabular} & Motor Parameters \\
\hline
\end{tabular}

Viscous damping compensation, Fv - Derived scalar

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Dependency \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline \begin{tabular}{l} 
Viscous damping \\
compensation, Fv
\end{tabular} & \begin{tabular}{l} 
Physical inertia, viscous \\
damping, static friction, \\
Mechanical
\end{tabular} & Motor Parameters \\
\hline
\end{tabular}

\section*{Static friction, Fs - Derived \\ scalar}

Derived static friction, in \(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})\).

\section*{Dependencies}

This table summarizes the parameter dependencies.
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{ Parameter } & Dependency \\
\cline { 2 - 3 } & Parameter & Tab \\
\hline Static friction, Fs & \begin{tabular}{l} 
Physical inertia, viscous \\
damping, static friction, \\
Mechanical
\end{tabular} & Motor Parameters \\
\hline
\end{tabular}

\section*{Electrical Losses}

\section*{Parameterize losses by - Select type}

Single efficiency measurement (default)|Tabulated loss data|Tabulated efficiency data
\begin{tabular}{|c|c|}
\hline Setting & Block Implementation \\
\hline Single efficiency measurement & Electrical loss calculated using a constant value for inverter efficiency. \\
\hline Tabulated loss data & Electrical loss calculated as a function of motor speeds and load torques. \\
\hline Tabulated efficiency data & \begin{tabular}{l}
Electrical loss calculated using inverter efficiency that is a function of motor speeds and load torques. \\
- Converts the efficiency values you provide into losses and uses the tabulated losses for simulation. \\
- Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero. \\
- Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions. \\
- Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.
\end{tabular} \\
\hline
\end{tabular}

For best practice, use Tabulated loss data instead of Tabulated efficiency data:
- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

\section*{Overall inverter efficiency, eff - Constant scalar}

Overall inverter efficiency, Eff, in \%.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated loss data.
Vector of speeds (w) for tabulated loss, w_loss_bp - Breakpoints 1-by-M matrix

Speed breakpoints for lookup table when calculating losses, in rad/s.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated loss data.
```

Vector of torques (T) for tabulated loss, T_loss_bp - Breakpoints
1-by-N matrix

```

Torque breakpoints for lookup table when calculating losses, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated loss data.

\section*{Corresponding losses, losses_table - Table}

M-by-N matrix
Array of values for electrical losses as a function of M speeds and \(N\) torques, in W. Each value specifies the losses for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated loss data.
Vector of speeds (w) for tabulated efficiency, w_eff_bp - Breakpoints 1-by-M matrix

Speed breakpoints for lookup table when calculating efficiency, in rad/s.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.

\section*{Vector of torques (T) for tabulated efficiency, T_eff_bp Breakpoints}

\section*{1-by-N matrix}

Torque breakpoints for lookup table when calculating efficiency, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.

\section*{Corresponding efficiency, efficiency_table - Table}

\section*{M-by-N matrix}

Array of efficiency as a function of \(M\) speeds and \(N\) torque, in \%. Each value specifies the efficiency for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

The block ignores efficiency values for zero speed or zero torque. Losses are zero when either torque or speed is zero. The block uses linear interpolation.

To get the desired level of accuracy for lower power conditions, you can provide tabulated data for low speeds and low torques.

\section*{Dependencies}

To enable this parameter, for Parameterize losses by, select Tabulated efficiency data.

\section*{References}
[1] Lorenz, Robert D., Thomas Lipo, and Donald W. Novotny. "Motion control with induction motors." Proceedings of the IEEE, Vol. 82, Issue 8, August 1994, pp. 1215-1240.
[2] Shigeo Morimoto, Masayuka Sanada, Yoji Takeda. "Wide-speed operation of interior permanent magnet synchronous motors with high-performance current
regulator." IEEE Transactions on Industry Applications, Vol. 30, Issue 4, July/ August 1994, pp. 920-926.
[3] Muyang Li. "Flux-Weakening Control for Permanent-Magnet Synchronous Motors Based on Z-Source Inverters." Master's Thesis, Marquette University, ePublications@Marquette, Fall 2014.
[4] Briz, Fernando, Michael W. Degner, and Robert D. Lorenz. "Analysis and design of current regulators using complex vectors." IEEE Transactions on Industry Applications, Vol. 36, Issue 3, May/June 2000, pp. 817-825.
[5] Briz, Fernando, et al. "Current and flux regulation in field-weakening operation [of induction motors]."IEEE Transactions on Industry Applications, Vol. 37, Issue 1, Jan/Feb 2001, pp. 42-50.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

Flux-Based PM Controller | IM Controller | Interior PM Controller | Surface Mount PMSM
Introduced in R2017a

\title{
Three-Phase Voltage Source Inverter
}

\author{
Three-phase voltage source inverter \\ Library: Powertrain Blockset / Propulsion / Electric Motors and Inverters
}


\section*{Description}

The Three-Phase Voltage Source Inverter block implements a three-phase voltage source inverter that generates neutral voltage commands for a balanced three-phase load. Configure the voltage switching function for continuous vector modulation or inverter switch input signals. You can incorporate the block into a closed-loop model to simulate a power inverter. The block controls the ideal switch states.

To enable power loss calculations suitable for code generation targets that limit memory, select Enable memory optimized 2D LUT. Click Calibrate Maps to virtually calibrate an inverter power loss lookup table as a function of motor torque and motor speed.

If you select Input inverter temperature, click Calibrate Maps to virtually calibrate the power loss table as a function of motor torque, motor speed, and inverter temperature. You cannot enable memory optimization for the 3D power loss lookup table.

Use the Switching voltage function parameter to set the switching voltage function.


\section*{Virtual Calibration}

If you have Model-Based Calibration Toolbox, click Calibrate Maps to virtually calibrate the lookup tables using measured data. The dialog box steps through these tasks.
\begin{tabular}{|c|c|c|}
\hline Task & \multicolumn{2}{|l|}{Description} \\
\hline \multirow[t]{5}{*}{Import Loss Data} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Import this loss data from a file. For example, open <matlabroot>toolbox/autoblks/autoblksshared/ mbctemplates/MappedInverterDataset.xlsx. \\
For more information, see "Using Data" (Model-Based Calibration Toolbox).
\end{tabular}} \\
\hline & Input inverter temperature Setting & Required Data \\
\hline & off & \begin{tabular}{l}
- Motor speed, rad/s \\
- Motor torque, \(\mathrm{N} \cdot \mathrm{m}\) \\
- Power loss, W
\end{tabular} \\
\hline & on & \begin{tabular}{l}
- Motor speed, rad/s \\
- Motor torque, \(\mathrm{N} \cdot \mathrm{m}\) \\
- Motor temperature, K \\
- Power loss, W
\end{tabular} \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
Collect inverter data at steady-state operating conditions. Data should cover the inverter speed, torque, and temperature operating range. \\
To filter or edit the data, select Edit in Application. The ModelBased Calibration Toolbox Data Editor opens.
\end{tabular}} \\
\hline Generate Response Models & \multicolumn{2}{|l|}{\begin{tabular}{l}
Model-Based Calibration Toolbox uses test plans to fit data to Gaussian process models (GPMs). \\
To assess or adjust the response model fit, select Edit in Application. The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Task & \multicolumn{2}{|l|}{Description} \\
\hline Generate Calibration & \multicolumn{2}{|l|}{To assess or adjust the calibration, select Edit in Application. The Model-Based Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Tables" (Model-Based Calibration Toolbox).} \\
\hline Update block & \multicolumn{2}{|l|}{Update these parameters with the calibration.} \\
\hline & Input inverter temperature Setting & Parameters \\
\hline & off & \begin{tabular}{l}
- Vector of speeds (w) for tabulated losses, w_eff_bp \\
- Vector of torques (T) for tabulated losses, T_eff_bp \\
- Corresponding power loss, ploss_table
\end{tabular} \\
\hline & on & \begin{tabular}{l}
- Vector of speeds (w) for tabulated losses, w_eff_bp \\
- Vector of torques (T) for tabulated losses, T_eff_bp \\
- Vector of temperatures for tabulated losses, Temp_eff_bp \\
- Corresponding power loss, ploss_table_3d
\end{tabular} \\
\hline
\end{tabular}

\section*{Switching Function}

For the switch voltage, the block implementation depends on the Switching voltage function setting.
\begin{tabular}{|c|c|c|}
\hline Setting & Calculation & Equations \\
\hline \multirow[t]{2}{*}{Commanded phase voltage} & Continuous line-to-neutral voltage commands set to phase a, b, c line-to-neutral voltage command input & \[
\begin{aligned}
& v_{a n}=v_{a_{-} c m d} \\
& v_{b n}=v_{b_{-} c m d} \\
& v_{c n}=v_{c_{-}} c m d
\end{aligned}
\] \\
\hline & Line-to-line voltage & \[
\begin{aligned}
& v_{a b}=v_{a n}-v_{b n} \\
& v_{b c}=v_{b n}-v_{c n} \\
& v_{c a}=v_{c n}-v_{a n}
\end{aligned}
\] \\
\hline \multirow[t]{3}{*}{Switch inputs} & Switching function & \[
\begin{aligned}
& S F_{a}= \begin{cases}1 & \text { S1 on and S2 off } \\
-1 & \text { S1 off and S2 on }\end{cases} \\
& S F_{b}= \begin{cases}1 & \text { S3 on and S4 off } \\
-1 & \text { S3 off and S4 on }\end{cases} \\
& S F_{c}= \begin{cases}1 & \text { S5 on and S6 off } \\
-1 & S 5 \text { off and S6 on }\end{cases}
\end{aligned}
\] \\
\hline & Line-to-center point voltage & \[
\begin{aligned}
& v_{a o}=\frac{v_{b u s}}{2} S F_{a} \\
& v_{b o}=\frac{v_{b u s}}{2} S F_{b} \\
& v_{c o}=\frac{v_{b u s}}{2} S F_{c}
\end{aligned}
\] \\
\hline & Line-to-neutral voltage & \[
\begin{aligned}
& v_{a n}=v_{a o}-v_{n o} \\
& v_{b n}=v_{b o}-v_{n o} \\
& v_{c n}=v_{c o}-v_{n o} \\
& v_{a n}+v_{b n}+v_{c n}=0 \\
& v_{n o}=\frac{1}{3}\left(v_{a o}+v_{b o}+v_{c o}\right) \\
& v_{a n}=v_{a o}-\frac{1}{3}\left(v_{a o}+v_{b o}+v_{c o}\right) \\
& v_{b n}=v_{b o}-\frac{1}{3}\left(v_{a o}+v_{b o}+v_{c o}\right) \\
& v_{c n}=v_{c o}-\frac{1}{3}\left(v_{a o}+v_{b o}+v_{c o}\right)
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Setting & Calculation & Equations \\
\hline \multirow{4}{*}{} & Line-to-line voltage & \(v_{a b}=v_{a n}-v_{b n}\) \\
& & \(v_{b c}=v_{b n}-v_{c n}\) \\
\(v_{c a}=v_{c n}-v_{a n}\) \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(S F_{a}, S F_{b}, S F_{c}\) & Phase a, b, c line switching functions, respectively \\
\(v_{b u s}\) & Power source bus voltage \\
\(V_{a o}, V_{b o}, V_{c o}\) & Phase a, b, c line-to-center voltage, respectively \\
\(V_{a n}, V_{b n}, V_{c n}\) & Phase a, b, c line-to-neutral voltage, respectively \\
\(V_{a b}, V_{b c}, V_{c a}\) & Phase ab, bc, ca line-to-neutral voltage, respectively \\
\(V_{a_{-} c m d}, V_{b \_c m d}, V_{c_{-} c m d}\) & Phase a, b, c line-to-neutral voltage commands, respectively
\end{tabular}

\section*{Current and Power Loss}

For the line-to-center, line-to-neutral, and line-to-line voltage, the block implements these equations.
\begin{tabular}{|l|l|}
\hline Calculation & Equations \\
\hline Motor and bus power & \(P_{m t r}=v_{a n} i_{a}+v_{b n} i_{b}+v_{c n} i_{c}\) \\
& \(P_{b u s}=v_{b u s} i_{b u s}\) \\
\hline Inverter power loss and bus & \(P_{\text {in }}=\quad P_{b u s}=v_{b u s} i_{b u s}\) \\
current & \(P_{\text {out }}=P_{m t r}=v_{a n} i_{a}+v_{b n} i_{b}+v_{c n} i_{c}+P_{\text {LossInv }}\) \\
& \(i_{\text {bus }}=\frac{v_{a n} i_{a}+v_{b n} i_{b}+v_{c n} i_{c}+P_{\text {LossInv }}}{v_{b u s}}\) \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(P_{m t r}\) & Power delivered to the motor \\
\(P_{\text {bus }}\) & Power from input bus \\
\(P_{\text {loss }}\) & Power loss
\end{tabular}
\begin{tabular}{ll}
\(i_{b u s}\) & Power source bus current \\
\(i_{a}, i_{b}, i_{c}\) & Phase a, b, c line current, respectively \\
\(V_{a n}, V_{b n}, V_{c n}\) & Phase a, b, c line-to-neutral voltage, respectively \\
\(v_{b u s}\) & Power source bus voltage
\end{tabular}

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Variable & Equation \\
\hline PwrI nfo & PwrTrnsfrd Power & PwrMtr & Power delivered to the motor & \(P_{\text {TrnsfrdMtr }}\) & \[
\begin{aligned}
& P_{\text {TrnsfrdMtr }}=-\left(v_{a n} i_{a}\right. \\
& \left.+v_{b n} i_{b}+v_{c n} i_{c}\right)
\end{aligned}
\] \\
\hline & transferred between blocks & PwrBus & Power from input bus & \(P_{\text {TrnsfrdBus }}\) & \(P_{\text {TrnsfrdBus }}=P_{\text {bus }}\) \\
\hline & - Positive signals indicate flow into block & & & & \\
\hline & - Negative signals indicate flow out of block & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Bus Signal} & Description & Variable & Equation \\
\hline & \begin{tabular}{l|l}
\hline PwrNotTrnsfr & PwrLos \\
d - Power & s \\
crossing the & \\
block boundary, & \\
but not & \\
transferred & \\
- Positive & \\
signals & \\
indicate an & \\
input & \\
- \begin{tabular}{l} 
Negative \\
signals \\
indicate a \\
loss
\end{tabular} \\
&
\end{tabular} & \begin{tabular}{l}
Power loss \\
Negative value indicates power loss
\end{tabular} & \(P_{\text {NotTrnsfrd }}\) & \[
\begin{aligned}
& P_{\text {NotTrnsfrd }}=- \\
& \left(P_{\text {TrnsfrdBus }}+P_{\text {TrnsfrdMtr }}\right.
\end{aligned}
\] \\
\hline & \begin{tabular}{l}
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular} & Not used & & \\
\hline
\end{tabular}

\section*{Lookup Table Memory Optimization}

The inverter power loss table parameter Corresponding power loss, ploss_table data is a function of motor torque and motor speed at different battery voltages. Positive current indicates battery discharge. Negative current indicates battery charge.

To enable power loss calculations suitable for code generation targets that limit memory, select Enable memory optimized 2D LUT. The block uses linear interpolation to optimize the inverter power loss lookup table values for code generation. This table summarizes the optimization implementation.
\begin{tabular}{|l|l|}
\hline Use Case & Implementation \\
\hline \begin{tabular}{l} 
Motor speed and torque input align with the \\
lookup table breakpoint values.
\end{tabular} & \begin{tabular}{l} 
Memory-optimized power loss is power \\
loss lookup table value at intersection of \\
motor speed and torque.
\end{tabular} \\
\hline \begin{tabular}{l} 
Motor speed and torque input do not align \\
with the lookup table breakpoint values, but \\
are within range.
\end{tabular} & \begin{tabular}{l} 
Memory-optimized power loss is linear \\
interpolation between corresponding \\
motor speed and torque.
\end{tabular} \\
\hline \begin{tabular}{l} 
Motor speed and torque input do not align \\
with the lookup table breakpoint values, and \\
are out of range.
\end{tabular} & \begin{tabular}{l} 
Cannot compute a memory-optimized \\
power loss. Block uses extrapolated data.
\end{tabular} \\
\hline
\end{tabular}

\section*{Extrapolation}

The lookup tables optimized for code generation do not support extrapolation for data that is out of range. However, you can include pre-calculated extrapolation values in the power loss lookup table by selecting Specify Extrapolation.

The block uses the endpoint parameters to resize the table data.


\section*{Ports}

\section*{Input}

\section*{PhaseVoltCmd - Phase a, b, c line-to-neutral voltage command}

1-by-3 array
Phase a, b, c line-to-neutral voltage command, \(V_{a_{-} c m d}, V_{b_{-} c m d}\), and \(V_{c_{-} c m d}\), in V . Dependencies

To create this port, set Switching voltage function to Commanded phase voltage.

\section*{SwitchCmd - Switch commands}

1-by-3 array
Switch commands, \(S_{a}, S_{b}\), and \(S_{c}\), dimensionless.

\section*{Dependencies}

To create this port, set Switching voltage function to Switch inputs.

\section*{BusVolt - Power source bus voltage}
bus
Power source bus voltage, \(V_{b u s}\), in \(V\).

\section*{PhaseCurr - Phase a, b, c current}

1-by-3 array
Phase a, b, c current, \(i_{a}, i_{b}\), and \(i_{c}\), in A.

\section*{MtrTrq - Motor torque}

\section*{scalar}

Motor torque, \(T_{m t r}\), in \(\mathrm{N} \cdot \mathrm{m}\).
MtrSpd - Motor speed
scalar
Angular speed of the motor, \(\omega_{m t r}\), in rad/s.

\section*{InvrtrTemp - Inverter operating temperature}
scalar
Inverter operating temperature, \(\mathrm{Temp}_{\text {Invrtr, }}\), in K .

\section*{Dependencies}

To create this port, select Input inverter temperature.

\section*{Output}

Info - Bus signal
bus
The bus signal contains these block calculations.
\begin{tabular}{|l|l|l|l|l|}
\hline Signal & Description & Variable & Units \\
\hline BusCurr & \begin{tabular}{l} 
Power source bus \\
current
\end{tabular} & \(i_{\text {bus }}\) & A \\
\hline PwrLossInv & Inverter power loss & \(\varepsilon_{\text {inv }}\) & \begin{tabular}{l} 
dimensio \\
nless
\end{tabular} \\
\hline \multirow{5}{*}{\begin{tabular}{ll} 
PwrInfo
\end{tabular}} & \begin{tabular}{l} 
PwrTrnsf \\
rd
\end{tabular} & PwrMtr & \begin{tabular}{l} 
Power delivered to the \\
motor
\end{tabular} & \(P_{\text {TrnsfrdMtr }}\) \\
\cline { 3 - 5 } & & PwrBus & Power from input bus & \(P_{\text {TrnsfrdBus }}\)
\end{tabular}

\section*{PhaseVolt - Phase a, b, c line-to-neutral voltage 1-by-3 array}

Phase a, b, c line-to-neutral voltage, \(V_{a n}, V_{b n}\), and \(V_{c n}\), in V.

\section*{BusCurr - Power source bus current}
scalar
Power source bus current, \(i_{\text {bus }}\), in A.

\section*{Parameters}

\section*{Block Options}

\section*{Input inverter temperature - Create input port off (default) | on}

Select this parameter to create the InvrtrTemp input port.
The block enables you to specify inverter power loss lookup tables that are functions of motor torque, \(T_{m t r}\), and motor speed, \(\omega_{m t r}\). If you select Input inverter temperature, the tables are also a function of the inverter temperature, Temp \(\mathrm{I}_{\text {Invrrtr }}\).
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
Input Inverter \\
Temperature \\
Parameter \\
Setting
\end{tabular} & Enables Efficiency Table & Function Of \\
\hline off & \begin{tabular}{l} 
Corresponding power loss, \\
ploss_table
\end{tabular} & \(f\left(T_{m t r}, \omega_{m t r}\right)\) \\
\hline on & \begin{tabular}{l} 
Corresponding power loss, \\
ploss_table_3d
\end{tabular} & \(f\left(T_{m t r}, \omega_{m t r}\right.\), Temp Invrtr \()\) \\
\hline
\end{tabular}

\section*{Dependencies}

If you select Input inverter temperature to specify a 3D power loss lookup table as a function of motor torque, motor speed, and inverter temperature, you cannot select Enable memory optimized 2D LUT to enable a memory optimization.

\section*{Enable memory optimized 2D LUT - Selection \\ off (default) | on}

Enable generation of memory-optimized lookup tables, suitable code generation targets that limit memory.

\section*{Dependencies}

If you select Enable memory optimized 2D LUT, you cannot select Input inverter temperature.

\section*{Calibrate Maps - Calibrate tables with measured data selection}

If you have Model-Based Calibration Toolbox, click Calibrate Maps to virtually calibrate the lookup tables using measured data. The dialog box steps through these tasks.
\begin{tabular}{|c|c|c|}
\hline Task & \multicolumn{2}{|l|}{Description} \\
\hline \multirow[t]{5}{*}{Import Loss Data} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Import this loss data from a file. For example, open <matlabroot>toolbox/autoblks/autoblksshared/ mbctemplates/MappedInverterDataset.xlsx. \\
For more information, see "Using Data" (Model-Based Calibration Toolbox).
\end{tabular}} \\
\hline & Input inverter temperature Setting & Required Data \\
\hline & off &  \\
\hline & on &  \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
Collect inverter data at steady-state operating conditions. Data should cover the inverter speed, torque, and temperature operating range. \\
To filter or edit the data, select Edit in Application. The ModelBased Calibration Toolbox Data Editor opens.
\end{tabular}} \\
\hline Generate Response Models & \multicolumn{2}{|l|}{\begin{tabular}{l}
Model-Based Calibration Toolbox uses test plans to fit data to Gaussian process models (GPMs). \\
To assess or adjust the response model fit, select Edit in Application. The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Task & \multicolumn{2}{|l|}{Description} \\
\hline Generate Calibration & \multicolumn{2}{|l|}{To assess or adjust the calibration, select Edit in Application. The Model-Based Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Tables" (Model-Based Calibration Toolbox).} \\
\hline Update block & \multicolumn{2}{|l|}{Update these parameters with the calibration.} \\
\hline & Input inverter temperature Setting & Parameters \\
\hline & off & \begin{tabular}{l}
- Vector of speeds (w) for tabulated losses, w_eff_bp \\
- Vector of torques (T) for tabulated losses, T_eff_bp \\
- Corresponding power loss, ploss_table
\end{tabular} \\
\hline & on & \begin{tabular}{l}
- Vector of speeds (w) for tabulated losses, w_eff_bp \\
- Vector of torques (T) for tabulated losses, T_eff_bp \\
- Vector of temperatures for tabulated losses, Temp_eff_bp \\
- Corresponding power loss, ploss_table_3d
\end{tabular} \\
\hline
\end{tabular}

\section*{Electrical Model}

\section*{Switching voltage function - Selection}

Commanded phase voltage (default)|Switch inputs
Use the Switching voltage function parameter to set the switching voltage function.
\begin{tabular}{|c|c|c|}
\hline Setting & Implementation & Illustration \\
\hline Commanded phase voltage & Phase a, b, c line-toneutral voltage command input. Suitable for continuous sinusoidal or space vector modulation input signals. &  \\
\hline Switch inputs (default) & \begin{tabular}{l}
Inverter switch input command. Suitable for hardware-in-the-loop (HIL) simulation. \\
The inverter switches S1, S3, and S5 using complimented control for S2, S4, and S6.
\end{tabular} &  \\
\hline
\end{tabular}

Vector of speeds (w) for tabulated losses, w_eff_bp - Speed breakpoints
1-by-M vector
Vector of motor speed, \(\omega_{m t r}\), breakpoints for power loss, in rad/s. If you set Enable memory optimized 2D LUT, the block converts the data to single precision.

\section*{Resample storage size for w_eff_bp, n1 - Speed bit size 128 (default) | 2 | 4 | \(8|16| 32|6 \overline{4}| 25 \overline{6}\)}

Speed breakpoint storage size, n1, dimensionless. The block resamples the Corresponding power loss, ploss_table data based on the storage size.

\section*{Dependencies}

To create this parameter, select Enable memory optimized 2D LUT.
```

Vector of torques (T) for tabulated losses, T_eff_bp - Torque
breakpoints
1-by-N vector

```

Vector of motor torque, \(T_{m t r}\), breakpoints for power loss, in \(\mathrm{N} \cdot \mathrm{m}\). If you set Enable memory optimized 2D LUT, the block converts the data to single precision.

\section*{Resample storage size for T_eff_bp, n2 - Torque bit size} 128 (default) | 2 | 4 | 8 | 16 | 32 | 64 | 256

Torque breakpoint storage size, \(n 2\), dimensionless. The block resamples the Corresponding power loss, ploss_table data based on the storage size.

Dependencies
To create this parameter, select Enable memory optimized 2D LUT.

\section*{Vector of temperatures for tabulated losses, Temp_eff_bp Temperature breakpoints 1-by-L vector}

Vector of inverter temperature, \(\operatorname{Temp}_{\text {Invtrtr }}\), breakpoints for power loss, in K .

\section*{Dependencies}

To create this parameter, select Input inverter temperature.

\section*{Corresponding power loss, ploss_table - 2D lookup table M-by-N array}

Array of values for power loss as a function of M motor speeds, \(\omega_{m t r}\), and N motor torques, \(T_{m t r}\), in W. Each value specifies the power loss for a specific combination of motor speed and motor torque. The array size must match the dimensions defined by the speed and torque vectors.

If you have Model-Based Calibration Toolbox, click Calibrate Maps to virtually calibrate the lookup table using measured data.

If you set Enable memory optimized 2D LUT, the block converts the data to single precision.

\section*{Dependencies}

To create this parameter, clear Input inverter temperature.

\section*{Corresponding power loss, ploss_table_3d - 3D lookup table M-by-N-by-L array}

Array of values for power loss as a function of \(M\) motor speeds, \(\omega_{m t r}, \mathrm{~N}\) motor torques, \(T_{m t r}\), and L motor temperatures, Temp Invrtr, in W. Each value specifies the power loss for a specific combination of motor speed, motor torque, and temperature. The array size must match the dimensions defined by the speed, torque, and temperature vectors.

If you have Model-Based Calibration Toolbox, click Calibrate Maps to virtually calibrate the lookup table using measured data.

\section*{Dependencies}

To create this parameter, select Input inverter temperature.

\section*{Specify Extraction}
```

w_eff_bp max endpoint, u1max - Speed breakpoint
scalar

```

Speed breakpoint maximum extrapolation endpoint, u1max, in rad/s.

\section*{Dependencies}

To create this parameter, select Enable memory optimized 2D LUT and Specify Extrapolation.
w_eff_bp min endpoint, u1min - Speed breakpoint
scalar
Speed breakpoint minimum extrapolation endpoint, u1min, in rad/s.

\section*{Dependencies}

To create this parameter, select Enable memory optimized 2D LUT and Specify Extrapolation.
```

T_eff_bp max endpoint, u2max - Torque breakpoint
scalar

```

Torque breakpoint maximum extrapolation endpoint, u2max, in rad/s.

\section*{Dependencies}

To create this parameter, select Enable memory optimized 2D LUT and Specify Extrapolation.

T_eff_bp min endpoint, u2min - Torque breakpoint
scalar
Torque breakpoint minimum extrapolation endpoint, u2min, in rad/s.

\section*{Dependencies}

To create this parameter, select Enable memory optimized 2D LUT and Specify Extrapolation.

\section*{References}
[1] Lee, Byoung-Kuk and Mehrdad Ehsami. "A simplified functional simulation model for three-phase voltage-source inverter using switching function concept." IEEE Transactions on Industrial Electronics, Vol. 48, No. 2, pp. 309-321, April 2001.
[2] Ziogas, Phoivas D., Eduardo P. Wiechmann, and Victor R. Stefanovic. "A ComputerAided Analysis and Design Approach for Static Voltage Source Inverters." IEEE Transactions on Industry Applications, Vol. IA-21, No. 5, September/October 1985.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

Flux-Based PM Controller | Induction Motor | Interior PMSM | Surface Mount PMSM

Introduced in R2019a

\section*{Mapped Motor}

Mapped motor and drive electronics operating in torque-control mode Library: Powertrain Blockset / Propulsion / Electric Motors Vehicle Dynamics Blockset / Powertrain / Propulsion


\section*{Description}

The Mapped Motor block implements a mapped motor and drive electronics operating in torque-control mode. The output torque tracks the torque reference demand and includes a motor-response and drive-response time constant. Use the block for fast system-level simulations when you do not know detailed motor parameters, for example, for motor power and torque tradeoff studies. The block assumes that the speed fluctuations due to mechanical load do not affect the motor torque tracking.

You can specify:
- Port configuration - Input torque or speed.
- Electrical torque range - Torque speed envelope or maximum motor power and torque.
- Electrical loss - Single operating point, measured efficiency, or measured loss. If you have Model-Based Calibration Toolbox, you can virtually calibrate the measured loss tables.

\section*{Electrical Torque}

To specify the range of torque and speed that the block allows, on the Electrical Torque tab, for Parametrized by, select one of these options.
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline \begin{tabular}{l} 
Tabulated torque-speed \\
envelope
\end{tabular} & \begin{tabular}{l} 
Range specified as a set of speed data points and \\
corresponding maximum torque values.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline \begin{tabular}{l} 
Maximum torque and \\
power
\end{tabular} & \begin{tabular}{l} 
Range specified with maximum torque and maximum \\
power.
\end{tabular} \\
\hline
\end{tabular}

For either method, the block implements an envelope similar to this.


\section*{Electrical Losses}

To specify the electrical losses, on the Electrical Losses tab, for Parameterize losses by, select one of these options.
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline \begin{tabular}{l} 
Single efficiency \\
measurement
\end{tabular} & \begin{tabular}{l} 
Sum of these terms, measured at a single measurement \\
point:
\end{tabular} \\
& \begin{tabular}{l} 
- Fixed losses independent of torque and speed, \(P_{0}\). Use \\
\(P_{0}\) to account for fixed converter losses. \\
A torque-dependent electrical loss \(k \tau^{2}\), where \(k\) is a \\
constant and \(\tau\) is the torque. Represents ohmic losses \\
in the copper windings.
\end{tabular} \\
& \begin{tabular}{l} 
A speed-dependent electrical loss \(k_{\mathrm{w}} \omega^{2}\), where \(k_{\mathrm{w}}\) is a \\
constant and \(\omega\) is the speed. Represents iron losses \\
due to eddy currents.
\end{tabular} \\
\hline
\end{tabular}
\(\left.\begin{array}{|l|l|}\hline \text { Setting } & \text { Block Implementation } \\
\hline \text { Tabulated loss data } & \begin{array}{l}\text { Loss lookup table that is a function of motor speeds and } \\
\text { load torques. } \\
\text { If you have Model-Based Calibration Toolbox, click } \\
\text { Calibrate Maps to virtually calibrate the 2D lookup } \\
\text { tables using measured data. }\end{array} \\
\hline \begin{array}{l}\text { Tabulated loss data } \\
\text { with temperature }\end{array} & \begin{array}{l}\text { Loss lookup table that is a function of motor speeds, load } \\
\text { torques, and operating temperature. } \\
\text { If you have Model-Based Calibration Toolbox, click } \\
\text { Calibrate Maps to virtually calibrate the 3D lookup } \\
\text { tables using measured data. }\end{array} \\
\hline \begin{array}{ll}\text { Tabulated efficiency } \\
\text { data }\end{array} & \begin{array}{l}\text { 2D efficiency lookup table that is a function of motor } \\
\text { speeds and load torques: } \\
\text { - }\end{array} \\
& \begin{array}{l}\text { Converts the efficiency values you provide into losses } \\
\text { and uses the tabulated losses for simulation. }\end{array} \\
\text { - Ignores efficiency values you provide for zero speed or } \\
\text { zero torque. Losses are assumed zero when either } \\
\text { torque or speed is zero. }\end{array}\right\}\)\begin{tabular}{l} 
Uses linear interpolation to determine losses. Provide \\
tabulated data for low speeds and low torques, as \\
required, to get the desired level of accuracy for lower \\
power conditions. \\
Does not extrapolate loss values for speed and torque \\
magnitudes that exceed the range of the table.
\end{tabular}
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline \begin{tabular}{l} 
Tabulated efficiency \\
data with temperature
\end{tabular} & \begin{tabular}{l} 
3D efficiency lookup table that is a function of motor \\
speeds, load torques, and operating temperature:
\end{tabular} \\
& \begin{tabular}{ll} 
- \begin{tabular}{l} 
Converts the efficiency values you provide into losses \\
and uses the tabulated losses for simulation.
\end{tabular} \\
& \begin{tabular}{l} 
Ignores efficiency values you provide for zero speed or \\
zero torque. Losses are assumed zero when either \\
torque or speed is zero.
\end{tabular} \\
& - \begin{tabular}{l} 
Uses linear interpolation to determine losses. Provide \\
tabulated data for low speeds and low torques, as \\
required, to get the desired level of accuracy for lower \\
power conditions.
\end{tabular} \\
& \begin{tabular}{l} 
Does not extrapolate loss values for speed, torque, or \\
temperature magnitudes that exceed the range of the \\
table.
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}

For best practice, use Tabulated loss data instead of Tabulated efficiency data:
- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

Note Due to system losses, the motor can draw a current when the motor torque is zero.

\section*{Virtual Calibration}

If you have Model-Based Calibration Toolbox, you can virtually calibrate the measured loss lookup tables.

1 On the Electrical Losses tab, set Parameterize losses by to either:
- Tabulated loss data
- Tabulated loss data with temperature

\section*{2 Click Calibrate Maps.}

The dialog box steps through these tasks.
\begin{tabular}{|c|c|c|}
\hline Task & \multicolumn{2}{|l|}{Description} \\
\hline \multirow[t]{5}{*}{Import Loss Data} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Import this loss data from a file. For example, open <matlabroot>toolbox/autoblks/autoblksshared/ mbctemplates/MappedMotorDataset.xlsx. \\
For more information, see "Using Data" (Model-Based Calibration Toolbox).
\end{tabular}} \\
\hline & Parameterize losses by & Required Data \\
\hline & Tabulated loss data & - Motor speed, \(\mathrm{rad} / \mathrm{s}\)
- Motor torque, \(\mathrm{N} \cdot \mathrm{m}\)
-
Power loss, W \\
\hline & Tabulated loss data with temperature & \begin{tabular}{l}
- Motor speed, rad/s \\
- Motor torque, \(\mathrm{N} \cdot \mathrm{m}\) \\
- Motor temperature, K \\
- Power loss, W
\end{tabular} \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
Collect motor data at steady-state operating conditions. Data should cover the motor speed, torque, and temperature operating range. \\
To filter or edit the data, select Edit in Application. The ModelBased Calibration Toolbox Data Editor opens.
\end{tabular}} \\
\hline Generate Response Models & \multicolumn{2}{|l|}{\begin{tabular}{l}
Model-Based Calibration Toolbox uses test plans to fit data to Gaussian process models (GPMs). \\
To assess or adjust the response model fit, select Edit in Application. The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Task & \multicolumn{2}{|l|}{Description} \\
\hline Generate Calibration & \multicolumn{2}{|l|}{To assess or adjust the calibration, select Edit in Application. The Model-Based Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Tables" (Model-Based Calibration Toolbox).} \\
\hline Update block & \multicolumn{2}{|l|}{Update these parameters with the calibration.} \\
\hline & Parameterize losses by & Parameters \\
\hline & Tabulated loss data & \begin{tabular}{l}
- Vector of speeds(w) for tabulated losses, w_eff_bp \\
- Vector of torques (T) for tabulated losses, T_eff_bp \\
Corresponding losses, losses_table
\end{tabular} \\
\hline & Tabulated loss data with temperature & \begin{tabular}{l}
- Vector of speeds(w) for tabulated losses, w_eff_bp \\
- Vector of torques (T) for tabulated losses, T_eff_bp \\
- Vector of temperatures for tabulated losses, Temp_eff_bp \\
- Corresponding losses, losses_table_3d
\end{tabular} \\
\hline
\end{tabular}

\section*{Battery Current}

The block calculates the battery current using the mechanical power, power loss, and battery voltage. Positive current indicates battery discharge. Negative current indicates battery charge.
\[
\text { BattAmp }=\frac{\text { MechPwr }+ \text { PwrLoss }}{\text { BattVolt }}
\]

The equation uses these variables.

\section*{BattVolt Battery voltage}

MechPwr Mechanical power
PwrLoss Power loss
BattCurr Battery current

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Variable & Equations \\
\hline \multirow[t]{4}{*}{} & \multirow[t]{2}{*}{\begin{tabular}{l}
PwrTrnsfrd \\
- Positive signals indicate power flow into the block. \\
- Negative signals indicate power flow out of the block.
\end{tabular}} & PwrMtr & Mechanical power & \(P_{\text {mot }}\) & \(P_{\text {mot }}=\omega_{m} T_{e}\) \\
\hline & & PwrBus & Electrical power & \(P_{\text {bus }}\) & \[
\begin{aligned}
& P_{\text {bus }}=P_{\text {mot }} \\
& +P_{\text {loss }}
\end{aligned}
\] \\
\hline & \begin{tabular}{l}
PwrNotTrnsfrd \\
- Negative signals indicate power loss.
\end{tabular} & \begin{tabular}{l}
PwrLos \\
S
\end{tabular} & Motor power loss & \(P_{\text {loss }}\) & \[
\begin{aligned}
& P_{\text {stored }}= \\
& \omega_{m} \dot{\omega}_{m} J
\end{aligned}
\] \\
\hline & \begin{tabular}{l}
PwrStored \\
- Positive signals indicate power gain.
\end{tabular} & PwrSto redShf t & Motor power stored & \(P_{\text {str }}\) & \[
\begin{aligned}
& P_{\text {loss }}=-\left(P_{\text {mot }}\right. \\
& +P_{\text {loss }}- \\
& ) \\
& )
\end{aligned}
\] \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(T_{e}\) & Motor output shaft torque \\
\(\omega\) & Motor shaft speed \\
\(J\) & Motor inertia
\end{tabular}

\section*{Ports}

\section*{Input}

\section*{BattVolt - Battery voltage \\ scalar}

Battery voltage, BattVolt, in V.

\section*{TrqCmd - Commanded motor torque \\ scalar}

Commanded motor torque, \(\operatorname{Tr}_{c m d}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To create this input port, for the Port configuration, select Torque.

\section*{MtrSpd - Motor output shaft speed}
scalar
Motor shaft speed, \(M t r_{\text {spd }}\), in rad/s.

\section*{Dependencies}

To create this input port, for the Port configuration, select Speed.

\section*{Output}

\section*{Info - Bus signal}
bus
The bus signal contains these block calculations.
\begin{tabular}{|l|l|l|l|}
\hline Signal & Description & Units \\
\hline MechPwr & Mechanical power & rad \\
\hline PwrLoss & \begin{tabular}{l} 
Internal inverter and motor power \\
loss
\end{tabular} & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline \begin{tabular}{l} 
PwrInf \\
0
\end{tabular} & PwrTrnsfrd & PwrMtr & Mechanical power \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{2}{|l|}{ Signal } & Description & Units \\
\hline \multirow{4}{*}{} & & PwrBus & Electrical power & W \\
\cline { 2 - 5 } & \begin{tabular}{l} 
PwrNotTrnsf \\
rd
\end{tabular} & PwrLoss & Motor power loss & W \\
\cline { 2 - 5 } & PwrStored & \begin{tabular}{l} 
PwrStore \\
dShft
\end{tabular} & Motor power stored & W \\
\hline
\end{tabular}

\section*{BattCurr - Battery current}
scalar
Battery current draw or demand, \(I_{\text {batt, }}\), in A.

\section*{MtrTrq - Motor torque}
scalar
Motor output shaft torque, \(\mathrm{Mtr}_{\text {trq }}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{MtrSpd - Motor shaft speed}
scalar
Motor shaft speed, \(M t r_{\text {spd }}\), in rad/s.

\section*{Dependencies}

To create this output port, for the Port configuration, select Torque.

\section*{Parameters}

\section*{Block Options}

\section*{Port configuration - Select port configuration}

Torque (default) | Speed
This table summarizes the port configurations.
\begin{tabular}{|l|l|}
\hline Port Configuration & Creates Ports \\
\hline Torque & Outpost MtrSpd \\
\hline Speed & Input Mt rSpd \\
\hline
\end{tabular}

\section*{Calibrate Maps - Calibrate tables with measured data selection}

If you have Model-Based Calibration Toolbox, you can virtually calibrate the measured loss lookup tables.

1 On the Electrical Losses tab, set Parameterize losses by to either:
- Tabulated loss data
- Tabulated loss data with temperature

\section*{2 Click Calibrate Maps.}

The dialog box steps through these tasks.
\begin{tabular}{|c|c|c|}
\hline Task & \multicolumn{2}{|l|}{Description} \\
\hline \multirow[t]{5}{*}{Import Loss Data} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Import this loss data from a file. For example, open <matlabroot>toolbox/autoblks/autoblksshared/ mbctemplates/MappedMotorDataset.xlsx. \\
For more information, see "Using Data" (Model-Based Calibration Toolbox).
\end{tabular}} \\
\hline & Parameterize losses by & Required Data \\
\hline & Tabulated loss data & \begin{tabular}{l}
- Motor speed, rad/s \\
- Motor torque, \(\mathrm{N} \cdot \mathrm{m}\) \\
- Power loss, W
\end{tabular} \\
\hline & Tabulated loss data with temperature & \begin{tabular}{l}
- Motor speed, rad/s \\
- Motor torque, \(\mathrm{N} \cdot \mathrm{m}\) \\
- Motor temperature, K \\
- Power loss, W
\end{tabular} \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
Collect motor data at steady-state operating conditions. Data should cover the motor speed, torque, and temperature operating range. \\
To filter or edit the data, select Edit in Application. The ModelBased Calibration Toolbox Data Editor opens.
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Task & \multicolumn{2}{|l|}{Description} \\
\hline Generate Response Models & \multicolumn{2}{|l|}{\begin{tabular}{l}
Model-Based Calibration Toolbox uses test plans to fit data to Gaussian process models (GPMs). \\
To assess or adjust the response model fit, select Edit in Application. The Model-Based Calibration Toolbox Model Browser opens. For more information, see "Model Assessment" (Model-Based Calibration Toolbox).
\end{tabular}} \\
\hline Generate Calibration & \multicolumn{2}{|l|}{\begin{tabular}{l}
Model-Based Calibration Toolbox calibrates the response models and generates calibrated tables. \\
To assess or adjust the calibration, select Edit in Application. The Model-Based Calibration Toolbox CAGE Browser opens. For more information, see "Calibration Tables" (Model-Based Calibration Toolbox).
\end{tabular}} \\
\hline \multirow[t]{4}{*}{Update block parameters} & \multicolumn{2}{|l|}{Update these parameters with the calibration.} \\
\hline & Parameterize losses by & Parameters \\
\hline & Tabulated loss data & \begin{tabular}{l}
- Vector of speeds(w) for tabulated losses, w_eff_bp \\
- Vector of torques (T) for tabulated losses, T_eff_bp \\
Corresponding losses, losses_table
\end{tabular} \\
\hline & Tabulated loss data with temperature & \begin{tabular}{l}
- Vector of speeds(w) for tabulated losses, w_eff_bp \\
- Vector of torques (T) for tabulated losses, T_eff_bp \\
- Vector of temperatures for tabulated losses, Temp_eff_bp \\
- Corresponding losses, losses_table_3d
\end{tabular} \\
\hline
\end{tabular}

\section*{Electrical Torque}

\section*{Parameterized by - Select type}

Tabulated torque-speed envelope (default)|Maximum torque and power
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline \begin{tabular}{l} 
Tabulated torque-speed \\
envelope
\end{tabular} & \begin{tabular}{l} 
Range specified as a set of speed data points and \\
corresponding maximum torque values.
\end{tabular} \\
\hline \begin{tabular}{l} 
Maximum torque and \\
power
\end{tabular} & \begin{tabular}{l} 
Range specified with maximum torque and maximum \\
power.
\end{tabular} \\
\hline
\end{tabular}

For either method, the block implements an envelope similar to this.


\section*{Vector of rotational speeds, w_t - Rotational speeds vector}

Rotational speeds for permissible steady-state operation, in rad/s. To avoid poor performance due to an infinite slope in the torque-speed curve, specify a vector of rotational speeds that does not contain duplicate consecutive values.

\section*{Dependencies}

To create this parameter, for the Parameterized by parameter, select Tabulated torque-speed envelope.

Vector of maximum torque values, T_t - Torque vector

Maximum torque values for permissible steady state, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To create this parameter, for the Parameterized by parameter, select Tabulated torque-speed envelope.

Maximum torque, torque_max - Torque
scalar
The maximum permissible motor torque, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To create this parameter, for the Parameterized by parameter, select Maximum torque and power.

Maximum power, power_max - Power
scalar
The maximum permissible motor power, in W.

\section*{Dependencies}

To create this parameter, for the Parameterized by parameter, select Maximum torque and power.
```

Torque control time constant, Tc - Time constant
scalar

```

Time constant with which the motor driver tracks a torque demand, in s.

\section*{Electrical Losses}

\section*{Parameterize losses by - Select type}

Single efficiency measurement (default)|Tabulated loss data|Tabulated efficiency data
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline \begin{tabular}{l} 
Single efficiency \\
measurement
\end{tabular} & \begin{tabular}{l} 
Sum of these terms, measured at a single measurement \\
point:
\end{tabular} \\
& \begin{tabular}{l} 
- Fixed losses independent of torque and speed, \(P_{0}\). Use \\
\(P_{0}\) to account for fixed converter losses. \\
A torque-dependent electrical loss \(k \tau^{2}\), where \(k\) is a \\
constant and \(\tau\) is the torque. Represents ohmic losses \\
in the copper windings. \\
A speed-dependent electrical loss \(k_{\mathrm{w}} \omega^{2}\), where \(k_{\mathrm{w}}\) is a \\
constant and \(\omega\) is the speed. Represents iron losses \\
due to eddy currents.
\end{tabular} \\
\hline Tabulated loss data & \begin{tabular}{l} 
Loss lookup table that is a function of motor speeds and \\
load torques. \\
If you have Model-Based Calibration Toolbox, click \\
Calibrate Maps to virtually calibrate the 2D lookup \\
tables using measured data.
\end{tabular} \\
\hline \begin{tabular}{l} 
Tabulated loss data \\
with temperature
\end{tabular} & \begin{tabular}{l} 
Loss lookup table that is a function of motor speeds, load \\
torques, and operating temperature.
\end{tabular} \\
If you have Model-Based Calibration Toolbox, click \\
Calibrate Maps to virtually calibrate the 3D lookup \\
tables using measured data.
\end{tabular}
\begin{tabular}{|c|c|}
\hline Setting & Block Implementation \\
\hline Tabulated efficiency data & \begin{tabular}{l}
2D efficiency lookup table that is a function of motor speeds and load torques: \\
- Converts the efficiency values you provide into losses and uses the tabulated losses for simulation. \\
- Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero. \\
- Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions. \\
- Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.
\end{tabular} \\
\hline Tabulated efficiency data with temperature & \begin{tabular}{l}
3D efficiency lookup table that is a function of motor speeds, load torques, and operating temperature: \\
- Converts the efficiency values you provide into losses and uses the tabulated losses for simulation. \\
- Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero. \\
- Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions. \\
- Does not extrapolate loss values for speed, torque, or temperature magnitudes that exceed the range of the table.
\end{tabular} \\
\hline
\end{tabular}

For best practice, use Tabulated loss data instead of Tabulated efficiency data:
- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

Note Due to system losses, the motor can draw a current when the motor torque is zero.

\section*{Motor and drive overall efficiency, eff - Efficiency \\ scalar}

The block defines overall efficiency as:
\[
\eta=100 \frac{\tau_{0} \omega_{0}}{\tau_{0} \omega_{0}+P_{0}+k \tau_{0}^{2}+k_{w} \omega_{0}^{2}}
\]

The equation uses these variables.
\begin{tabular}{ll}
\(\tau_{0}\) & Torque at which efficiency is measured \\
\(\omega_{0}\) & Speed at which efficiency is measured \\
\(P_{0}\) & Fixed losses independent of torque or speed \\
\(k \tau_{0}^{2}\) & Torque-dependent electrical losses \\
\(k_{w} \omega^{2}\) & Speed-dependent iron losses
\end{tabular}

At initialization, the block solves the efficiency equation for \(k\). The block neglects losses associated with the rotor damping.

\section*{Dependencies}

To create this parameter, for the Parameterize losses by parameter, select Single efficiency measurement.
```

Speed at which efficiency is measured, w_eff - Speed
scalar

```

Speed at which efficiency is measured, in rad/s.

\section*{Dependencies}

To create this parameter, for the Parameterize losses by parameter, select Single efficiency measurement.
```

Torque at which efficiency is measured, T_eff - Torque
scalar

```

Torque at which efficiency is measured, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To create this parameter, for the Parameterize losses by parameter, select Single efficiency measurement.
```

Iron losses, Piron - Power
scalar

```

Iron losses at the speed and torque at which efficiency is defined, in W.

\section*{Dependencies}

To create this parameter, for the Parameterize losses by parameter, select Single efficiency measurement.

Fixed losses independent of torque and speed, Pbase - Power scalar

Fixed electrical loss associated with the driver when the motor current and torque are zero, in W.

\section*{Dependencies}

To create this parameter, for the Parameterize losses by parameter, select Single efficiency measurement.
```

Vector of speeds (w) for tabulated losses, w_eff_bp - Breakpoints
1-by-M array

```

Speed breakpoints for lookup table when calculating losses, in rad/s. Array dimensions are 1 by the number of speed breakpoints, M .

\section*{Dependencies}

To create this parameter, for the Parameterize losses by parameter, select one of these:
- Tabulated loss data
- Tabulated loss data with temperature
- Tabulated efficiency data
- Tabulated efficiency data with temperature

Vector of torques ( \(T\) ) for tabulated losses, T_eff_bp - Breakpoints 1-by-N array

Torque breakpoints for lookup table when calculating losses, in \(\mathrm{N} \cdot \mathrm{m}\). Array dimensions are 1 by the number of torque breakpoints, N .

\section*{Dependencies}

To create this parameter, for the Parameterize losses by parameter, select one of these:
- Tabulated loss data
- Tabulated loss data with temperature
- Tabulated efficiency data
- Tabulated efficiency data with temperature

\section*{Vector of temperatures for tabulated losses, Temp_eff_bp Breakpoints}

1-by-L array
Temperature breakpoints for lookup table when calculating losses, in K. Array dimensions are 1 by the number of temperature breakpoints, L.

\section*{Dependencies}

To create this parameter, for the Parameterize losses by parameter, select one of these:
- Tabulated loss data with temperature
- Tabulated efficiency data with temperature

\section*{Corresponding losses, losses_table - 2D lookup table}

M-by-N array
Array of values for electrical losses as a function of speed and torque, in W. Each value specifies the losses for a specific combination of speed and torque. The array dimensions must match the speed, \(M\), and torque, \(N\), breakpoint vector dimensions.

\section*{Dependencies}

To create this parameter, for the Parameterize losses by parameter, select Tabulated loss data.

\section*{Corresponding losses, losses_table_3d - 3D lookup table}

M-by-N-by-L array
Array of values for electrical losses as a function of speed, torque, and temperature, in W. Each value specifies the losses for a specific combination of speed, torque, and
temperature. The array dimensions must match the speed, M , torque, N , and temperature, L , breakpoint vector dimensions.

\section*{Dependencies}

To create this parameter, for the Parameterize losses by parameter, select Tabulated loss data with temperature.

\section*{Corresponding efficiency, efficiency_table - 2D lookup table M-by-N array}

Array of efficiency as a function of speed and torque, in \%. Each value specifies the losses for a specific combination of speed and torque. The array dimensions must match the speed, \(M\), and torque, \(N\), breakpoint vector dimensions.

The block ignores efficiency values for zero speed or zero torque. Losses are zero when either torque or speed is zero. The block uses linear interpolation.

To get the desired level of accuracy for lower power conditions, you can provide tabulated data for low speeds and low torques.

\section*{Dependencies}

To create this parameter, for the Parameterize losses by parameter, select Tabulated efficiency data.

\section*{Corresponding efficiency, efficiency_table_3d - 3D lookup table} M-by-N-by-L array

Array of efficiency as a function of speed and torque, in \%. Each value specifies the losses for a specific combination of speed and torque. The array dimensions must match the speed, \(M\), torque, \(N\), and temperature, \(L\), breakpoint vector dimensions.

The block ignores efficiency values for zero speed or zero torque. Losses are zero when either torque or speed is zero. The block uses linear interpolation.

To get the desired level of accuracy for lower power conditions, you can provide tabulated data for low speeds and low torques.

\section*{Dependencies}

To create this parameter, for the Parameterize losses by parameter, select Tabulated efficiency data.

\section*{Mechanical}

Rotational inertia, J - Inertia
scalar

Rotor resistance to change in motor motion, in \(\mathrm{kg}^{*} \mathrm{~m}^{2}\). The value can be zero.
Dependencies
To create this parameter, for the Port configuration parameter, select Torque.
Rotor damping, b - Damping
scalar
Rotor damping, in \(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})\). The value can be zero.

\section*{Dependencies}

To create this parameter, for the Port configuration parameter, select Torque.

\section*{Initial rotor speed, omega_o - Speed \\ scalar}

Rotor speed at the start of the simulation, in rad/s.

\section*{Dependencies}

To create this parameter, for the Port configuration parameter, select Torque.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).

\section*{See Also}

Flux-Based PMSM | Induction Motor | Interior PMSM | Surface Mount PMSM

\section*{Introduced in R2017a}

6

\section*{Scenario Creation Blocks Alphabetical List}

\section*{Drive Cycle Source}

Standard or specified longitudinal drive cycle
Library: \(\begin{aligned} & \text { Powertrain Blockset / Vehicle Scenario Builder } \\ & \text { Vehicle Dynamics Blockset / Vehicle Scenarios / Drive } \\ & \text { Cycle and Maneuvers }\end{aligned}\)

\section*{Description}

The Drive Cycle Source block generates a standard or user-specified longitudinal drive cycle. The block output is the specified vehicle longitudinal speed, which you can use to:
- Predict the engine torque and fuel consumption that a vehicle requires to achieve desired speed and acceleration for a given gear shift reference.
- Produce realistic velocity and shift references for closed loop acceleration and braking commands for vehicle control and plant models.
- Study, tune, and optimize vehicle control, system performance, and system robustness over multiple drive cycles.

For the drive cycles, you can use:
- Drive cycles from predefined sources. By default, the block includes the FTP-75 drive cycle. To install additional drive cycles from a support package, see "Install Drive Cycle Data". The support package has drive cycles that include the gear shift schedules, for example JC08 and CUEDC.
- Workspace variables.
- .mat, .xls, .xlsx, or .txt files.
- Wide open throttle (WOT) parameters, including initial and nominal reference speed, deceleration start time, and final reference speed.

To achieve the goals listed in the table, use the specified Drive Cycle Source block parameter options.
\begin{tabular}{|l|l|}
\hline Goal & Action \\
\hline \begin{tabular}{l} 
Repeat the drive cycle if the \\
simulation run time exceeds the \\
drive cycle length.
\end{tabular} & Select Repeat cyclically. \\
\hline \begin{tabular}{l} 
Output the acceleration, as \\
calculated by Savitzky-Golay \\
differentiation.
\end{tabular} & Select Output acceleration. \\
\hline \begin{tabular}{l} 
Specify a sample period for \\
discrete applications.
\end{tabular} & \begin{tabular}{l} 
Specify a Output sample period (0 for continuous), \\
dt parameter.
\end{tabular} \\
\hline \begin{tabular}{l} 
Update the simulation run time \\
so that it equals the length of \\
the drive cycle.
\end{tabular} & \begin{tabular}{l} 
Click Update simulation time. If a model \\
configuration reference exists, the block does not \\
enable this option.
\end{tabular} \\
\hline \begin{tabular}{l} 
Plot the drive cycle in a \\
MATLAB®
\end{tabular} \\
\hline \begin{tabular}{l} 
Specigure.
\end{tabular} & Click Plot drive cycle. \\
workspace variable.
\end{tabular}
\begin{tabular}{|l|l|}
\hline Goal & Action \\
\hline Output drive cycle gear. & \begin{tabular}{l} 
Specify a drive cycle that contains a gear shift \\
schedule. You can use:
\end{tabular} \\
& \begin{tabular}{l} 
- \begin{tabular}{l} 
A support package to install standard drive cycles \\
that include the gear shift schedules, for example \\
JC08 and CUEDC.
\end{tabular} \\
\\
\\
\\
\\
- Workspace variables. \\
- .mat, .xls, .xlsx, or .txt files. \\
Click Output gear shift data.
\end{tabular} \\
\hline \begin{tabular}{l} 
Install additional drive cycles \\
from a support package.
\end{tabular} & \begin{tabular}{l} 
Click Install additional drive cycles. The block \\
enables the parameter if you can install additional drive \\
cycles from a support package.
\end{tabular} \\
\hline
\end{tabular}

\section*{Ports}

\section*{Output}

\section*{Speed - Vehicle reference speed \\ scalar}

Vehicle reference speed, in units that you specify. To specify the units, use the Output velocity units parameter.

\section*{Acceleration - Vehicle reference acceleration}
scalar
To calculate the acceleration, the block implements Savitzky-Golay differentiation using a second-order polynomial with a three-sample point filter.

\section*{Dependencies}

To create the output acceleration port, select Output acceleration. Selecting Output acceleration enables the Output acceleration units parameter.

\section*{Gear - Vehicle gear}
scalar

\section*{Dependencies}

To create this port:
1 Specify a drive cycle that contains a gear shift schedule. You can use:
- A support package to install standard drive cycles that include the gear shift schedules, for example JC08 and CUEDC.
- Workspace variables.
- .mat, .xls, .xlsx, or .txt files.

2 Select Output gear shift data.

\section*{Parameters}

\section*{Drive Cycle}

\section*{Drive cycle source - Select the drive cycle source}

FTP75 (default)|Wide Open Throttle (WOT) |Workspace variable
|.mat, .xls, .xlsx or .txt file
- FTP75 - Load the FTP75 drive cycle from a .mat file into a 1-D Lookup Table block. The FTP75 represents a city drive cycle that you can use to determine tailpipe emissions and fuel economy of passenger cars. To install additional drive cycles from a support package, see "Install Drive Cycle Data".
- Wide Open Throttle (WOT) - Use WOT parameters to specify a drive cycle for performance testing.
- Workspace variable - Specify time, speed, and, optionally, gear data as a structure, 2-D array, or time series object.
- .mat, .xls, .xlsx or .txt file - Specify a file that contains time, speed and, optionally, gear data in column format.

Once you have installed additional cycles, you can use set_param to set the drive cycle. For example, to use drive cycle US06:
```

set_param([gcs '/Drive Cycle Source'],'cycleVar','US06')

```

Dependencies
The table summarizes the parameter dependencies.
\begin{tabular}{|c|c|}
\hline Drive Cycle Source & Enables Parameter \\
\hline \multirow[t]{7}{*}{Wide Open Throttle (WOT)} & Start time, t_wot1 \\
\hline & Initial reference speed, xdot_woto \\
\hline & Nominal reference speed, xdot_wot1 \\
\hline & Time to start deceleration, wot2 \\
\hline & Final reference speed, xdot_wot2 \\
\hline & WOT simulation time, t_wotend \\
\hline & Source velocity units \\
\hline \multirow[t]{3}{*}{Workspace variable} & From workspace \\
\hline & Source velocity units \\
\hline & Output gear shift data, if drive cycle includes gear shift schedule \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text {.mat, .xls, .xlsx or .txt } \\
& \text { file }
\end{aligned}
\]} & Drive cycle source file \\
\hline & Source velocity units \\
\hline & Output gear shift data, if drive cycle includes gear shift schedule \\
\hline
\end{tabular}

\section*{From workspace - Workspace}
variable
Monotonically increasing time, velocity, and, optionally, gear data, specified by a structure, 2-D array, or time series object. Enter units for velocity in the Source velocity units parameter field.

A valid point must exist for each corresponding time value. You cannot specify inf, empty, or NaN.







\section*{Dependencies}

To enable this parameter, select Workspace variable from Drive cycle source.
Drive cycle source file - File name
.mat, .xls, .xlsx or .txt
File containing monotonically increasing time, velocity, and, optionally, gear in column or comma-separated format. The block ignores units in the file. Enter units for velocity in the Source velocity units parameter field.




If you provide the gear schedule using \(\mathbf{P}, \mathbf{R}, \mathbf{N}, \mathbf{D}, \mathbf{L}, \mathbf{O D}\), the block maps the gears to integers.
\begin{tabular}{|l|l|}
\hline Gear & Integer \\
\hline\(P\) & 80 \\
\hline\(R\) & -1 \\
\hline\(N\) & 0 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Gear & Integer \\
\hline L & 1 \\
\hline D & 2 \\
\hline OD & Next integer after highest specified gear. \\
\hline
\end{tabular}

For example, the block converts the gear schedule P P N L D 345654567 OD 7 to 808001234565456787.

\section*{Dependencies}

To enable this parameter, select .mat, .xls, .xlsx or .txt file from Drive cycle source.

\section*{Repeat cyclically - Repeat drive cycle} off (default)

Repeat the drive cycle if the simulation run time exceeds the length of the drive cycle.

\section*{Output acceleration - Output the acceleration}

\section*{off (default)}

To calculate the acceleration, the block implements Savitzky-Golay differentiation using a second-order polynomial with a three-sample point filter.

\section*{Dependencies}

To create the output acceleration port, select Output acceleration. Selecting Output acceleration enables the Output acceleration units parameter.

\section*{Output gear shift data - Output the gear}

\section*{off (default)}

\section*{Dependencies}
- Specify a drive cycle that contains a gear shift schedule. You can use:
- A support package to install standard drive cycles that include the gear shift schedules, for example JC08 and CUEDC.
- Workspace variables.
- .mat, .xls, .xlsx, or .txt files.
- Clicking this parameter creates input port Gear.

\section*{WOT}

\section*{Start time, t_wot1 - Drive cycle start time \\ scalar}

Drive cycle start time, in s. For example, this plot shows a drive cycle with a start time of 10 s.


\section*{Dependencies}

To enable this parameter, select the Drive cycle source parameter Wide Open Throttle (WOT).

\section*{Initial reference speed, xdot_woto - Speed scalar}

Initial reference speed, in units that you specify with the Source velocity units parameter. For example, this plot shows a drive cycle with an initial reference speed of 4 \(\mathrm{m} / \mathrm{s}\).


\section*{Dependencies}

To enable this parameter, select the Drive cycle source parameter Wide Open Throttle (WOT).

Nominal reference speed, xdot_wot1 - Speed
scalar
Nominal reference speed, in units that you specify with the Source velocity units parameter. For example, this plot shows a drive cycle with a nominal reference speed of \(30 \mathrm{~m} / \mathrm{s}\).


\section*{Dependencies}

To enable this parameter, select the Drive cycle source parameter Wide Open Throttle (WOT).

Time to start deceleration, wot2 - Time
scalar
Time to start vehicle deceleration, in s. For example, this plot shows a drive cycle with vehicle deceleration starting at 25 s .


\section*{Dependencies}

To enable this parameter, select the Drive cycle source parameter Wide Open Throttle (WOT).

Final reference speed, xdot_wot2 - Speed
scalar
Final reference speed, in units that you specify with the Source velocity units parameter. For example, this plot shows a drive cycle with a final reference speed of 2 \(\mathrm{m} / \mathrm{s}\).


\section*{Dependencies}

To enable this parameter, select the Drive cycle source parameter Wide Open Throttle (WOT).

WOT simulation time, t_wotend - Time

\section*{scalar}

Drive cycle WOT simulation time, in s. For example, this plot shows a drive cycle with a simulation time of 50 s .


\section*{Dependencies}

To enable this parameter, select the Drive cycle source parameter Wide Open Throttle (WOT).

\section*{Units and Sample Period}

\section*{Source velocity units - Specify velocity units}

\section*{m/s (default)}

Input velocity units.

\section*{Dependencies}

To enable this parameter, select the Drive cycle source parameter Wide Open Throttle (WOT), Workspace variable, or .mat, .xls, .xlsx or .txt file.

Output velocity units - Specify velocity units
m/s (default)
Output velocity units.

\section*{Output acceleration units - Specify acceleration units m/s^2 (default)}

Specify the output acceleration units.

\section*{Dependencies}

To enable this parameter, select Output acceleration.

\section*{Output sample period (0) for continuous - Sample rate scalar}

Sample rate. Set to 0 for continuous sample period. For a discrete period, specify a nonzero rate.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

Longitudinal Driver

\author{
Topics \\ "Time Series Objects and Collections" (MATLAB) \\ Introduced in R2017a
}

\section*{Longitudinal Driver}

Longitudinal speed-tracking controller
\begin{tabular}{ll} 
Library: & Powertrain Blockset / Vehicle Scenario Builder \\
& Vehicle Dynamics Blockset / Vehicle Scenarios / \\
& Driver
\end{tabular}


\section*{Description}

The Longitudinal Driver block implements a longitudinal speed-tracking controller. Based on reference and feedback velocities, the block generates normalized acceleration and braking commands that can vary from 0 through 1 . You can use the block to model the dynamic response of a driver or to generate the commands necessary to track a longitudinal drive cycle.

\section*{Configurations}

\section*{Controller}

Use the Control type, cntrlType parameter to specify one of these control options.
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline PI & \begin{tabular}{l} 
Proportional-integral (PI) control with tracking windup and feed- \\
forward gains.
\end{tabular} \\
\hline Scheduled PI & \begin{tabular}{l} 
PI control with tracking windup and feed-forward gains that are a \\
function of vehicle velocity.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline Predictive & \begin{tabular}{l} 
Optimal single-point preview (look ahead) control model developed \\
by C. C. MacAdam \\
\\
control behavior during path-following and obstacle avoidance \\
maneuvers. Drivers preview (look ahead) to follow a predefined \\
path. To implement the MacAdam model, the block:
\end{tabular} \\
& \begin{tabular}{l} 
Represents the dynamics as a linear single track (bicycle) \\
vehicle
\end{tabular} \\
& \begin{tabular}{l} 
Minimizes the previewed error signal at a single point \(T^{*}\) \\
seconds ahead in time
\end{tabular} \\
& \begin{tabular}{l} 
Accounts for the driver lag deriving from perceptual and \\
neuromuscular mechanisms
\end{tabular} \\
\hline
\end{tabular}

\section*{Shift}

Use the Shift type, shftType parameter to specify one of these shift options.
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline None & No transmission. Block outputs a constant gear of 1. \\
Use this setting to minimize the number of parameters you need to \\
generate acceleration and braking commands to track forward \\
vehicle motion. This setting does not allow reverse vehicle motion.
\end{tabular}\(|\)
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline Scheduled & \begin{tabular}{l} 
Block uses a Stateflow chart to model reverse, neutral, park, and \\
N-speed gear shift scheduling. \\
Use this setting to generate acceleration and braking commands to \\
track forward and reverse vehicle motion using reverse, neutral, \\
park, and N-speed gear shift scheduling. Depending on the vehicle \\
state and vehicle velocity feedback, the block uses these \\
parameters to determine the: \\
- Initial gear \\
- \(\quad\) Upshift and downshift accelerator pedal positions \\
- \(\quad\) Upshift and downshift velocity \\
- Timing for shifting and engaging forward and reverse from \\
neutral
\end{tabular} \\
\hline \begin{tabular}{l} 
For neutral gears, the block uses braking commands to control the \\
vehicle speed. For reverse gears, the block uses an acceleration \\
command to generate torque and a brake command to reduce \\
vehicle speed.
\end{tabular} \\
\hline \begin{tabular}{l} 
Block uses the input gear, vehicle state, and velocity feedback to \\
generate acceleration and braking commands to track forward and \\
reverse vehicle motion.
\end{tabular} \\
\begin{tabular}{l} 
For neutral gears, the block uses braking commands to control the \\
vehicle speed. For reverse gears, the block uses an acceleration \\
command to generate torque and a brake command to reduce \\
vehicle speed.
\end{tabular} \\
\hline
\end{tabular}

\section*{Controller: PI Speed-Tracking}

If you set the control type to PI or Scheduled PI, the block implements proportionalintegral (PI) control with tracking windup and feed-forward gains. For the Scheduled PI configuration, the block uses feed forward gains that are a function of vehicle velocity.

To calculate the speed control output, the block uses these equations.
\begin{tabular}{|l|c|}
\hline Setting & Equation \\
\hline PI & \(y=\frac{K_{f f}}{v_{\text {nom }}} v_{r e f}+\frac{K_{p} e_{r e f}}{v_{\text {nom }}}+\int\left(\frac{K_{i} e_{r e f}}{v_{\text {nom }}}+K_{a w} e_{o u t}\right) d t+K_{g} \theta\) \\
\hline Scheduled PI & \(y=\frac{K_{f f}(v)}{v_{\text {nom }}} v_{r e f}+\frac{K_{p}(v) e_{r e f}}{v_{\text {nom }}}+\int\left(\frac{K_{i}(v) e_{r e f}}{v_{\text {nom }}}+K_{a w} e_{o u t}\right) e_{r e f} d t+K_{g}(v) \theta\) \\
\hline
\end{tabular}
where:
\[
\begin{aligned}
& e_{\text {ref }}=v_{\text {ref }}-v \\
& e_{\text {out }}=y_{\text {sat }}-y \\
& y_{\text {sat }}=\left\{\begin{array}{cc}
-1 & y<-1 \\
y & -1 \leq y \leq 1 \\
1 & 1<y
\end{array}\right.
\end{aligned}
\]

The velocity error low-pass filter uses this transfer function.
\[
H(s)=\frac{1}{\tau_{e r r} s+1} \text { for } \tau_{e r r}>0
\]

To calculate the acceleration and braking commands, the block uses these equations.
\[
\begin{aligned}
& y_{\text {acc }}=\left\{\begin{array}{cc}
0 & y_{\text {sat }}<0 \\
y_{\text {sat }} & 0 \leq y_{\text {sat }} \leq 1 \\
1 & 1<y_{\text {sat }}
\end{array}\right. \\
& y_{\text {dec }}=\left\{\begin{array}{cc}
0 & y_{\text {sat }}>0 \\
-y_{\text {sat }} & -1 \leq y_{\text {sat }} \leq 0 \\
1 & y_{\text {sat }}<-1
\end{array}\right.
\end{aligned}
\]

The equations use these variables.
\begin{tabular}{ll}
\(v_{\text {nom }}\) & Nominal vehicle speed \\
\(K_{p}\) & Proportional gain \\
\(K_{i}\) & Integral gain \\
\(K_{a w}\) & Anti-windup gain
\end{tabular}
\begin{tabular}{ll}
\(K_{f f}\) & Velocity feed-forward gain \\
\(K_{g}\) & Grade feed-forward gain \\
\(\theta\) & Grade angle \\
\(\tau_{e r r}\) & Error filter time constant \\
\(y\) & Nominal control output magnitude \\
\(y_{s a t}\) & Saturated control output magnitude \\
\(e_{r e f}\) & Velocity error \\
\(e_{\text {out }}\) & Difference between saturated and nominal control outputs \\
\(y_{a c c}\) & Acceleration signal \\
\(y_{d e c}\) & Braking signal \\
\(v\) & Velocity feedback signal \\
\(v_{r e f}\) & Reference velocity signal
\end{tabular}

\section*{Controller: Predictive Speed-Tracking}

If you set the Control type, cntrlType parameter to Predictive, the block implements an optimal single-point preview (look ahead) control model developed by C. C. MacAdam \({ }^{1,}\)
\({ }^{2,3}\). The model represents driver steering control behavior during path-following and obstacle avoidance maneuvers. Drivers preview (look ahead) to follow a predefined path. To implement the MacAdam model, the block:
- Represents the dynamics as a linear single track (bicycle) vehicle
- Minimizes the previewed error signal at a single point T* seconds ahead in time
- Accounts for the driver lag deriving from perceptual and neuromuscular mechanisms

\section*{Vehicle Dynamics}

For longitudinal motion, the block implements these linear dynamics.
\[
\begin{aligned}
& x_{1}=v \\
& \dot{x}_{1}=x_{2}=\frac{K_{p t}}{m}-g \sin (\gamma)+F_{r} x_{1}
\end{aligned}
\]

In matrix notation:
\(\dot{x}=F x+g \bar{u}\)
where:
\(x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\)
\(F=\left[\begin{array}{cc}0 & 1 \\ \frac{F_{r}}{m} & 0\end{array}\right]\)
\(g=\left[\begin{array}{c}0 \\ \frac{K_{p t}}{m}\end{array}\right]\)
\(\bar{u}=u-\frac{m^{2}}{K_{p t}} g \sin (\gamma)\)
The block uses this equation for the rolling resistance.
\[
F_{r}=-\left[\tanh \left(x_{1}\right)\left(\frac{a_{r}}{x_{1}}+c_{r} x_{1}\right)+b_{r}\right]
\]

The single-point model assumes a minimum previewed error signal at a single point \(T^{*}\) seconds ahead in time. \(a^{*}\) is the driver ability to predict the future vehicle response based on the current steering control input. \(b^{*}\) is the driver ability to predict the future vehicle response based on the current vehicle state. The block uses these equations.
\[
\begin{aligned}
& a^{*}=\left(T^{*}\right) m^{T}\left[I+\sum_{n=1}^{\infty} \frac{F^{n}\left(T^{*}\right)^{n}}{(n+1)!}\right] g e \\
& b^{*}=m^{T}\left[I+\sum_{n=1}^{\infty} \frac{F^{n}\left(T^{*}\right)^{n}}{n!}\right]
\end{aligned}
\]
where:
\[
m^{T}=\left[\begin{array}{ll}
1 & 1
\end{array}\right]
\]

The equations use these variables.
\(a, b \quad\) Forward and rearward tire location, respectively
\begin{tabular}{ll}
\(m\) & Vehicle mass \\
\(I\) & Vehicle rotational inertia \\
\(a^{*}, \boldsymbol{b}^{*}\) & Driver prediction scalar and vector gain, respectively \\
\(\boldsymbol{x}\) & Predicted vehicle state vector \\
\(v\) & Longitudinal velocity \\
\(\boldsymbol{F}\) & System matrix \\
\(K_{p t}\) & Tractive force and brake limit \\
\(\gamma\) & Grade angle \\
\(\boldsymbol{g}\) & Control coefficient vector \\
\(g\) & Gravitational constant \\
\(T^{*}\) & Preview time window \\
\(f\left(t+T^{*}\right)\) & Previewed path input T* seconds ahead \\
\(U\) & Forward vehicle velocity \\
\(\boldsymbol{m}^{\boldsymbol{T}}\) & Constant observer vector; provides vehicle lateral position \\
\(F_{r}\) & Rolling resistance \\
\(a_{r}\) & Static rolling and driveline resistance \\
\(b_{r}\) & Linear rolling and driveline resistance \\
\(c_{r}\) & Aerodynamic rolling and driveline resistance
\end{tabular}

\section*{Optimization}

The single-point model implemented by the block finds the steering command that minimizes a local performance index, \(J\), over the current preview interval, \((t, t+T)\).
\[
J=\frac{1}{T} \int^{t+T}[f(\eta)-y(\eta)]^{2} d \eta
\]

To minimize \(J\) with respect to the steering command, this condition must be met.
\[
\frac{d J}{d u}=0
\]

You can express the optimal control solution in terms of a current non-optimal and corresponding nonzero preview output error \(T^{*}\) seconds ahead \({ }^{1,2,3}\).
\[
u^{o}(t)=u(t)+\frac{e\left(t+T^{*}\right)}{a^{*}}
\]

The equations use these variables.
\begin{tabular}{ll}
\(f\left(t+T^{*}\right)\) & Previewed path input \(T^{*}\) sec ahead \\
\(y\left(t+T^{*}\right)\) & Previewed plant output \(T^{*}\) sec ahead \\
\(e\left(t+T^{*}\right)\) & Previewed error signal \(T^{*}\) sec ahead \\
\(u(t), u^{o}(t)\) & Steer angle and optimal steer angle, respectively \\
\(J\) & Performance index
\end{tabular}

\section*{Driver Lag}

The single-point model implemented by the block introduces a driver lag. The driver lag accounts for the delay when the driver is tracking tasks. Specifically, it is the transport delay deriving from perceptual and neuromuscular mechanisms. To calculate the driver transport delay, the block implements this equation.
\[
H(s)=e^{-s \tau}
\]

The equations use these variables.
\begin{tabular}{ll}
\(\tau\) & Driver transport delay \\
\(y\left(t+T^{*}\right)\) & Previewed plant output \(T^{*}\) sec ahead \\
\(e\left(t+T^{*}\right)\) & Previewed error signal \(T^{*}\) sec ahead \\
\(u(t), u^{o}(t)\) & Steer angle and optimal steer angle, respectively \\
\(J\) & Performance index
\end{tabular}

\section*{Ports}

\section*{Input}

\section*{VelRef - Reference vehicle velocity}
scalar
Reference velocity, \(v_{\text {ref }}\), in \(\mathrm{m} / \mathrm{s}\).

\section*{VelFdbk - Longitudinal vehicle velocity scalar}

Longitudinal vehicle velocity, \(U\), in vehicle-fixed frame, in \(\mathrm{m} / \mathrm{s}\).

\section*{Grade - Road grade angle}
scalar
Road grade angle, \(\theta\) or \(\gamma\), in deg.

\section*{ExtGear - Gear}
scalar
\begin{tabular}{|l|l|}
\hline Gear & Integer \\
\hline Park & 80 \\
\hline Reverse & -1 \\
\hline Neutral & 0 \\
\hline Drive & 1 \\
\hline Gear & Gear number \\
\hline
\end{tabular}

\section*{Dependencies}

To create this port, set Shift type, shftType to External.

\section*{Output}

\section*{Info - Bus signal \\ bus}

Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|}
\hline Signal & Variable & Description \\
\hline Accel & \(y_{\text {acc }}\) & \begin{tabular}{l} 
Commanded vehicle acceleration, \\
normalized from 0 through 1
\end{tabular} \\
\hline Decel & \(y_{\text {dec }}\) & \begin{tabular}{l} 
Commanded vehicle deceleration, \\
normalized from 0 through 1
\end{tabular} \\
\hline Gear & & Integer value of commanded gear \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Signal & Variable & Description \\
\hline Clutch & & Clutch command \\
\hline Err & \(e_{\text {ref }}\) & \begin{tabular}{l} 
Difference in reference vehicle \\
speed and vehicle speed
\end{tabular} \\
\hline ErrSqrSum & \(\int_{0}^{t} e_{r e f}{ }^{2} d t\) & Integrated square of error \\
\hline ErrMax & \(\max \left(e_{r e f}(t)\right)\) & Maximum error during simulation \\
\hline ErrMin & \(\min \left(e_{r e f}(t)\right)\) & Minimum error during simulation \\
\hline
\end{tabular}

\section*{AccelCmd - Commanded vehicle acceleration scalar}

Commanded vehicle acceleration, \(y_{a c c}\), normalized from 0 through 1.

\section*{DecelCmd - Commanded vehicle deceleration}
scalar
Commanded vehicle deceleration, \(y_{\text {dec }}\), normalized from 0 through 1.

\section*{Gear - Commanded vehicle gear \\ scalar}

Integer value of commanded vehicle gear.
\begin{tabular}{|l|l|}
\hline Gear & Integer \\
\hline Park & 80 \\
\hline Reverse & -1 \\
\hline Neutral & 0 \\
\hline Drive & 1 \\
\hline Gear & Gear number \\
\hline
\end{tabular}

Dependencies
To create this port, select Output gear signal.

\section*{Parameters}

\section*{Control type, cntrlType - Longitudinal control}

PI (default) | Scheduled PI | Predictive
Type of longitudinal control.
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline PI & \begin{tabular}{l} 
Proportional-integral (PI) control with tracking windup and feed- \\
forward gains.
\end{tabular} \\
\hline Scheduled PI & \begin{tabular}{l} 
PI control with tracking windup and feed-forward gains that are a \\
function of vehicle velocity.
\end{tabular} \\
\hline Predictive & \begin{tabular}{l} 
Optimal single-point preview (look ahead) control model developed \\
by C. C. MacAdam \(1,2,3\). The model represents driver steering \\
control behavior during path-following and obstacle avoidance \\
maneuvers. Drivers preview (look ahead) to follow a predefined \\
path. To implement the MacAdam model, the block: \\
- Represents the dynamics as a linear single track (bicycle) \\
vehicle
\end{tabular} \\
& \begin{tabular}{l} 
Minimizes the previewed error signal at a single point \(T^{*}\) \\
seconds ahead in time
\end{tabular} \\
- Accounts for the driver lag deriving from perceptual and \\
neuromuscular mechanisms
\end{tabular}

Shift type, shftType - Shift type
None (default)|Reverse, Neutral, Drive|Scheduled|External
Shift type.
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline None & No transmission. Block outputs a constant gear of 1. \\
& \begin{tabular}{l} 
Use this setting to minimize the number of parameters you need to \\
generate acceleration and braking commands to track forward \\
vehicle motion. This setting does not allow reverse vehicle motion.
\end{tabular} \\
\hline
\end{tabular}
\(\left.\begin{array}{|l|l|}\hline \text { Setting } & \text { Block Implementation } \\ \hline \begin{array}{l}\text { Reverse, } \\ \text { Neutral, Drive }\end{array} & \begin{array}{l}\text { Block uses a Stateflow chart to model reverse, neutral, and drive } \\ \text { gear shift scheduling. } \\ \text { Use this setting to generate acceleration and braking commands to } \\ \text { track forward and reverse vehicle motion using simple reverse, } \\ \text { neutral, and drive gear shift scheduling. Depending on the vehicle } \\ \text { state and vehicle velocity feedback, the block uses the initial gear } \\ \text { and time required to shift to shift the vehicle up into drive or down } \\ \text { into reverse or neutral. } \\ \text { For neutral gears, the block uses braking commands to control the } \\ \text { vehicle speed. For reverse gears, the block uses an acceleration } \\ \text { command to generate torque and a brake command to reduce } \\ \text { vehicle speed. }\end{array} \\ \hline \text { Scheduled } & \begin{array}{l}\text { Block uses a Stateflow chart to model reverse, neutral, park, and } \\ \text { N-speed gear shift scheduling. }\end{array} \\ \begin{array}{l}\text { Use this setting to generate acceleration and braking commands to } \\ \text { track forward and reverse vehicle motion using reverse, neutral, } \\ \text { park, and N-speed gear shift scheduling. Depending on the vehicle } \\ \text { state and vehicle velocity feedback, the block uses these } \\ \text { parameters to determine the: } \\ \text { - Initial gear } \\ \text { - Upshift and downshift accelerator pedal positions } \\ \text { • Upshift and downshift velocity } \\ \text { - Timing for shifting and engaging forward and reverse from }\end{array} \\ \text { neutral } \\ \text { For neutral gears, the block uses braking commands to control the } \\ \text { vehicle speed. For reverse gears, the block uses an acceleration } \\ \text { command to generate torque and a brake command to reduce } \\ \text { vehicle speed. }\end{array}\right\}\)
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline External & \begin{tabular}{l} 
Block uses the input gear, vehicle state, and velocity feedback to \\
generate acceleration and braking commands to track forward and \\
reverse vehicle motion.
\end{tabular} \\
\begin{tabular}{l} 
For neutral gears, the block uses braking commands to control the \\
vehicle speed. For reverse gears, the block uses an acceleration \\
command to generate torque and a brake command to reduce \\
vehicle speed.
\end{tabular} \\
\hline
\end{tabular}

\section*{Reference and feedback units, velUnits - Velocity units \(\mathrm{m} / \mathrm{s}\) (default)}

Vehicle velocity reference and feedback units.

\section*{Dependencies}

If you set Control type, cntrlType control type to Scheduled or Scheduled PI, the block uses the Reference and feedback units, velUnits for the Nominal speed, vnom parameter dimension.

If you set Shift Type, shftType to Scheduled, the block uses the Longitudinal velocity units, velUnits for these parameter dimensions:
- Upshift velocity data table, upShftTbl
- Downshift velocity data table, dwnShftTbl

\section*{Control}

\section*{Longitudinal Nominal Gains}

Proportional gain, Kp - Gain
scalar
Proportional gain, \(K_{p}\), dimensionless.

\section*{Dependencies}

To create this parameter, set Control type to PI.
```

Integral gain, Ki - Gain
scalar

```

Proportional gain, \(K_{i}\), dimensionless.

\section*{Dependencies}

To create this parameter, set Control type to PI.
Velocity feed-forward, Kff - Gain scalar

Velocity feed-forward gain, \(K_{f f}\), dimensionless.

\section*{Dependencies}

To create this parameter, set Control type to PI.
Grade feed-forward, Kg - Gain
scalar
Grade feed-forward gain, \(K_{g}\), in \(1 /\) deg.

\section*{Dependencies}

To create this parameter, set Control type to PI.

\section*{Velocity gain breakpoints, VehVelVec - Breakpoints array}

Velocity gain breakpoints, VehVelVec, dimensionless.

\section*{Dependencies}

To create this parameter, set Control type to Scheduled PI.

\section*{Velocity feed-forward gain values, KffVec - Gain} array

Velocity feed-forward gain values, KffVec, as a function of vehicle velocity, dimensionless.

\section*{Dependencies}

To create this parameter, set Control type to Scheduled PI.

\section*{Proportional gain values, KpVec - Gain} array

Proportional gain values, \(K p V e c\), as a function of vehicle velocity, dimensionless.

\section*{Dependencies}

To create this parameter, set Control type to Scheduled PI.

\section*{Integral gain values, KiVec - Gain}
array
Integral gain values, KiVec, as a function of vehicle velocity, dimensionless.

\section*{Dependencies}

To create this parameter, set Control type to Scheduled PI.
Grade feed-forward values, KgVec - Grade gain array

Grade feed-forward values, KgVec , as a function of vehicle velocity, in \(1 / \mathrm{deg}\).

\section*{Dependencies}

To create this parameter, set Control type to Scheduled PI.
Nominal speed, vnom - Nominal vehicle speed scalar

Nominal vehicle speed, \(v_{\text {nom }}\), in units specified by the Reference and feedback units, velUnits parameter. The block uses the nominal speed to normalize the controller gains.

\section*{Dependencies}

To create this parameter, set Control type to PI or Scheduled PI.
Anti-windup, Kaw - Gain
scalar
Anti-windup gain, \(K_{a w}\), dimensionless.

\section*{Dependencies}

To create this parameter, set Control type to PI or Scheduled PI.
Error filter time constant, tauerr - Filter scalar

Error filter time constant, \(\tau_{\text {err }}\), in s . To disable the filter, enter 0.

\section*{Dependencies}

To create this parameter, set Control type to PI or Scheduled PI.

\section*{Predictive}

Vehicle mass, m - Mass
scalar
Vehicle mass, \(m\), in kg.

\section*{Dependencies}

To create this parameter, set Longitudinal control type, cntrlType to Predictive.
Effective vehicle total tractive force, Kp - Tractive force scalar

Effective vehicle total tractive force, \(K_{p}\), in N .

\section*{Dependencies}

To create this parameter, set Longitudinal control type, cntrlType to Predictive.
Driver response time, tau - Tau

\section*{scalar}

Driver response time, \(\tau\), in s.

\section*{Dependencies}

To create this parameter, set Longitudinal control type, cntrlType to Predictive.
Preview distance, L - Distance
scalar
Driver preview distance, \(L\), in m.

\section*{Dependencies}

To create this parameter, set Longitudinal control type, cntrlType to Predictive.
Rolling resistance coefficient, aR - Resistance
scalar

Static rolling and driveline resistance coefficient, \(a_{R}\), in N. Block uses the parameter to estimate the constant acceleration or braking effort.

\section*{Dependencies}

To create this parameter, set Longitudinal control type, cntrlType to Predictive.
Rolling and driveline resistance coefficient, bR - Resistance scalar

Rolling and driveline resistance coefficient, \(b_{R}\), in \(N \cdot \mathrm{~s} / \mathrm{m}\). Block uses the parameter to estimate the linear velocity-dependent acceleration or braking effort.

\section*{Dependencies}

To create this parameter, set Longitudinal control type, cntrlType to Predictive.

\section*{Aerodynamic drag coefficient, cR — Drag}

\section*{scalar}

Aerodynamic drag coefficient, \(c_{R}\), in \(\mathrm{N} \cdot \mathrm{s}^{\wedge} 2 / \mathrm{m}^{\wedge} 2\). Block uses the parameter to estimate the quadratic velocity-dependent acceleration or braking effort.

\section*{Dependencies}

To create this parameter, set Longitudinal control type, cntrlType to Predictive.
```

Gravitational constant, g - Gravitational constant
scalar

```

Gravitational constant, g , in \(\mathrm{m} / \mathrm{s}^{\wedge} 2\).

\section*{Dependencies}

To create this parameter, set Longitudinal control type, cntrlType to Predictive.

\section*{Shift}

Reverse, Neutral, Drive
Initial gear, GearInit - Initial gear
scalar

Integer value of the initial gear. The block uses the initial gear to generate acceleration and braking commands to track forward and reverse vehicle motion.
\begin{tabular}{|l|l|}
\hline Gear & Integer \\
\hline Park & 80 \\
\hline Reverse & -1 \\
\hline Neutral & 0 \\
\hline Drive & 1 \\
\hline Gear & Gear number \\
\hline
\end{tabular}

Dependencies
To create this parameter, set Shift type, shftType to Reverse, Neutral, Drive or Scheduled. If you specify Reverse, Neutral, Drive, the Initial Gear, GearInit parameter value can be only -1, 0 , or 1 .

\section*{Time required to shift, tShift - Time scalar}

Time required to shift, \(t\) Shift, in s. The block uses the time required to shift to generate acceleration and braking commands to track forward and reverse vehicle motion using reverse, neutral, and drive gear shift scheduling.

\section*{Dependencies}

To create this parameter, set Shift type, shftType to Reverse, Neutral, Drive.

\section*{Scheduled}

\section*{Initial gear, GearInit - Initial gear}
scalar
Integer value of the initial gear. The block uses the initial gear to generate acceleration and braking commands to track forward and reverse vehicle motion.
\begin{tabular}{|l|l|}
\hline Gear & Integer \\
\hline Park & 80 \\
\hline Reverse & -1 \\
\hline Neutral & 0 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Gear & Integer \\
\hline Drive & 1 \\
\hline Gear & Gear number \\
\hline
\end{tabular}

\section*{Dependencies}

To create this parameter, set Shift type, shftType to Reverse, Neutral, Drive or Scheduled. If you specify Reverse, Neutral, Drive, the Initial Gear, GearInit parameter value can be only -1, 0 , or 1 .

\section*{Up and down shift accelerator pedal positions, pdlVec - Pedal position breakpoints}
```

[1-by-m] vector

```

Pedal position breakpoints for lookup tables when calculating upshift and downshift velocities, dimensionless. Vector dimensions are 1 by the number of pedal position breakpoints, m.

\section*{Dependencies}

To create this parameter, set Shift type, shftType to Scheduled.
```

Upshift velocity data table, upShftTbl - Table
[m-by-n] array

```

Upshift velocity data as a function of pedal position and gear, in units specified by the Reference and feedback units, velUnits parameter. Upshift velocities indicate the vehicle velocity at which the gear should increase by 1.

The array dimensions are \(m\) pedal positions by \(n\) gears. The first column of data, when \(n\) equals 1 , is the upshift velocity for the neutral gear.

\section*{Dependencies}

To create this parameter, set Shift type, shftType to Scheduled.
Downshift velocity data table, dwnShftTbl - Table [m-by-n] array

Downshift velocity data as a function of pedal position and gear, in units specified by the Reference and feedback units, velUnits parameter. Downshift velocities indicate the vehicle velocity at which the gear should decrease by 1.

The array dimensions are \(m\) pedal positions by \(n\) gears. The first column of data, when \(n\) equals 1 , is the downshift velocity for the neutral gear.

\section*{Dependencies}

To create this parameter, set Shift type, shftType to Scheduled.

\section*{Time required to shift, tClutch - Time scalar}

Time required to shift, \(t_{\text {Clutch }}\), in s.

\section*{Dependencies}

To create this parameter, set Shift type, shftType to Scheduled.

\section*{Time required to engage reverse from neutral, tRev - Time scalar}

Time required to engage reverse from neutral, \(t_{\text {Rev }}\), in s .

\section*{Dependencies}

To create this parameter, set Shift type, shftType to Scheduled.

\section*{Time required to engage park from neutral, tPark - Time scalar}

Time required to engage park from neutral, \(t_{\text {Park }}\), in s .

\section*{Dependencies}

To create this parameter, set Shift type, shftType to Scheduled.

\section*{References}
[1] MacAdam, C. C. "An Optimal Preview Control for Linear Systems". Journal of Dynamic Systems, Measurement, and Control. Vol. 102, Number 3, Sept. 1980.
[2] MacAdam, C. C. "Application of an Optimal Preview Control for Simulation of ClosedLoop Automobile Driving ". IEEE Transactions on Systems, Man, and Cybernetics. Vol. 11, Issue 6, June 1981.

\title{
[3] MacAdam, C. C. Development of Driver/Vehicle Steering Interaction Models for Dynamic Analysis. Final Technical Report UMTRI-88-53. Ann Arbor, Michigan: The University of Michigan Transportation Research Institute, Dec. 1988.
}

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\author{
See Also \\ Drive Cycle Source | Vehicle Body Total Road Load \\ Introduced in R2017a
}

\section*{Transmission Blocks - Alphabetical} List

\section*{Automated Manual Transmission}

Ideal automated manual transmission
Library: Powertrain Blockset / Transmission / Transmission Systems


\section*{Description}

The Automated Manual Transmission block implements an ideal automated transmission (AMT). An AMT is a manual transmission with additional actuators and an electronic control unit (ECU) to regulate clutch and gear selection based on commands from a controller. The number of gears is specified via an integer vector with corresponding gear ratios, inertias, viscous damping, and efficiency factors. The clutch and synchronization engagement rates are linear and adjustable.

Use the block for:
- Power and torque capacity sizing
- Determining gear ratio impact on fuel economy and performance

To determine the rotational drive shaft speed and reaction torque, the Automated Manual Transmission block calculates:
- Clutch lock-up and clutch friction
- Locked rotational dynamics
- Unlocked rotational dynamics

To specify the block efficiency calculation, for Efficiency factors, select either of these options.
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline Gear only & \begin{tabular}{l} 
Efficiency determined from a 1D lookup table that is a \\
function of the gear.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Setting & Block Implementation \\
\hline Gear, input torque, input speed, and temperature & \begin{tabular}{l}
Efficiency determined from a 4D lookup table that is a function of: \\
- Gear \\
- Input torque \\
- Input speed \\
- Oil temperature
\end{tabular} \\
\hline
\end{tabular}

\section*{Clutch Control}

The AMT delivers drive shaft torque continuously by controlling the pressure signals from the clutch. If you select Control type parameter Ideal integrated controller, the block generates idealized clutch pressure signals. To use your own clutch control signals, select Control type parameter External control.

\section*{Clutch Lock-Up and Clutch Friction}

Based on the clutch lock-up condition, the block implements one of these friction models.
\begin{tabular}{|l|l|l|}
\hline If & \begin{tabular}{l} 
Clutch \\
Condition
\end{tabular} & Friction Model \\
\hline \begin{tabular}{l}
\(\omega_{i} \neq N \omega_{d}\) \\
\(T_{S}<\left|T_{f}-N w_{i} b_{i}\right|\)
\end{tabular} & Unlocked & \(T_{f}=T_{k}\) \\
where, \\
& & \begin{tabular}{l}
\(T_{k}=F_{C} R_{e f f} \mu_{k} \tanh \left[4\left(\frac{w_{i}}{N}-w_{d}\right)\right]\) \\
\(T_{s}=F_{c} R_{e f f} \mu_{S}\) \\
\(R_{e f f}=\frac{2\left(R_{0} 3-R_{i} 3\right)}{3\left(R_{0}{ }^{2}-R_{i} 2\right)}\)
\end{tabular} \\
\hline \begin{tabular}{l}
\(\omega_{i}=N \omega_{t}\) \\
and \\
\(T_{S} \geq\left|T_{f}-N b_{i} \omega_{i}\right|\)
\end{tabular} & Locked & \(T_{f}=T_{s}\) \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(\omega_{t}\) & Output drive shaft speed \\
\(\omega_{i}\) & Input drive shaft speed \\
\(\omega_{d}\) & Drive shaft speed \\
\(b_{i}\) & Viscous damping \\
\(F_{c}\) & Applied clutch force \\
\(N\) & Engaged gear \\
\(T_{f}\) & Frictional torque \\
\(T_{k}\) & Kinetic frictional torque \\
\(T_{s}\) & Static frictional torque \\
\(R_{e f f}\) & Effective clutch radius \\
\(R_{o}\) & Annular disk outer radius \\
\(R_{i}\) & Annular disk inner radius \\
\(\mu_{s}\) & Coefficient of static friction \\
\(\mu_{k}\) & Coefficient of kinetic friction
\end{tabular}

\section*{Locked Rotational Dynamics}

To model the rotational dynamics when the clutch is locked, the block implements these equations.
\[
\begin{aligned}
& \dot{\omega}_{d} J_{N}=\eta_{N} T_{d}-\frac{\omega_{i}}{N} b_{N}+N T_{i} \\
& \omega_{i}=N \omega_{d}
\end{aligned}
\]

The block determines the input torque, \(T_{i}\), through differentiation.
The equations use these variables.
\begin{tabular}{ll}
\(\omega_{i}\) & Input drive shaft speed \\
\(\omega_{d}\) & Drive shaft speed \\
\(N\) & Engaged gear \\
\(b_{N}\) & Engaged gear viscous damping \\
\(J_{N}\) & Engaged gear inertia
\end{tabular}
\begin{tabular}{ll}
\(\eta_{N}\) & Engaged gear efficiency \\
\(T_{d}\) & Drive shaft torque \\
\(T_{i}\) & Applied input torque
\end{tabular}

\section*{Unlocked Rotational Dynamics}

To model the rotational dynamics when the clutch is unlocked, the block implements this equation.
\[
\dot{\omega}_{d} J_{N}=N T_{f}-\omega_{d} b_{N}+T_{d}
\]
where:
\begin{tabular}{ll}
\(\omega_{d}\) & Drive shaft speed \\
\(N\) & Engaged gear \\
\(b_{N}\) & Engaged gear viscous damping \\
\(J_{N}\) & Engaged gear inertia \\
\(T_{d}\) & Drive shaft torque \\
\(T_{i}\) & Applied input torque
\end{tabular}

\section*{Power Accounting}

For the power accounting, the block implements these equations.

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Bus Signal} & Description & Vari & Equations \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular}} & PwrDa mpLos s & Mechanical damping loss & \begin{tabular}{l}
\(P_{\text {damp }}\) \\
loss
\end{tabular} & \(-b_{N} \omega_{d}^{2}-b_{i n} \omega_{i}^{2}\) \\
\hline & PwrCl tchLo ss & Clutch power loss & \(P_{\text {mech }}\) & \begin{tabular}{l}
When locked: 0 \\
When unlocked:
\[
-T_{k}\left(\omega_{i}-N \omega_{d}\right)
\]
\end{tabular} \\
\hline \begin{tabular}{l}
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular} & PwrSt oredT rans & Rate change in rotational kinetic energy & \(P_{s t r}\) & \begin{tabular}{l}
When locked:
\[
\dot{\omega}_{i} \omega_{i}\left(J_{i n}+\frac{J_{N}}{N^{2}}\right)
\] \\
When unlocked: \(J_{i n} \dot{\omega}_{i} \omega_{i}+J_{N} \dot{\omega}_{d} \omega_{d}\)
\end{tabular} \\
\hline
\end{tabular}

The equations use these variables.
\(b_{N} \quad\) Engaged gear viscous damping
\(J_{N} \quad\) Engaged gear rotational inertia
\(J_{\text {in }} \quad\) Flywheel rotational inertia
\(\eta_{N} \quad\) Engaged gear efficiency
\(N \quad\) Engaged gear ratio
\(T_{i} \quad\) Applied input torque, typically from the engine crankshaft or dual mass flywheel damper
\(T_{d} \quad\) Applied load torque, typically from the differential or drive shaft
\(\omega_{d} \quad\) Initial input drive shaft rotational velocity
\(\omega_{i}, \omega_{i} \quad\) Applied drive shaft angular speed and acceleration

\section*{Ports}

\section*{Input}

\section*{Gear - Gear number to engage}
scalar
Integer value of gear number to engage.

\section*{CltchCmd - Clutch command scalar}

Clutch pressure command.

\section*{Dependencies}

To create this port, select Control type parameter External control.

\section*{EngTrq - Applied input torque}
scalar
Applied input torque, \(T_{i}\), typically from the engine crankshaft or dual mass flywheel damper, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{DiffTrq - Applied load torque scalar}

Applied load torque, \(T_{d}\), typically from the differential or driveshaft, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Temp - Oil temperature \\ scalar}

Oil temperature, in K. To determine the efficiency, the block uses a 4D lookup table that is a function of:
- Gear
- Input torque
- Input speed
- Oil temperature

\section*{Dependencies}

To create this port, set Efficiency factors to Gear, input torque, input speed, and temperature.

\section*{Output}

\section*{Info - Bus signal bus}

Bus signal contains these block calculations.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Signal} & Description & Variable & Units \\
\hline \multirow[t]{2}{*}{Eng} & EngTrq & Input applied torque & \(T_{i}\) & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline & EngSpd & Input drive shaft speed & \(\omega_{i}\) & rad/s \\
\hline \multirow[t]{2}{*}{Diff} & DiffTrq & Output drive shaft torque & \(T_{t}\) & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline & DiffSpd & Output drive shaft speed & \(\omega_{t}\) & rad/s \\
\hline \multirow[t]{2}{*}{Cltch} & CltchForce & Applied clutch force & \(F_{c}\) & N \\
\hline & CltchLocked & \begin{tabular}{l}
Clutch lock status, Boolean: \\
- Locked - 0 \\
- Unlocked - 1
\end{tabular} & N/A & N/A \\
\hline \multirow[t]{4}{*}{Trans} & TransSpdRatio & Speed ratio at time t & \(\phi(t)\) & N/A \\
\hline & TransEta & Ratio of output power to input power & \(\eta\) & N/A \\
\hline & TransGearCmd & Commanded gear & \(N_{\text {cmd }}\) & N/A \\
\hline & TransGear & Engaged gear & \(N\) & N/A \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ Signal } & Description & Variable & Units \\
\hline \multirow{4}{*|2}{\begin{tabular}{l} 
PwrInfo
\end{tabular}} & PwrTrnsfrd & PwrEng & Engine power & \(P_{\text {eng }}\) & W \\
\cline { 3 - 6 } & & PwrDiffrntl & Differential power & \(P_{\text {diff }}\) & W \\
\cline { 3 - 6 } & \begin{tabular}{l} 
PwrNotTrns \\
frd
\end{tabular} & PwrEffLoss & \begin{tabular}{l} 
Mechanical power \\
loss
\end{tabular} & \(P_{\text {efloss }}\) & W \\
\cline { 3 - 6 } & PwrDampLoss & \begin{tabular}{l} 
Mechanical \\
damping loss
\end{tabular} & \(P_{\text {damploss }}\) & W \\
\cline { 3 - 6 } & PwrCltchLoss & Clutch power loss & \(P_{\text {mech }}\) & W \\
\cline { 2 - 6 } & PwrStored & \begin{tabular}{l} 
PwrStoredTra \\
ns
\end{tabular} & \begin{tabular}{l} 
Rate change in \\
rotational kinetic \\
energy
\end{tabular} & \(P_{\text {str }}\) & W \\
\hline
\end{tabular}

\section*{EngSpd - Angular speed}
scalar
Applied drive shaft angular speed input, \(\omega_{i}\), in rad/s.

\section*{DiffSpd - Angular speed}
scalar
Drive shaft angular speed output, \(\omega_{d}\), in rad/s.

\section*{Parameters}

\section*{Control type - Specify control type}

Ideal integrated controller (default)|External control
The AMT delivers drive shaft torque continuously by controlling the pressure signals from the clutch. If you select Control type parameter Ideal integrated controller, the block generates idealized clutch pressure signals. To use your own clutch control signals, select Control type parameter External control.

\section*{Dependencies}

This table summarizes the port configurations.
\begin{tabular}{|l|l|}
\hline Control Mode & Creates Ports \\
\hline External control & CltchCmd \\
\hline
\end{tabular}

\section*{Efficiency factors - Specify efficiency calculation}

Gear only (default) | Gear, input torque, input speed, and temperature
To specify the block efficiency calculation, for Efficiency factors, select either of these options.
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline Gear only & \begin{tabular}{l} 
Efficiency determined from a 1D lookup table that is a \\
function of the gear.
\end{tabular} \\
\hline \begin{tabular}{l} 
Gear, input torque, \\
input speed, and \\
temperature
\end{tabular} & \begin{tabular}{l} 
Efficiency determined from a 4D lookup table that is a \\
function of:
\end{tabular} \\
& \begin{tabular}{l} 
- \\
\\
\\
\\
\\
\\
\hline
\end{tabular} - \begin{tabular}{l} 
Inpur torque \\
-
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}
\begin{tabular}{|l|l|}
\hline Setting Parameter To & Enables \\
\hline Gear only & Efficiency vector, eta \\
\hline \begin{tabular}{l} 
Gear, input torque, \\
input speed, and \\
temperature
\end{tabular} & Efficiency torque breakpoints, Trq_bpts \\
& Efficiency speed breakpoints, omega_bpts \\
& Efficiency temperature breakpoints, Temp_bpts \\
Efficiency lookup table, eta_tbl \\
\hline
\end{tabular}

\section*{Transmission}
```

Input shaft inertia, Jin - Inertia

```
scalar
Input shaft inertia, in \(\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2\).

\section*{Input shaft damping, bin - Damping} scalar

Input shaft damping, in \(\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}\).

\section*{Initial input velocity, omegain_o - Angular velocity scalar}

Angular velocity, in rad/s.

\section*{Gear number vector, G - Specify number of transmission speeds} vector

Vector of integer gear commands used to specify the number of transmission speeds. Neutral gear is 0 . For example, you can set these parameter values.
\begin{tabular}{|l|l|}
\hline To Specify & Set Gear number, G To \\
\hline \begin{tabular}{l} 
Four transmission speeds, \\
including neutral
\end{tabular} & {\([0,1,2,3,4]\)} \\
\hline \begin{tabular}{l} 
Three transmission speeds, \\
including neutral and reverse
\end{tabular} & {\([-1,0,1,2,3]\)} \\
\hline \begin{tabular}{l} 
Five transmission speeds, \\
including neutral and reverse
\end{tabular} & {\([-1,0,1,2,3,4,5]\)} \\
\hline
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Transmission inertia vector, Transmission damping vector, and Efficiency vector parameters must be equal.

Efficiency torque breakpoints, Trq_bpts - Breakpoints vector

Torque breakpoints for efficiency table, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear, input torque, input speed, and temperature.

Efficiency speed breakpoints, omega_bpts - Breakpoints vector

Speed breakpoints for efficiency table, rad/s.

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear, input torque, input speed, and temperature.

Efficiency temperature breakpoints, Temp_bpts - Breakpoints vector

Temperature breakpoints for efficiency table, in K.

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear, input torque, input speed, and temperature.

Gear ratio vector, \(N\) - Ratio of input speed to output speed vector

Vector of gear ratios (that is, input speed to output speed) with indices corresponding to the ratios specified in Gear number, G. For neutral, set the gear ratio to 1. For example, you can set these parameter values.
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
To Specify Gear Ratios \\
For
\end{tabular} & \begin{tabular}{l} 
Set Gear number, G \\
To
\end{tabular} & Set Gear ratio, N To \\
\hline \begin{tabular}{l} 
Four transmission speeds, \\
including neutral
\end{tabular} & {\([0,1,2,3,4]\)} & {\([1,4.47,2.47,1.47,1]\)} \\
\hline \begin{tabular}{l} 
Five transmission speeds, \\
including neutral and \\
reverse
\end{tabular} & {\([-1,0,1,2,3,4,5]\)} & {\([-4.47,1,4.47,2.47,1.47,1,0\)} \\
\(.8]\)
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Transmission inertia vector, Transmission damping vector, and Efficiency vector parameters must be equal.

\section*{Transmission inertia vector, Jout - Gear rotational inertia vector}

Vector of gear rotational inertias, with indices corresponding to the inertias specified in Gear number, G, in \(\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2\). For example, you can set these parameter values.
\begin{tabular}{|l|l|l|}
\hline To Specify Inertia For & \begin{tabular}{l} 
Set Gear number, G \\
To
\end{tabular} & Set Inertia, J To \\
\hline \begin{tabular}{l} 
Four gears, including \\
neutral
\end{tabular} & {\([0,1,2,3,4]\)} & {\([0.01,2.28,2.04,0.32,0.028]\)} \\
\hline \begin{tabular}{l} 
Inertia for five gears, \\
including reverse and \\
neutral
\end{tabular} & {\([-1,0,1,2,3,4,5]\)} & \begin{tabular}{l}
{\([2.28,0.01,2.28,2.04,0.32,0\)} \\
\(.028,0.01]\)
\end{tabular} \\
\hline
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Transmission inertia vector, Transmission damping vector, and Efficiency vector parameters must be equal.

\section*{Transmission damping vector, bout - Gear viscous damping coefficient vector}

Vector of gear viscous damping coefficients, with indices corresponding to the coefficients specified in Gear number, G, in \(\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}\). For example, you can set these parameter values.
\begin{tabular}{|l|l|l|}
\hline To Specify Damping For & \begin{tabular}{l} 
Set Gear number, G \\
To
\end{tabular} & Set Damping, b To \\
\hline \begin{tabular}{l} 
Four gears, including \\
neutral
\end{tabular} & {\([0,1,2,3,4]\)} & \begin{tabular}{l}
{\([0.001,0.003,0.0025\),} \\
\(0.002,0.001]\)
\end{tabular} \\
\hline \begin{tabular}{l} 
Five gears, including \\
reverse and neutral
\end{tabular} & {\([-1,0,1,2,3,4,5]\)} & \begin{tabular}{l}
{\([0.003,0.001,0.003\),} \\
\(0.0025,0.002,0.001,0.001]\)
\end{tabular} \\
\hline
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Transmission inertia vector, Transmission damping vector, and Efficiency vector parameters must be equal.

Efficiency vector, eta - Gear efficiency vector

Vector of gear mechanical efficiency, with indices corresponding to the efficiencies specified in Gear number, G. For example, you can set these parameter values.
\begin{tabular}{|l|l|l|}
\hline To Specify Efficiency For & \begin{tabular}{l} 
Set Gear number, G \\
To
\end{tabular} & Set Efficiency, eta To \\
\hline \begin{tabular}{l} 
Four gears, including \\
neutral
\end{tabular} & {\([0,1,2,3,4]\)} & {\([0.9,0.9,0.9,0.9,0.95]\)} \\
\hline \begin{tabular}{l} 
Five gears, including \\
reverse and neutral
\end{tabular} & {\([-1,0,1,2,3,4,5]\)} & \begin{tabular}{l}
{\([0.9,0.9,0.9\),} \\
\(0.9,0.9,0.95,0.95]\)
\end{tabular} \\
\hline
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Transmission inertia vector, Transmission damping vector, and Efficiency vector parameters must be equal.

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear only.
```

Efficiency lookup table, eta_tbl - Gear efficiency

``` array

Table of gear mechanical efficiency, \(\eta_{N}\) as a function of gear, input torque, input speed, and temperature.

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear, input torque, input speed, and temperature.

\section*{Initial output velocity, omega_o - Transmission scalar}

Transmission initial output rotational velocity, \(\omega_{\text {to }}\), in rad/s. If you select Clutch initially locked, the block ignores the Initial output velocity, omega_o parameter value.

\section*{Initial gear, G_o - Engaged gear \\ scalar}

Initial gear to engage, \(G_{0}\).
Clutch and Synchronizer
Clutch pressure time constant, tauc - Time scalar

Pressure input filter time constant, \(\tau_{c}\), in s.

\section*{Synchronization time, ts - Time scalar}

Time required for gear selection and synchronization, \(t_{s}\), in s .
Clutch time, tc - Time
scalar
Time required to engage and disengage the clutch during shift events, \(t_{c}\), in s .

\section*{Dependencies}

To create this parameter, select Control type parameter Ideal integrated controller.

\section*{Effective clutch radius, R - Radius}
scalar
The effective radius, \(R_{e f f}\), used with the applied clutch friction force to determine the friction force, in m . The effective radius is defined as:
\[
R_{e f f}=\frac{2\left(R_{O}{ }^{3}-R_{i} 3\right)}{3\left(R_{0}^{2}-R_{i}{ }^{2}\right)}
\]

The equation uses these variables.
\(R_{o} \quad\) Annular disk outer radius
\(R_{i} \quad\) Annular disk inner radius

\section*{Clutch force gain, K_c - Force} scalar

Open loop lock-up clutch gain, \(K_{c}\), in N .
Clutch static friction coefficient, mus - Coefficient scalar

Dimensionless clutch disc coefficient of static friction, \(\mu_{s}\).
Clutch kinematic friction coefficient, muk - Coefficient scalar

Dimensionless clutch disc coefficient of kinetic friction, \(\mu_{k}\).

\section*{Clutch initially locked - Select to initially lock clutch off (default)}

Select to lock clutch initially.

\section*{Dependencies}

To create this parameter, select Control type parameter Ideal integrated controller.

\section*{Synchronizer initially locked - Select to initially lock synchronizer off (default)}

Select to initially lock synchronizer.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\author{
See Also \\ AMT Controller | Continuously Variable Transmission | Dual Clutch Transmission | Ideal Fixed Gear Transmission \\ Introduced in R2017a
}

\section*{AMT Controller}

Automated manual transmission controller with clutch open, close, and synchronization timing
Library: Powertrain Blockset / Transmission / Transmission Controllers


\section*{Description}

The AMT Controller block implements an automated manual transmission (AMT) controller. You can specify the clutch open, close, and synchronization timing parameters. The block determines the clutch commands using integrator-based timers and latching logic that is based on the specified timing parameters and gear request.

\section*{Ports}

\section*{Inputs}

\section*{GearReq - Gear number to engage}
scalar
Gear number request, \(G_{\text {req }}\).

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|}
\hline Signal & Description & Variable \\
\hline GearReq & Gear number request & \(G_{\text {req }}\) \\
\hline GearEngd & Nominal gear commanded by the controller & \(G_{o}\) \\
\hline Cltch & \begin{tabular}{l} 
Clutch pressure command for gears, between 0 \\
and 1
\end{tabular} & NA \\
\hline
\end{tabular}

\section*{GearEffct - Effective gear for shifting}
scalar
Effective gear for shifting. The block uses this signal for the smooth application of inertial, efficiency, gear ratio, and damping parameters.

\section*{Cltch - Command for clutch pressure \\ scalar}

Clutch pressure command, between 0 and 1 .

\section*{Parameters}

\section*{Initial gear, G_o - Engaged gear \\ scalar}

Initial gear to engage, \(G_{0}\).

\section*{Clutch actuation time, tc - Time scalar}

Time required to engage and disengage the clutch during shift events, \(t_{c}\), in s .

\section*{Synchronizer time, ts - Time}
scalar
Time required for gear selection and synchronization, \(t_{s}\), in s .

\section*{Sample period, dt - Time}
scalar
Sample period, \(d t\), in s.

\section*{Clutch initially locked - Select to initially lock clutch off (default)}

Selecting this parameter initially locks the clutch.
Synchronizer initially locked - Select to initially lock synchronizer off (default)

Selecting this parameter initially locks the synchronizer.

\section*{Extended Capabilities}

\author{
C/C++ Code Generation \\ Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).
}

\section*{See Also}

Automated Manual Transmission

Introduced in R2017a

\section*{Continuously Variable Transmission}

Push belt continuously variable transmission with independent radii control Library: Powertrain Blockset / Transmission / Transmission Systems


\section*{Description}

The Continuously Variable Transmission block implements a push belt continuously variable transmission (CVT) with independent radii control. Use the block for control system design, powertrain matching, and fuel economy studies. You can configure the block for internal or external control:
- Internal - Input direction and pulley ratio requests
- External - Input direction and pulley displacement requests

The table summarizes the pulley kinematic, speed reduction, and dynamic calculations made by the Continuously Variable Transmission block.
\begin{tabular}{|l|c|c|c|}
\hline Calculation & \begin{tabular}{c} 
Pulley \\
Kinematics
\end{tabular} & \begin{tabular}{c} 
Reverse and \\
Final Speed \\
Reduction
\end{tabular} & Dynamics \\
\hline Final angular speed ratio & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline \begin{tabular}{l} 
Belt torque applied to the \\
secondary and primary \\
pulleys
\end{tabular} & & & \(\checkmark\) \\
\hline \begin{tabular}{l} 
Torque applied to the \\
secondary and primary \\
pulleys
\end{tabular} & & \(\checkmark\) & \\
\hline \begin{tabular}{l} 
Angular velocity of \\
secondary and primary \\
pulleys
\end{tabular} & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|}
\hline Calculation & \begin{tabular}{c} 
Pulley \\
Kinematics
\end{tabular} & \begin{tabular}{c} 
Reverse and \\
Final Speed \\
Reduction
\end{tabular} & Dynamics \\
\hline Belt and pulley geometry & \(\checkmark\) & & \\
\hline Belt linear speed & & & \(\checkmark\) \\
\hline \begin{tabular}{l} 
Wrap angle on secondary \\
and primary pulley
\end{tabular} & \(\checkmark\) & & \\
\hline \begin{tabular}{l} 
Primary and secondary \\
pulley radii
\end{tabular} & \(\checkmark\) & & \\
\hline
\end{tabular}

The figure shows the CVT variator with two configurations. In the first configuration, which illustrates speed reduction, the variator is set to decrease the primary pulley radius and increase the secondary pulley radius. In the second configuration, which illustrates overdrive, the variator is set to increase the primary pulley radius and decrease the secondary pulley radius.


\section*{Pulley Kinematics}

Using the physical dimensions of the system, the block calculates the primary and secondary variator positions that meet the pulley ratio request.

The figure and equations summarize the geometric dependencies.

\section*{Primary}

\section*{Pulley}

\[
C_{d i s t}=r p_{\max }+r_{\text {gap }}+r_{\text {sec_max }}
\]
\[
L_{0}=f\left(r p_{\max }, r s_{\max }, r p_{\min }, r s_{\min }, C_{\text {dist }}\right)
\]
\[
r_{p r i}=f\left(r_{0}, \text { ratio }_{\text {command }}, C_{\text {dist }}\right)
\]
\[
r_{\mathrm{sec}}=f\left(r_{0}, \text { ratio }_{\text {command }}, C_{\text {dist }}\right)
\]
\[
x_{p r i}=f\left(r_{0}, r_{\text {pri }}, \theta_{\text {wedge }}\right)
\]
\[
x_{\mathrm{sec}}=f\left(r_{0}, r_{\mathrm{sec}}, \theta_{\text {wedge }}\right)
\]

The equations use these variables.
ratio \(_{\text {request }} \quad\) Pulley gear ratio request
\begin{tabular}{ll} 
ratio \(_{\text {command }}\) & Pulley gear ratio command, based on request and physical limitations \\
\(r_{g a p}\) & Gap distance between variator pulleys \\
\(C_{d i s t}\) & Distance between variator pulley centers \\
\(r p_{\max }\) & Maximum variator primary pulley radius \\
\(r s_{\max }\) & Maximum variator secondary pulley radius \\
\(r p_{\min }\) & Minimum variator primary pulley radius \\
\(r s_{\min }\) & Minimum variator secondary pulley radius \\
\(r_{o}\) & Initial pulley radii with gear ratio of 1 \\
\(L_{o}\) & Initial belt length, resulting from variator specification \\
\(\chi_{p r i}\) & Variator primary pulley displacement, resulting from controller request \\
\(\chi_{s e c}\) & Variator secondary pulley displacement, resulting from controller request \\
\(r_{p r i}\) & Variator primary pulley radius, resulting from controller request \\
\(r_{s e c}\) & Variator secondary pulley radius, resulting from controller request \\
\(\Theta_{\text {wedge }}\) & Variator wedge angle \\
\(\Phi\) & Angle of belt to pulley contact point \\
\(L\) & Belt length, resulting from variator position
\end{tabular}

\section*{Reverse and Final Speed Reduction}

The CVT input shaft connects to a planetary gear set that drives the primary pulley. The shift direction determines the input gear inertia, efficiency, and gear ratio. The shift direction is the filtered commanded direction:
\[
\frac{\text { Dir }_{\text {shift }}}{\operatorname{Dir}}(s)=\frac{1}{\tau_{s} s+1}
\]

For forward motion \(\left(\operatorname{Dir}_{\text {shift }}=1\right)\) :
\[
\begin{aligned}
N_{i} & =1 \\
\eta_{i} & =\eta_{f w d} \\
J_{i} & =J_{f w d}
\end{aligned}
\]

For reverse motion \(\left(\right.\) Dir \(\left._{\text {shift }}=-1\right)\) :
\[
\begin{aligned}
& N_{i}=-N_{\text {rev }} \\
& \eta_{i}=\eta_{\text {rev }} \\
& J_{i}=J_{\text {rev }}
\end{aligned}
\]

The gear ratio and efficiency determine the input drive shaft speed and torque applied to the primary pulley:
\[
T_{\text {app_pri }}=\eta_{i} N_{i} T_{i}
\]

The block reduces the secondary pulley speed and applied torque using a fixed gear ratio.
\[
\begin{aligned}
& T_{a p p_{-} s e c}=\frac{T_{o}}{\eta_{o} N_{O}} \\
& \omega_{o}=\frac{\omega_{\text {sec }}}{N_{o}}
\end{aligned}
\]

The final gear ratio, without slip, is given by:
\[
N_{\text {final }}=\frac{\omega_{i}}{\omega_{o}}=N_{i} N_{o} \frac{r_{s e c}}{r_{\text {pri }}}
\]

The equations use these variables.
\begin{tabular}{ll}
\(N_{i}\) & Input planetary gear ratio \\
Dir & CVT direction command \\
Dir \(_{\text {shift }}\) & Direction used to determine planetary inertia, efficiency, and ratio \\
\(\tau_{s}\) & Direction shift time constant \\
\(\eta_{f w d}, \eta_{\text {rev }}\) & Forward and reverse gear efficiency, respectively \\
\(J_{f w d} J_{\text {rev }}\) & Forward and reverse gear inertia, respectively \\
\(N_{\text {rev }}\) & Reverse gear ratio \\
\(T_{\text {app_pri, }}, T_{\text {app_sec }}\) & Torque applied to primary and secondary pulleys, respectively \\
\(T_{i}\) & Input drive shaft torque \\
\(\omega_{i,}, \omega_{o}\) & Input and output drive shaft speed, respectively \\
\(\omega_{\text {pri, }} \omega_{\text {sec }}\) & Primary and secondary pulley speed, respectively \\
\(N_{\text {final }}\) & Total no-slip gear ratio
\end{tabular}

\section*{Dynamics}

The maximum torque that the CVT can transmit depends on the friction between the pulleys and belt. According to Prediction of Friction Drive Limit of Metal V-Belt, the torque friction is defined as:
\[
T_{f r i c}\left(r_{p}, \mu\right)=\frac{2 \mu F_{a x} r_{p}}{\cos \left(\vartheta_{\text {wedge }}\right)}
\]

Without macro slip, the tangential acceleration of the pulley is assumed to be equal to the belt acceleration. Once the torque reaches the static friction limit, the belt begins to slip, and the pulley and belt acceleration are independent. During slip, the torque transmitted by the belt is a function of the kinetic friction factor. During the transition from slip to non-slip conditions, the belt and tangential pulley velocities are equal.

The block implements these equations for four different slip conditions.
\begin{tabular}{|c|c|}
\hline Condition & Equations \\
\hline Belt slips on both secondary and primary pulleys & \[
\begin{aligned}
& \left(J_{\text {pri }}+J_{i}\right) \dot{\omega}_{\text {pri }}=T_{\text {app_pri }}-T_{\text {BoP_pri }}-b_{\text {pri }} \omega_{\text {pri }} \\
& J_{\text {sec }} \dot{\omega}_{\text {sec }}=T_{\text {app_sec }}-T_{\text {BoP_sec }}-b_{\text {sec }} \omega_{\text {sec }} \\
& m_{b} \dot{v}_{b}=\frac{T_{\text {BoP_pri }}}{r_{\text {pri }}}+\frac{T_{B o P_{-} s e c}}{r_{\text {sec }}}-b_{b} v_{b} \\
& r_{p r i} \omega_{\text {pri }} \neq v_{b} \\
& r_{\text {sec }} \omega_{s e c} \neq v_{b}
\end{aligned}
\] \\
\hline Belt slips on only the primary pulley & \[
\begin{aligned}
& \left(J_{\text {pri }}+J_{i}\right) \dot{\omega}_{\text {pri }}=T_{\text {app_pri }}-T_{\text {BoP_pri }}-b_{\text {pri }} \omega_{\text {pri }} \\
& \left(m_{b}+\frac{J_{s e c}}{r_{\text {sec }}^{2}}\right) \dot{v}_{b}=\frac{T_{\text {BoP_pri }}}{r_{\text {pri }}}+\frac{T_{\text {BoP_sec }}}{r_{\text {sec }}}-\left(b_{b}+\frac{b_{\text {sec }}}{r_{\text {sec }}^{2}}\right) v_{b} \\
& \omega_{\text {sec }}=\frac{v_{b}}{r_{s e c}} \\
& r_{\text {pri }} \omega_{\text {pri }} \neq v_{b} \\
& T_{\text {BoP_pri }}=\operatorname{sgn}\left(r_{\text {pri }} \omega_{\text {pri }}-v_{b}\right) T_{\text {fric }}\left(r_{\text {pri }}, \mu_{k i n}\right) \\
& \left|T_{\text {BoP_sec }}\right|<T_{\text {fric }}\left(r_{\text {sec }}, \mu_{\text {static }}\right)
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Condition & Equations \\
\hline Belt slips on only the secondary pulley & \[
\begin{aligned}
& \left(m_{b}+\frac{J_{p r i}+J_{i}}{r^{2}{ }_{p r i}}\right) \dot{v}_{b}=\frac{T_{a p p_{\_} p r i}}{r_{p r i}}+\frac{T_{B_{B o P_{-} s e c}}}{r_{s e c}}-\left(b_{b}+\frac{b_{\text {pri }}}{r_{p r i}^{2}}\right) v_{b} \\
& J_{s e c} \dot{\omega}_{b}=T_{a p p_{-} s e c}+T_{B o P_{-} s e c}-b_{s e c} \omega_{s e c} \\
& \omega_{p r i}=\frac{v_{b}}{r_{p r i}} \\
& r_{s e c} \omega_{s e c} \neq v_{b} \\
& T_{\text {BoP_sec }}=\operatorname{sgn}\left(r_{s e c} \omega_{s e c}-v_{b}\right) T_{\text {fric }}\left(r_{s e c}, \mu_{k i n}\right) \\
& \left|T_{B o P_{-} p r i}\right|<T_{\text {fric }}\left(r_{p r i}, \mu_{s t a t i c}\right)
\end{aligned}
\] \\
\hline Belt does not slip & \[
\begin{aligned}
& \left(m_{b}+\frac{J_{s e c}}{r_{s e c}^{2}}+\frac{J_{\text {pri }}+J_{i}}{r_{p r i}^{2}}\right) \dot{v}_{b}=\frac{T_{a p p_{\_} p r i}}{r_{p r i}}+\frac{T_{a p p_{s e c}}}{r_{s e c}}-\left(b_{b}+\frac{b_{s e c}}{r_{s e c}^{2}}+\frac{b_{p r i}}{r_{p r i}^{2}}\right) v_{i} \\
& \omega_{\text {pri }}=\frac{v_{b}}{r_{\text {pri }}} \\
& \omega_{\text {sec }}=\frac{v_{b}}{r_{\text {sec }}} \\
& \left|T_{\text {BoP_pri }}\right|<T_{\text {fric }}\left(r_{\text {pri }}, \mu_{\text {static }}\right) \\
& \left|T_{\text {BoP_sec }}\right|<T_{\text {fric }}\left(r_{\text {sec }}, \mu_{\text {static }}\right)
\end{aligned}
\] \\
\hline Slip direction & \[
\begin{aligned}
& \text { PriSlipDir }=\left\{\begin{array}{cl}
0 & r_{\text {pri }} \omega_{\text {pri }}=v_{b} \\
1 & r_{\text {pri }} \omega_{\text {pri }}>v_{b} \\
-1 & r_{\text {pri }} \omega_{\text {pri }}<v_{b}
\end{array}\right. \\
& \text { SecSlipDir }=\left\{\begin{array}{cl}
0 & r_{\text {sec }} \omega_{\text {sec }}=v_{b} \\
1 & r_{\text {sec }} \omega_{\text {sec }}>v_{b} \\
-1 & r_{\text {sec }} \omega_{\text {sec }}<v_{b}
\end{array}\right.
\end{aligned}
\] \\
\hline
\end{tabular}

The equations use these variables.
\(T_{\text {BoP_pri, }} T_{\text {BoP_sec }} \quad\) Belt torque acting on the primary and secondary pulleys, respectively
\(T_{\text {app_pri, }} T_{\text {app_sec }} \quad\) Torque applied to primary and secondary pulleys, respectively
\(J_{\text {prii }} J_{s e c}\) Primary and secondary pulley rotational inertias, respectively
\begin{tabular}{ll}
\(b_{\text {pri }}, b_{\text {sec }}\) & \begin{tabular}{l} 
Primary and secondary pulley rotational viscous damping, \\
respectively
\end{tabular} \\
\(F_{a x}\) & Pulley clamp force \\
\(\mu\) & Coefficient of friction \\
\(\mu_{\text {kin }}, \mu_{\text {static }}\) & Coefficient of kinetic and static friction \\
\(v_{b}, a_{b}\) & Linear speed and acceleration of the belt, respectively \\
\(m_{b}\) & Total belt mass \\
\(r_{\text {pri, }} r_{\text {sec }}\) & Radii of the primary and secondary pulleys, respectively \\
\(\Phi_{\text {wrap }}\) & Wrap angle of belt to pulley contact point \\
\(\Phi_{\text {wrap_pri, }} \Phi_{\text {wrap_sec }}\) & Primary and secondary pulley wrap angles, respectively \\
&
\end{tabular}

For the power accounting, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Varia & Equations \\
\hline \multirow[t]{4}{*}{} & \multirow[t]{2}{*}{\begin{tabular}{l}
PwrTrnsfrd - Power transferred between blocks \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block
\end{tabular}} & PwrEn 9 & Engine power & \(P_{\text {eng }}\) & \(\omega_{i} T_{i}\) \\
\hline & & PwrDi ffrnt l & Differential power & \(P_{\text {diff }}\) & \(\omega_{o} T_{o}\) \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
PwrNotTrnsfrd - Power crossing the block boundary, but not transferred \\
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular}} & \begin{tabular}{l}
PwrBl \\
tLoss
\end{tabular} & Belt slip power loss & \(P_{\text {bltloss }}\) & \[
\begin{aligned}
& \left(J_{\text {in }}+J_{p r i}\right) \dot{\omega}_{\text {pri }} \omega_{p r i}+ \\
& J_{s e c} \dot{\omega}_{s e c} \omega_{s e c}+ \\
& m_{b} \dot{v}_{b} v_{b}+b_{p r i} \omega_{p r i}^{2}+b_{s e \phi} \\
& T_{a p p_{p r i}} \omega_{p r i}-T_{a p p_{s e c}} \omega_{s e c}
\end{aligned}
\] \\
\hline & & PwrGe arInL oss & Input planetary gear mechanical power loss & \(P_{\text {grinlos }}\) & \(-\left|\omega_{i} T_{i}-T_{a p p \_p r i} \omega_{\text {pri }}\right|\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Bus Signal} & Description & Varia & Equations \\
\hline & PwrGe arOut Loss & Output gear reduction mechanical power loss & \[
\begin{aligned}
& P_{\text {groutlo }} \\
& \text { ss }
\end{aligned}
\] & \(-\left|\omega_{o} T_{o}-T_{\text {app_sec }} \omega_{\text {sec }}\right|\) \\
\hline & PwrDa mpLos s & Mechanical damping loss & \[
\begin{aligned}
& P_{\text {damplo }} \\
& \text { ss }
\end{aligned}
\] & \[
\begin{aligned}
& -b_{p r i} \omega_{p r i}^{2}-b_{s e c} \omega_{s e c}^{2} \\
& -b_{b} v_{b}^{2}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular} & PwrSt oredT rans & Rate change in rotational kinetic energy & \(P_{\text {str }}\) & \[
\begin{aligned}
& \left(J_{\text {in }}+J_{p r i}\right) \dot{\omega}_{\text {pri }} \omega_{\text {pri }} \\
& +J_{s e c} \dot{\omega}_{\text {sec }} \omega_{\text {sec }} \\
& +m_{b} \dot{v}_{b} v_{b}
\end{aligned}
\] \\
\hline
\end{tabular}

The equations use these variables.
\(T_{i}, T_{o}\)
\(J_{\text {prii }} J_{s e c}\)
\(b_{\text {pri }}, b_{\text {sec }}\)
\(\omega_{\text {pri, }} \omega_{\text {sec }}\)
\(\omega_{i}, \omega_{o}\)
\(v_{b}, a_{b}\)
\(r_{\text {pri }}, r_{\text {sec }}\)
\(T_{\text {app_pri, }} T_{\text {app_sec }} \quad\) Torque applied to primary and secondary pulleys, respectively Input and output drive shaft torque, respectively Primary and secondary pulley rotational inertias, respectively Primary and secondary pulley rotational viscous damping, respectively
Primary and secondary pulley speed, respectively Input and output drive shaft speed, respectively Linear speed and acceleration of the belt, respectively Radii of the primary and secondary pulleys, respectively

\section*{Ports}

\section*{Inputs}

\section*{Dir - Direction request}
scalar

Direction request, \(D i r_{r e q}\), controlling the direction. The block filters the request to determine the direction, forward or reverse. Dir equals 1 for forward motion. Dir equals - 1 for reverse.
\[
\text { Dir }=\left\{\begin{array}{cc}
1 & \text { when } \text { Dir }_{r e q} \geq 0 \\
-1 & \text { when Dir } r_{r e q}<0
\end{array}\right.
\]

\section*{PllyRatioReq - Pulley ratio request scalar}

CVT pulley ratio request, ratio \(_{\text {request }}\).

\section*{Dependencies}

To create this port, for the Control mode parameter, select Ideal integrated controller.

PriDisp - Primary pulley displacement scalar

Variator primary pulley displacement, \(\chi_{\text {pri }}\) in \(m\).

\section*{Dependencies}

To create this port, for the Control mode parameter, select External control.

\section*{SecDisp - Secondary pulley displacement scalar}

Variator secondary pulley displacement, \(\chi_{\text {sec }}\), in \(m\).

\section*{Dependencies}

To create this port, for the Control mode parameter, select External control.

\section*{EngTrq - Input drive shaft torque}

\section*{scalar}

External torque applied to the input drive shaft, \(T_{i}\), in \(N \cdot m\).

\section*{DiffTrq - Output drive shaft torque}
scalar
External torque applied to the output drive shaft, \(T_{0}\), in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|l|}
\hline Signal & Description & Variable & Units \\
\hline EngTrq & Input shaft torque & \(T_{i}\) & \(\mathrm{~N} \cdot \mathrm{~m}\) \\
\hline DiffTrq & Output shaft torque & \(T_{o}\) & \(\mathrm{~N} \cdot \mathrm{~m}\) \\
\hline EngSpd & Input shaft speed & \(\omega_{i}\) & \(\mathrm{rad} / \mathrm{s}\) \\
\hline DiffSpd & Output shaft speed & \(\omega_{o}\) & \(\mathrm{rad} / \mathrm{s}\) \\
\hline PriRadius & Primary pulley radius & \(r_{\text {pri }}\) & m \\
\hline PriPhi & Primary pulley wrap angle & \(\Phi_{\text {pri }}\) & rad \\
\hline SecRadius & Secondary pulley radius & \(r_{\text {sec }}\) & m \\
\hline SecPhi & \begin{tabular}{l} 
Secondary pulley wrap \\
angle
\end{tabular} & \(\Phi_{\text {sec }}\) & rad \\
\hline BltLngthDelta & Change in belt length & \(\Delta L\) & m \\
\hline BltLngth & Belt length & L & m \\
\hline BltLngthInit & Initial belt length & \(L_{o}\) & m \\
\hline BltOnPriTrq & \begin{tabular}{l} 
Belt torque acting on the \\
primary pulley
\end{tabular} & \(T_{\text {BoP_pri }}\) & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline BltOnSecTrq & \begin{tabular}{l} 
Belt torque acting on the \\
secondary pulley
\end{tabular} & \(T_{\text {BoP_sec }}\) & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline BltVel & Linear speed of the belt & \(v_{b}\) & \(\mathrm{~m} / \mathrm{s}\) \\
\hline PriAngVel & Primary pulley speed & \(\omega_{\text {pri }}\) & \(\mathrm{rad} / \mathrm{s}\) \\
\hline SecAngVel & Secondary pulley speed & \(\omega_{\text {sec }}\) & \(\mathrm{rad} / \mathrm{s}\) \\
\hline PriSlipDir & \begin{tabular}{l} 
Primary pulley slip direction \\
indicator
\end{tabular} & PriSlipDir & \(\mathrm{N} / \mathrm{A}\) \\
\hline SecSlipDir & \begin{tabular}{l} 
Secondary pulley slip \\
direction indicator
\end{tabular} & SecSlipDir & \(\mathrm{N} / \mathrm{A}\) \\
\hline TransSpdRatio & Total no-slip gear ratio & \(N_{\text {final }}\) & \(\mathrm{N} / \mathrm{A}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Signal} & Description & Variable & Units \\
\hline \multirow[t]{7}{*}{PwrInfo} & \multirow[t]{2}{*}{PwrTrnsf rd} & PwrEng & Engine power & \(P_{\text {eng }}\) & W \\
\hline & & \[
\begin{aligned}
& \text { PwrDiffrn } \\
& \text { tl }
\end{aligned}
\] & Differential power & \(P_{\text {diff }}\) & W \\
\hline & \multirow[t]{4}{*}{PwrNotTr nsfrd} & PwrBltLos S & Belt slip power loss & \(P_{\text {bltloss }}\) & W \\
\hline & & PwrGearIn Loss & Input planetary gear mechanical power loss & \(P_{\text {grinloss }}\) & W \\
\hline & & PwrGear0u tLoss & Output gear reduction mechanical power loss & \(P_{\text {groutloss }}\) & W \\
\hline & & PwrDampLo SS & Mechanical damping loss & \(P_{\text {damploss }}\) & W \\
\hline & PwrStore d & PwrStored Trans & Rate change in rotational kinetic energy & \(P_{\text {str }}\) & W \\
\hline
\end{tabular}

\section*{EngSpd - Input drive shaft speed}
scalar
Input drive shaft angular speed, \(\omega_{i}\), in rad/sec.

\section*{DiffSpd - Output drive shaft speed}
scalar
Output drive shaft angular speed, \(\omega_{0}\), in rad/sec.

\section*{Parameters}

\section*{Control mode - External or internal}

Ideal integrated controller (default)|External control
Specify the control method, either internal or external.

\section*{Dependencies}

This table summarizes the port and input model configurations.
\begin{tabular}{|l|l|}
\hline Control Mode & Creates Ports \\
\hline Ideal integrated controller & PllyRatioReq \\
\hline External control & PriDisp \\
& SecDisp \\
\hline
\end{tabular}

\section*{Kinematics}

\section*{Maximum variator primary pulley radius, rp_max - Radius} scalar

Maximum variator primary pulley radius, \(r p_{\max }\), in m .
Maximum variator secondary pulley radius, rs_max - Radius scalar

Maximum variator secondary pulley radius, \(r s_{\text {max }}\), in \(m\).
```

Minimum variator primary pulley radius, rp_min - Radius
scalar

```

Minimum variator primary pulley radius, \(r p_{\text {min }}\), in \(m\).

\section*{Minimum variator secondary pulley radius, rs_min - Radius} scalar

Minimum variator secondary pulley radius, \(r s_{\text {min }}\), in \(m\).
Gap distance between variator pulleys, rgap - Specify crown wheel connection

\section*{scalar}

The gap between the secondary and primary pulleys, \(r_{\text {gap }}\), in m . The figure shows the pulley geometry.


Variator wedge angle, thetawedge - Specify crown wheel connection scalar

Variator wedge angle, \(\Theta_{\text {wedge }}\), in deg.


\section*{Dynamics}

Primary pulley inertia, J_pri - Inertia scalar

Primary pulley inertia, \(J_{p r i}\), in \(\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2\).
Secondary pulley inertia, J_sec - Inertia scalar

Secondary pulley inertia, \(J_{\text {sec }}\), in \(\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2\).
Primary pulley damping coefficient, b_pri - Damping scalar

Primary pulley damping coefficient, \(b_{\text {pri }}\) in \(N \cdot m \cdot s / r a d\).
Secondary pulley damping coefficient, b_sec - Damping scalar

Secondary pulley damping coefficient, \(b_{\text {sec }}\), in \(\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}\).
Belt damping coefficient, b_b - Damping scalar

Belt damping coefficient, \(b_{b}\), in \(\mathrm{kg} / \mathrm{s}\).

\section*{Static friction coefficient, mu_static - Friction scalar}

Static friction coefficient between the belt and primary pulley, \(\mu_{\text {static }}\), dimensionless.

\section*{Kinetic friction coefficient, mu_kin - Friction} scalar

Kinetic friction coefficient between the belt and primary pulley, \(\mu_{k i n}\), dimensionless.

\section*{Belt mass, m_b - Mass}

\section*{scalar}

Belt mass, \(m_{b}\), in kg.
Pulley clamp force, F_ax - Pulley clamp force scalar

Pulley clamp force, \(F_{a x}\), in \(N\).

\section*{Reverse and Output Ratio}

\section*{Forward inertia, J_fwd - Inertia} scalar

Forward inertia, \(J_{f w d}\), in \(\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2\).
Reverse inertia, J_rev - Inertia scalar

Reverse inertia, \(J_{\text {rev }}\), in \(\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2\).
Forward efficiency, eta_fwd - Efficiency scalar

Forward efficiency, \(\eta_{\text {fwd }}\), dimensionless.
Reverse efficiency, eta_rev - Efficiency scalar

Reverse efficiency, \(\eta_{\text {rev }}\), dimensionless.
Reverse gear ratio, N_rev - Ratio scalar

Reverse gear ratio, \(N_{\text {rev }}\), dimensionless.

\section*{Shift time constant, tau_s - Constant scalar}

Shift time constant, \(\tau_{s}\), in s.
Output gear ratio, N_o - Ratio scalar

Output gear ratio, \(N_{o}\), dimensionless.
Output gear efficiency, eta_o - Efficiency scalar

Output gear efficiency, \(\eta_{o}\), dimensionless.

\section*{References}
[1] Ambekar, Ashok G. Mechanism and Machine Theory. New Delhi: Prentice-Hall of India, 2007.
[2] Bonsen, B. Efficiency optimization of the push-belt CVT by variator slip control. Ph.D. Thesis. Eindhoven University of Technology, 2006.
[3] CVT How Does It Work. CVT New Zealand 2010 Ltd, 10 Feb. 2011. Web. 25 Apr. 2016.
[4] Klaassen, T. W. G. L. The Empact CVT: Dynamics and Control of an
Electromechanically Actuated CVT. Ph.D. Thesis. Eindhoven University of Technology, 2007.
[5] Sakagami, K. Prediction of Friction Drive Limit of Metal V-Belt. Warrendale, PA: SAE International Journal of Engines 8(3):1408-1416, 2015.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

CVT Controller

Introduced in R2017a

\section*{CVT Controller}

Continuously variable transmission controller
Library: Powertrain Blockset / Transmission / Transmission Controllers


\section*{Description}

The CVT Controller block implements a push belt continuously variable transmission (CVT) controller. The block uses standard pulley and geometric equations to calculate the kinematic setpoints for the CVT variator. You can use the block to control a CVT.

\section*{Pulley Kinematics}

Using the physical dimensions of the system, the block calculates the primary and secondary variator positions that meet the pulley ratio request.

The figure and equations summarize the geometric dependencies.


The equations use these variables.
\begin{tabular}{ll} 
ratio \(_{\text {request }}\) & Pulley gear ratio request \\
ratio \(_{\text {command }}\) & Pulley gear ratio command, based on request and physical limitations \\
\(r_{\text {gap }}\) & Gap distance between variator pulleys \\
\(C_{\text {dist }}\) & Distance between variator pulley centers \\
\(r p_{\max }\) & Maximum variator primary pulley radius \\
\(r s_{\max }\) & Maximum variator secondary pulley radius
\end{tabular}
\begin{tabular}{ll}
\(r p_{\min }\) & Minimum variator primary pulley radius \\
\(r s_{\min }\) & Minimum variator secondary pulley radius \\
\(r_{o}\) & Initial pulley radii with gear ratio of 1 \\
\(L_{o}\) & Initial belt length, resulting from variator specification \\
\(\chi_{p r i}\) & Variator primary pulley displacement, resulting from controller request \\
\(\chi_{s e c}\) & Variator secondary pulley displacement, resulting from controller request \\
\(r_{p r i}\) & Variator primary pulley radius, resulting from controller request \\
\(r_{\text {sec }}\) & Variator secondary pulley radius, resulting from controller request \\
\(\Theta_{\text {wedge }}\) & Variator wedge angle \\
\(\Phi\) & Angle of belt to pulley contact point \\
\(L\) & Belt length, resulting from variator position
\end{tabular}

\section*{Ports}

\section*{Inputs}

\section*{DirReq - Direction request}
scalar
Direction request, Dir \(_{\text {req }}\), controlling the direction, either forward or reverse. Dir equals 1 for forward motion. Dir equals - 1 for reverse.
\[
\text { Dir }=\left\{\begin{array}{cc}
1 & \text { when } \text { Dir }_{r e q} \geq 0 \\
-1 & \text { when } \text { Dir }_{\text {req }}<0
\end{array}\right.
\]

\section*{PllyRatioReq - Pulley ratio request \\ scalar}

CVT pulley ratio request, ratio \(_{\text {request }}\).

\section*{Output}

\section*{Info - Bus signal \\ bus}

Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|l|l|}
\hline Signal & Description & Variable & Units \\
\hline Radius & PriRadius & \begin{tabular}{l} 
Variator primary pulley \\
radius, resulting from \\
controller request
\end{tabular} & \(r_{\text {pri }}\) & m \\
\cline { 2 - 5 } & SecRadius & \begin{tabular}{l} 
Variator secondary \\
pulley radius, resulting \\
from controller request
\end{tabular} & \(r_{\text {sec }}\) & m \\
\cline { 2 - 5 } & \begin{tabular}{l} 
InitPllyRadiu \\
s
\end{tabular} & \begin{tabular}{l} 
Initial pulley radii with \\
gear ratio of 1
\end{tabular} & \(r_{o}\) & m \\
\hline RatioAdj & \begin{tabular}{l} 
Pulley gear ratio \\
command, based on \\
request and physical \\
limitations
\end{tabular} & ratio \(_{\text {command }}\) & \(\mathrm{N} / \mathrm{A}\) \\
\hline RatioMax & Maximum pulley ratio & ratio \(_{\text {max }}\) & \(\mathrm{N} / \mathrm{A}\) \\
\hline RatioMin & Minimum pulley ratio & ratio \(_{\text {min }}\) & \(\mathrm{N} / \mathrm{A}\) \\
\hline PriDispCmd & \begin{tabular}{l} 
Variator primary pulley \\
displacement, resulting \\
from controller request
\end{tabular} & \(x_{p r i}\) & m \\
\hline SecDispCmd & \begin{tabular}{l} 
Variator secondary \\
pulley displacement, \\
resulting from \\
controller request
\end{tabular} & \(x_{\text {sec }}\) & m \\
\hline
\end{tabular}

\section*{Dir - Direction request}

\section*{scalar}

Direction request, Dir \(_{\text {req }}\), controlling the direction, either forward or reverse. Dir equals 1 for forward motion. Dir equals -1 for reverse.
\[
\text { Dir }=\left\{\begin{array}{cc}
1 & \text { when } \text { Dir }_{r e q} \geq 0 \\
-1 & \text { when Dir }{ }_{r e q}<0
\end{array}\right.
\]

\section*{PriDispCmd - Primary pulley displacement}
scalar
Variator primary pulley displacement, \(x_{\text {pri }}\) in \(m\).

\section*{SecDispCmd - Secondary pulley displacement scalar}

\author{
Variator secondary pulley displacement, \(x_{\text {sec }}\), in \(m\).
}

\section*{Parameters}

\section*{Kinematics}

Maximum variator primary pulley radius, rp_max - Radius scalar

Maximum variator primary pulley radius, \(r p_{\max }\), in m .
Maximum variator secondary pulley radius, rs_max - Radius scalar

Maximum variator secondary pulley radius, \(r s_{\text {max }}\), in \(m\).
Minimum variator primary pulley radius, rp_min - Radius scalar

Minimum variator primary pulley radius, \(r p_{\text {min }}\), in \(m\).
Minimum variator secondary pulley radius, rs_min - Radius scalar

Minimum variator secondary pulley radius, \(r s_{\text {min }}\), in m .
Gap distance between variator pulleys, rgap - Specify crown wheel connection
scalar
The gap between the secondary and primary pulleys, \(r_{\text {gap }}\), in m . The figure shows the pulley geometry.


Variator wedge angle, thetawedge - Specify crown wheel connection scalar

Variator wedge angle, \(\Theta_{\text {wedge }}\), in deg.


\section*{References}
[1] Ambekar, Ashok G. Mechanism and Machine Theory. New Delhi: Prentice-Hall of India, 2007.
[2] Bonsen, B. Efficiency optimization of the push-belt CVT by variator slip control. Ph.D. Thesis. Eindhoven University of Technology, 2006.
[3] CVT How Does It Work. CVT New Zealand 2010 Ltd. February 10, 2011. Accessed April 25, 2016.
[4] Klaassen, T. W. G. L. The Empact CVT: Dynamics and Control of an Electromechanically Actuated CVT. Ph.D. Thesis. Eindhoven University of Technology, 2007.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

Continuously Variable Transmission

\section*{Introduced in R2017a}

\section*{Dual Clutch Transmission}

Dual clutch transmission that applies torque to the drive shaft
Library: Powertrain Blockset / Transmission / Transmission Systems


\section*{Description}

The Dual Clutch Transmission block implements a dual clutch transmission (DCT). In a DCT, two clutches apply mechanical torque to the drive shaft. Odd gears engage one clutch, while even gears engage the secondary clutch. The number of gears is specified via an integer vector with corresponding gear ratios, inertias, viscous damping, and efficiency factors. The clutch and synchronization engagement rates are linear and adjustable. You can provide external clutch signals or configure the block to generate idealized internal clutch signals. The block implements the transmission model with minimal parameterization or computational cost.

Use the block to model a simplified automated manual transmission (AMT) for:
- Power and torque capacity sizing
- Determining gear ratio impact on fuel economy and performance

To determine the rotational drive shaft speed and reaction torque, the Dual Clutch Transmission block calculates:
- Clutch lock-up and clutch friction
- Locked rotational dynamics
- Unlocked rotational dynamics

To specify the block efficiency calculation, for Efficiency factors, select either of these options.
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline Gear only & \begin{tabular}{l} 
Efficiency determined from a 1D lookup table that is a \\
function of the gear.
\end{tabular} \\
\hline \begin{tabular}{l} 
Gear, input torque, \\
input speed, and \\
temperature
\end{tabular} & \begin{tabular}{l} 
Efficiency determined from a 4D lookup table that is a \\
function of:
\end{tabular} \\
& \begin{tabular}{ll} 
- Gear \\
- Input torque \\
& - Input speed \\
& - Oil temperature \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Clutch Control}

The DCT delivers drive shaft torque continuously by controlling the pressure signals from both clutches. If you select Control mode parameter Ideal integrated controller, the block generates idealized clutch pressure signals. The block uses the maximum pressure from each clutch to approximate the single-clutch commands that result in equivalent drive shaft torque. To use your own clutch control signals, select Control mode parameter External control.

\section*{Clutch Lock-Up and Clutch Friction}

Based on the clutch lock-up condition, the block implements one of these friction models.
\begin{tabular}{|l|l|l|}
\hline If & \begin{tabular}{l} 
Clutch \\
Condition
\end{tabular} & Friction Model \\
\hline\(\omega_{i} \neq N \omega_{d}\) & Unlocked & \(T_{f}=T_{k}\) \\
or & & where, \\
\(T_{S}<\left|T_{f}-N w_{i} b_{i}\right|\) & & \(T_{k}=F_{c} R_{e f f} \mu_{k} \tanh \left[4\left(\frac{w_{i}}{N}-w_{d}\right)\right]\) \\
& & \(T_{s}=F_{C} R_{e f f} \mu_{S}\) \\
& & \(R_{e f f}=\frac{2\left(R_{0} 3-R_{i} 3\right)}{3\left(R_{o} 2-R_{i} 2\right)}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline If & \begin{tabular}{l} 
Clutch \\
Condition
\end{tabular} & Friction Model \\
\hline\(\omega_{i}=N \omega_{t}\) & Locked & \(T_{f}=T_{s}\) \\
and & & \\
\(T_{S} \geq\left|T_{f}-N b_{i} \omega_{i}\right|\) & & \\
\hline
\end{tabular}

The equations use these variables.
\(\omega_{t} \quad\) Output drive shaft speed
\(\omega_{i} \quad\) Input drive shaft speed
\(\omega_{d} \quad\) Drive shaft speed
\(b_{i} \quad\) Viscous damping
\(F_{c} \quad\) Applied clutch force
\(N \quad\) Engaged gear
\(T_{f} \quad\) Frictional torque
\(T_{k} \quad\) Kinetic frictional torque
\(T_{S} \quad\) Static frictional torque
\(R_{e f f} \quad\) Effective clutch radius
\(R_{o} \quad\) Annular disk outer radius
\(R_{i} \quad\) Annular disk inner radius
\(\mu_{s} \quad\) Coefficient of static friction
\(\mu_{k} \quad\) Coefficient of kinetic friction

\section*{Locked Rotational Dynamics}

To model the rotational dynamics when the clutch is locked, the block implements these equations.
\[
\begin{aligned}
& \dot{\omega}_{d} J_{N}=\eta_{N} T_{d}-\frac{\omega_{i}}{N} b_{N}+N T_{i} \\
& \omega_{i}=N \omega_{d}
\end{aligned}
\]

The block determines the input torque, \(T_{i}\), through differentiation.

The equations use these variables.
\begin{tabular}{ll}
\(\omega_{i}\) & Input drive shaft speed \\
\(\omega_{d}\) & Drive shaft speed \\
\(N\) & Engaged gear \\
\(b_{N}\) & Engaged gear viscous damping \\
\(J_{N}\) & Engaged gear inertia \\
\(\eta_{N}\) & Engaged gear efficiency \\
\(T_{d}\) & Drive shaft torque \\
\(T_{i}\) & Applied input torque
\end{tabular}

\section*{Unlocked Rotational Dynamics}

To model the rotational dynamics when the clutch is unlocked, the block implements this equation.
\[
\dot{\omega}_{d} J_{N}=N T_{f}-\omega_{d} b_{N}+T_{d}
\]
where:
\begin{tabular}{ll}
\(\omega_{d}\) & Drive shaft speed \\
\(N\) & Engaged gear \\
\(b_{N}\) & Engaged gear viscous damping \\
\(J_{N}\) & Engaged gear inertia \\
\(T_{d}\) & Drive shaft torque \\
\(T_{i}\) & Applied input torque
\end{tabular}

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & & Equations \\
\hline \multirow[t]{6}{*}{} & \multirow[t]{2}{*}{\begin{tabular}{l}
PwrTrnsfrd - Power transferred between blocks \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block
\end{tabular}} & PwrEn g & Engine power & \(P_{\text {eng }}\) & \(\omega_{i} T_{i}\) \\
\hline & & PwrDi ffrnt l & Differential power & \(P_{\text {diff }}\) & \(\omega_{d} T_{d}\) \\
\hline & \multirow[t]{3}{*}{\begin{tabular}{l}
PwrNotTrnsfrd - Power crossing the block boundary, but not transferred \\
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular}} & PwrEf fLoss & Mechanical power loss & \begin{tabular}{l}
\[
P_{\text {efflos }}
\] \\
\(s\)
\end{tabular} & \(\omega_{d} T_{d}\left(\eta_{N}-1\right)\) \\
\hline & & PwrDa mpLos S & Mechanical damping loss & \begin{tabular}{l}
\[
P_{\text {damp }}
\] \\
loss
\end{tabular} & \(-b_{N} \omega_{d}^{2}-b_{i n} \omega_{i}^{2}\) \\
\hline & & \[
\begin{aligned}
& \text { PwrCl } \\
& \text { tchLo } \\
& \text { ss }
\end{aligned}
\] & Clutch power loss & \(P_{\text {mech }}\) & \begin{tabular}{l}
When locked: 0 \\
When unlocked:
\[
-T_{k}\left(\omega_{i}-N \omega_{d}\right)
\]
\end{tabular} \\
\hline & \begin{tabular}{l}
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase \\
- Negative signals indicate a decrease
\end{tabular} & \[
\begin{array}{|l}
\text { PwrSt } \\
\text { oredT } \\
\text { rans }
\end{array}
\] & Rate change in rotational kinetic energy & \(P_{\text {str }}\) & \begin{tabular}{l}
When locked:
\[
\dot{\omega}_{i} \omega_{i}\left(J_{i n}+\frac{J_{N}}{N^{2}}\right)
\] \\
When unlocked:
\[
J_{i n} \dot{\omega}_{i} \omega_{i}+J_{N} \dot{\omega}_{d} \omega_{d}
\]
\end{tabular} \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(b_{N}\) & Engaged gear viscous damping \\
\(J_{N}\) & Engaged gear rotational inertia \\
\(J_{i n}\) & Flywheel rotational inertia \\
\(\eta_{N}\) & Engaged gear efficiency \\
\(N\) & Engaged gear ratio \\
\(T_{i}\) & \begin{tabular}{l} 
Applied input torque, typically from the engine crankshaft or dual mass \\
flywheel damper
\end{tabular}
\end{tabular}
\begin{tabular}{ll}
\(T_{d}\) & Applied load torque, typically from the differential or drive shaft \\
\(\omega_{d}\) & Initial input drive shaft rotational velocity \\
\(\omega_{i}, \omega_{i}\) & Applied drive shaft angular speed and acceleration
\end{tabular}

\section*{Ports}

\section*{Inputs}

\section*{Gear - Gear number to engage \\ scalar}

Integer value of gear number to engage.

\section*{CltchACmd - Command for odd-numbered gears}
scalar
Clutch pressure command for odd-numbered gears, between 0 and 1 .

\section*{Dependencies}

To create this port, select Control mode parameter External control.
CltchBCmd - Command for even-numbered gears
scalar
Clutch pressure command for even-numbered gears, between 0 and 1.

\section*{Dependencies}

To create this port, select Control mode parameter External control.

\section*{EngTrq - Applied torque}

\section*{scalar}

Applied input torque, \(T_{i}\), typically from the engine crankshaft or dual mass flywheel damper, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{DiffTrq - Applied torque}
scalar
Applied load torque, \(T_{d}\), typically from the drive shaft, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Temp - Oil temperature}

\section*{scalar}

Oil temperature, in K. To determine the efficiency, the block uses a 4D lookup table that is a function of:
- Gear
- Input torque
- Input speed
- Oil temperature

\section*{Dependencies}

To create this port, set Efficiency factors to Gear, input torque, input speed, and temperature.

\section*{Output}

\section*{Info - Bus signal \\ bus}

Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ Signal } & Description & Variable & Units \\
\hline \multirow{5}{*}{ Eng } & EngTrq & \begin{tabular}{l} 
Applied input torque, \\
typically from the \\
engine crankshaft or \\
dual mass flywheel \\
damper
\end{tabular} & \(T_{i}\) & \(\mathrm{~N} \cdot \mathrm{~m}\) \\
\hline & EngSpd & \begin{tabular}{l} 
Applied drive shaft \\
angular speed input
\end{tabular} & \(\omega_{i}\) & \(\mathrm{rad} / \mathrm{s}\) \\
\hline Diff & DiffTrq & \begin{tabular}{l} 
Applied load torque, \\
typically from the \\
differential
\end{tabular} & \(T_{d}\) & \(\mathrm{~N} \cdot \mathrm{~m}\) \\
\cline { 2 - 5 } & DiffSpd & \begin{tabular}{l} 
Drive shaft angular \\
speed output
\end{tabular} & \(\omega_{d}\) & \(\mathrm{rad} / \mathrm{s}\) \\
\hline Cltch & CltchForce & Applied clutch force & \(F_{c}\) & N \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Signal} & Description & Variable & Units \\
\hline & \multicolumn{2}{|l|}{CltchLocked} & Clutch state & NA & NA \\
\hline \multirow[t]{4}{*}{Trans} & \multicolumn{2}{|l|}{TransSpd Ratio} & Input to output speed ratio at time t & \(\Phi(t)\) & NA \\
\hline & \multicolumn{2}{|l|}{TransEta} & Ratio of output power to input power & \(\eta_{N}\) & NA \\
\hline & \multicolumn{2}{|l|}{TransGearCmd} & Commanded gear & \(N_{\text {cmd }}\) & NA \\
\hline & \multicolumn{2}{|l|}{TransGear} & Engaged gear & \(N\) & NA \\
\hline \multirow[t]{6}{*}{PwrInfo} & \multirow[t]{2}{*}{PwrTrnsfrd} & PwrE ng & Engine power & \(P_{\text {eng }}\) & W \\
\hline & & PwrD iffr ntl & Differential power & \(P_{\text {diff }}\) & W \\
\hline & \multirow[t]{3}{*}{PwrNotTrnsfrd} & \[
\begin{aligned}
& \text { PwrE } \\
& \text { ffLo } \\
& \text { ss }
\end{aligned}
\] & Mechanical power loss & \(P_{\text {effloss }}\) & W \\
\hline & & PwrD ampL oss & Mechanical damping loss & \(P_{\text {damploss }}\) & W \\
\hline & & \[
\begin{aligned}
& \text { PwrC } \\
& \text { ltch } \\
& \text { Loss }
\end{aligned}
\] & Clutch power loss & \(P_{\text {mech }}\) & W \\
\hline & PwrStored & \begin{tabular}{l}
PwrS \\
tore dTra ns
\end{tabular} & Rate change in rotational kinetic energy & \(P_{\text {str }}\) & W \\
\hline
\end{tabular}

\section*{EngSpd - Angular speed}
scalar
Drive shaft angular speed, \(\omega_{d}\), in rad/s.

\section*{DiffSpd - Angular speed}
scalar
Drive shaft angular speed, \(\omega_{d}\), in rad/s.

\section*{Parameters}

\section*{Control mode - Specify control mode}

External control (default)|Ideal integrated controller
The DCT delivers drive shaft torque continuously by controlling the pressure signals from both clutches. If you select Control mode parameter Ideal integrated controller, the block generates idealized clutch pressure signals. The block uses the maximum pressure from each clutch to approximate the single-clutch commands that result in equivalent drive shaft torque. To use your own clutch control signals, select Control mode parameter External control.

\section*{Dependencies}

This table summarizes the port configurations.
\begin{tabular}{|l|l|}
\hline Control Mode & Creates Ports \\
\hline \multirow{2}{*}{ External control } & CltchACmd \\
\cline { 2 - 2 } & CltchBCmd \\
\hline
\end{tabular}

\section*{Efficiency factors - Specify efficiency calculation}

Gear only (default)|Gear, input torque, input speed, and temperature
To specify the block efficiency calculation, for Efficiency factors, select either of these options.
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline Gear only & \begin{tabular}{l} 
Efficiency determined from a 1D lookup table that is a \\
function of the gear.
\end{tabular} \\
\hline \begin{tabular}{l} 
Gear, input torque, \\
input speed, and \\
temperature
\end{tabular} & \begin{tabular}{l} 
Efficiency determined from a 4D lookup table that is a \\
function of:
\end{tabular} \\
& \begin{tabular}{l} 
-
\end{tabular} \\
& - \\
& - Inpur torque \\
& - \\
& Input speed temperature \\
\hline
\end{tabular}

\section*{Dependencies}
\begin{tabular}{|l|l|}
\hline Setting Parameter To & Enables \\
\hline Gear only & Efficiency vector, eta \\
\hline \begin{tabular}{l} 
Gear, input torque, \\
input speed, and \\
temperature
\end{tabular} & Efficiency torque breakpoints, Trq_bpts \\
& Efficiency speed breakpoints, omega_bpts \\
& Efficiency temperature breakpoints, Temp_bpts \\
& Efficiency lookup table, eta_tbl \\
\hline
\end{tabular}

\section*{Transmission}

Input shaft inertia, Jin - Inertia

\section*{scalar}

Input shaft inertia, in \(\mathrm{kg} \cdot \mathrm{m} \wedge 2\).

\section*{Input shaft damping, bin - Damping scalar}

Input shaft damping, in \(\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}\).

\section*{Initial input velocity, omegain_o - Angular velocity scalar}

Angular velocity, in rad/s.
Efficiency torque breakpoints, Trq_bpts - Breakpoints
vector
Torque breakpoints for efficiency table, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear, input torque, input speed, and temperature.

Efficiency speed breakpoints, omega_bpts - Breakpoints vector

Speed breakpoints for efficiency table, in rad/s.

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear, input torque, input speed, and temperature.

Efficiency temperature breakpoints, Temp_bpts - Breakpoints vector

Temperature breakpoints for efficiency table, in K.

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear, input torque, input speed, and temperature.

Gear number vector, G - Specify number of transmission speeds vector

Vector of integers used to specify the number of transmission speeds. Neutral gear is 0 . For example, you can set these parameter values.
\begin{tabular}{|l|l|}
\hline To Specify & Set Gear number, G to \\
\hline \begin{tabular}{l} 
Four transmission speeds, \\
including neutral
\end{tabular} & {\([0,1,2,3,4]\)} \\
\hline \begin{tabular}{l} 
Three transmission speeds, \\
including neutral and reverse
\end{tabular} & {\([-1,0,1,2,3]\)} \\
\hline \begin{tabular}{l} 
Five transmission speeds, \\
including neutral and reverse
\end{tabular} & {\([-1,0,1,2,3,4,5]\)} \\
\hline
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Transmission inertia vector, Damping vector, and Efficiency vector parameters must be equal.

\section*{Gear ratio vector, \(N\) - Ratio of input speed to output speed vector}

Vector of gear ratios (that is, input speed to output speed) with indices corresponding to the ratios specified in Gear number, G. For neutral, set the gear ratio to 1. For example, you can set these parameter values.
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
To Specify Gear Ratios \\
for
\end{tabular} & \begin{tabular}{l} 
Set Gear number, G \\
to
\end{tabular} & Set Gear ratio, N to \\
\hline \begin{tabular}{l} 
Four transmission speeds, \\
including neutral
\end{tabular} & {\([0,1,2,3,4]\)} & {\([1,4.47,2.47,1.47,1]\)} \\
\hline \begin{tabular}{l} 
Five transmission speeds, \\
including neutral and \\
reverse
\end{tabular} & {\([-1,0,1,2,3,4,5]\)} & \begin{tabular}{l}
{\([-4.47,1,4.47,2.47,1.47,1,0\)} \\
\(.8]\)
\end{tabular} \\
\hline
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Transmission inertia vector, Damping vector, and Efficiency vector parameters must be equal.

\section*{Transmission inertia vector, Jout - Gear rotational inertia vector}

Vector of gear rotational inertias, with indices corresponding to the inertias specified in Gear number, G, in \(\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2\). For example, you can set these parameter values.
\begin{tabular}{|l|l|l|}
\hline To Specify Inertia for & \begin{tabular}{l} 
Set Gear number, G \\
to
\end{tabular} & Set Inertia, J to \\
\hline \begin{tabular}{l} 
Four gears, including \\
neutral
\end{tabular} & {\([0,1,2,3,4]\)} & {\([0.01,2.28,2.04,0.32,0.028]\)} \\
\hline \begin{tabular}{l} 
Inertia for five gears, \\
including reverse and \\
neutral
\end{tabular} & {\([-1,0,1,2,3,4,5]\)} & \begin{tabular}{l}
{\([2.28,0.01,2.28,2.04,0.32,0\)} \\
\(.028,0.01]\)
\end{tabular} \\
\hline
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Transmission inertia vector, Damping vector, and Efficiency vector parameters must be equal.

\section*{Damping vector, bout - Gear viscous damping coefficient vector}

Vector of gear viscous damping coefficients, with indices corresponding to the coefficients specified in Gear number, G, in \(\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}\). For example, you can set these parameter values.
\begin{tabular}{|l|l|l|}
\hline To Specify Damping for & \begin{tabular}{l} 
Set Gear number, G \\
to
\end{tabular} & Set Damping, b to \\
\hline \begin{tabular}{l} 
Four gears, including \\
neutral
\end{tabular} & {\([0,1,2,3,4]\)} & \begin{tabular}{l}
{\([0.001,0.003,0.0025\),} \\
\(0.002,0.001]\)
\end{tabular} \\
\hline \begin{tabular}{l} 
Five gears, including \\
reverse and neutral
\end{tabular} & {\([-1,0,1,2,3,4,5]\)} & \begin{tabular}{l}
{\([0.003,0.001,0.003,0.0025\),} \\
\(0.002,0.001,0.001]\)
\end{tabular} \\
\hline
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Transmission inertia vector, Damping vector, and Efficiency vector parameters must be equal.

\section*{Efficiency vector, eta - Gear efficiency}
vector
Vector of gear mechanical efficiency, with indices corresponding to the efficiencies specified in Gear number, G. For example, you can set these parameter values.
\begin{tabular}{|l|l|l|}
\hline To Specify Efficiency for & \begin{tabular}{l} 
Set Gear number, G \\
to
\end{tabular} & Set Efficiency, eta to \\
\hline \begin{tabular}{l} 
Four gears, including \\
neutral
\end{tabular} & {\([0,1,2,3,4]\)} & {\([0.9,0.9,0.9,0.9,0.95]\)} \\
\hline \begin{tabular}{l} 
Five gears, including \\
reverse and neutral
\end{tabular} & {\([-1,0,1,2,3,4,5]\)} & \begin{tabular}{l}
{\([0.9,0.9,0.9\),} \\
\(0.9,0.9,0.95,0.95]\)
\end{tabular} \\
\hline
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Transmission inertia vector, Damping vector, and Efficiency vector parameters must be equal.

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear only.

\section*{Efficiency lookup table, eta_tbl - Gear efficiency array}

Table of gear mechanical efficiency, \(\eta_{N}\) as a function of gear, input torque, input speed, and temperature.

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear, input torque, input speed, and temperature.

\section*{Initial output velocity, omegaout_o - Transmission scalar}

Transmission initial output rotational velocity, \(\omega_{\text {to }}\), in rad/s. If you select Clutch initially locked, the block ignores the Initial output velocity, omega_o parameter value.

\section*{Initial gear, G_o - Engaged gear}
scalar
Initial gear to engage, \(G_{0}\).

\section*{Clutch and Synchronizer}

Clutch pressure time constant, tauc - Time scalar

Time required to engage and disengage the clutch during shift events, \(t_{c}\), in s .

\section*{Synchronization time, ts - Time scalar}

Time required for gear selection and synchronization, \(t_{s}\), in s .

\section*{Clutch time, tc - Time}
scalar
Time required to engage clutch, \(t_{c}\), in s .

\section*{Dependencies}

To create this parameter, select Control mode parameter Ideal integrated controller.

Effective clutch radius, \(R\) - Radius
scalar
The effective radius, \(R_{e f f}\), used with the applied clutch friction force to determine the friction force, in \(m\). The effective radius is defined as:
\[
R_{e f f}=\frac{2\left(R_{O}{ }^{3}-R_{i}{ }^{3}\right)}{3\left(R_{O}^{2}-R_{i}^{2}\right)}
\]

The equation uses these variables.
\begin{tabular}{lc}
\(R_{O}\) & Annular disk outer radius \\
\(R_{i}\) & Annular disk inner radius \\
Clutch & force gain, K_c \(^{\text {- Force }}\) \\
scalar &
\end{tabular}

Open loop lock-up clutch gain, \(K_{C}\), in N .
Clutch static friction coefficient, mus - Coefficient scalar

Dimensionless clutch disc coefficient of static friction, \(\mu_{s}\).
Clutch kinematic friction coefficient, muk - Coefficient scalar

Dimensionless clutch disc coefficient of kinetic friction, \(\mu_{k}\).

\section*{Clutch initially locked - Select to initially lock clutch} off (default)

Selecting this parameter initially locks the clutch.

\section*{Dependencies}

To create this parameter, select Control mode parameter Ideal integrated controller.

Synchronizer initially locked - Select to initially lock synchronizer off (default)

Selecting this parameter initially locks the synchronizer.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

Automated Manual Transmission | DCT Controller

Introduced in R2017a

\section*{DCT Controller}

Dual clutch transmission controller
Library: Powertrain Blockset / Transmission / Transmission Controllers


\section*{Description}

The DCT Controller block implements a dual clutch transmission (DCT) controller. You can specify the clutch open, close, and synchronization timing parameters. The block determines the clutch commands using integrator-based timers and latching logic that is based on the specified timing parameters and gear request.

\section*{Ports}

\section*{Inputs}

\section*{GearReq - Gear number to engage}
scalar
Gear number request, \(G_{\text {req }}\).

\section*{Output}

\section*{Info - Bus signal}
bus
Bus signal containing these block calculations.
\begin{tabular}{|l|l|l|}
\hline Signal & Description & Variable \\
\hline GearReq & Gear number request & \(G_{\text {req }}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Signal & Description & Variable \\
\hline GearEngd & Nominal gear commanded by the controller & \(G_{o}\) \\
\hline GearEffct & Effective gear & NA \\
\hline CltchACmd & \begin{tabular}{l} 
Clutch pressure command for odd-numbered \\
gears, between 0 and 1
\end{tabular} & NA \\
\hline CltchBCmd & \begin{tabular}{l} 
Clutch pressure command for even-numbered \\
gears, between 0 and 1
\end{tabular} & NA \\
\hline
\end{tabular}

\section*{NomGear - Nominal gear for shifting scalar}

Nominal gear for shifting. The Dual Clutch Transmission block uses this signal for the smooth application of inertial, efficiency, gear ratio, and damping parameters.

\section*{CltchACmd - Command for odd-numbered gears \\ scalar}

Clutch pressure command for odd-numbered gears, between 0 and 1 .

\section*{CltchBCmd - Command for even-numbered gears}
scalar
Clutch pressure command for even-numbered gears, between 0 and 1.

\section*{Parameters}
```

Initial gear, G_o - Engaged gear

```
scalar

Initial gear to engage, \(G_{o}\).

\section*{Clutch actuation time, tc - Time} scalar

Time required to engage and disengage the clutch during shift events, \(t_{c}\), in s .

\section*{Synchronizer time, ts - Time \\ scalar}

Time required for gear selection and synchronization, \(t_{s}\), in \(s\).

\section*{Sample period, dt - Time}
scalar
Sample period, \(d t\), in s.

\section*{Clutch initially locked - Select to initially lock clutch off (default)}

Selecting this parameter initially locks the clutch.

\section*{Synchronizer initially locked - Select to initially lock synchronizer off (default)}

Selecting this parameter initially locks the synchronizer.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

AMT Controller | Dual Clutch Transmission
Introduced in R2017a

\section*{Ideal Fixed Gear Transmission}

Ideal fixed gear transmission without clutch or synchronization
Library: Powertrain Blockset / Transmission / Transmission Systems
Vehicle Dynamics Blockset / Powertrain /
Transmission


\section*{Description}

The Ideal Fixed Gear Transmission implements an idealized fixed-gear transmission without a clutch or synchronization. Use the block to model the overall gear ratio and power loss when you do not need a detailed transmission model, for example, in component-sizing, fuel economy, and emission studies. The block implements a transmission model with minimal parameterization or computational cost.

To specify the block efficiency calculation, for Efficiency factors, select either of these options.
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline Gear only & \begin{tabular}{l} 
Efficiency determined from a 1D lookup table that is a \\
function of the gear.
\end{tabular} \\
\hline \begin{tabular}{l} 
Gear, input torque, \\
input speed, and \\
temperature
\end{tabular} & \begin{tabular}{l} 
Efficiency determined from a 4D lookup table that is a \\
function of: \\
-
\end{tabular} \\
& Gear \\
& - Input torque \\
& - \begin{tabular}{l} 
Input speed \\
\end{tabular} \\
\hline
\end{tabular}

The block uses this equation to determine the transmission dynamics:
\[
\begin{aligned}
& \dot{\omega_{i}} \frac{J_{N}}{N^{2}}=\eta_{N}\left(\frac{T_{o}}{N}+T_{i}\right)-\frac{\omega_{i}}{N^{2}} b_{N} \\
& \omega_{i}=N \omega_{o}
\end{aligned}
\]

The block filters the gear command signal:
\[
\frac{G}{G_{c m d}}(s)=\frac{1}{\tau_{s} s+1}
\]

\section*{Neutral Gear}

When Initial gear number, \(\mathbf{G} \mathbf{o}\) is equal to 0, the initial gear is neutral. The block uses these parameters to decouple the input flywheel from the downstream gearing.

\section*{- Initial input velocity, omega_o}
- Initial neutral input velocity, omegainN_o

The block uses these equations for the neutral gear speed and flywheel.
\[
\begin{aligned}
& \dot{\omega}_{\text {neutral }} \frac{J_{N}}{N^{2}}=\eta_{N} \frac{T_{o}}{N}-\frac{\omega_{\text {neutral }}}{N^{2}} b_{N} \\
& \omega_{\text {neutral }}=N \omega_{o} \\
& \dot{\omega}_{1} J_{F}=\eta_{@ N=0} T_{i}-b_{@ N=0} \omega_{i} \\
& J_{F}=J_{@ N}=1-J_{@ N}=0
\end{aligned}
\]

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Description & Vari & Equations \\
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{\begin{tabular}{l}
PwrTrnsfrd - Power transferred between blocks \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block
\end{tabular}} & PwrEn g & Engine power & \(P_{\text {eng }}\) & \(\omega_{i} T_{i}\) \\
\hline & & PwrDi ffrnt l & Differential power & \(P_{\text {diff }}\) & \(\omega_{o} T_{o}\) \\
\hline & PwrNotTrnsfrd - Power crossing the block boundary, but not transferred & PwrEf fLoss & Mechanical power loss & \[
\begin{aligned}
& P_{\text {efflos }} \\
& s
\end{aligned}
\] & \(\omega_{o} T_{o}\left(\eta_{N}-1\right)\) \\
\hline
\end{tabular}


The equations use these variables.
\begin{tabular}{ll}
\(b_{N}\) & Engaged gear viscous damping \\
\(J_{N}\) & Engaged gear rotational inertia \\
\(J_{F}\) & Flywheel rotational inertia \\
\(\eta_{N}\) & Engaged gear efficiency \\
\(G\) & Engaged gear number \\
\(G_{c m d}\) & Gear number to engage \\
\(N\) & Engaged gear ratio \\
\(T_{i}\) & \begin{tabular}{l} 
Applied input torque, typically from the engine crankshaft or dual mass \\
\\
\(T_{o}\)
\end{tabular} \\
\(\omega_{o}\) & Appheel damper \\
\(\omega_{i,}, \omega_{i}\) & Initial input drive shaft rotational velocity \\
\(\omega_{\text {No }}\) & Applied drive shaft angular speed and acceleration \\
\(\omega_{\text {neutral }}\) & Initial neutral gear input rotational velocity \\
\(\tau_{s}\) & Neutral gear drive shaft rotational velocity \\
& Shift time constant
\end{tabular}

\section*{Ports}

\section*{Inputs}

\section*{Gear - Gear number to engage scalar}

Integer value of gear number to engage, \(G_{c m d}\).

\section*{EngTrq - Applied input torque}
scalar
Applied input torque, \(T_{i}\), typically from the engine crankshaft or dual mass flywheel damper, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{DiffTrq - Applied load torque \\ scalar}

Applied load torque, \(T_{o}\), typically from the differential, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Temp - Oil temperature}
scalar
Oil temperature, in K. To determine the efficiency, the block uses a 4D lookup table that is a function of:
- Gear
- Input torque
- Input speed
- Oil temperature

\section*{Dependencies}

To create this port, set Efficiency factors to Gear, input torque, input speed, and temperature.

\section*{Output}

\section*{Info - Bus signal}
bus

Bus signal containing these block calculations.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Signal} & Description & Variab & Units \\
\hline \multirow[t]{2}{*}{Eng} & \multicolumn{2}{|l|}{EngTrq} & Applied input torque, typically from the engine crankshaft or dual mass flywheel damper & \(T_{i}\) & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline & \multicolumn{2}{|l|}{EngSpd} & Applied drive shaft angular speed input & \(\omega_{i}\) & rad/s \\
\hline \multirow[t]{2}{*}{Diff} & \multicolumn{2}{|l|}{DiffTrq} & Applied load torque, typically from the differential & \(T_{o}\) & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline & \multicolumn{2}{|l|}{DiffSpd} & Drive shaft angular speed output & \(\omega_{0}\) & rad/s \\
\hline \multirow[t]{4}{*}{Trans} & \multicolumn{2}{|l|}{TransSpdRatio} & Input to output speed ratio at time t & \(\Phi(t)\) & N/A \\
\hline & \multicolumn{2}{|l|}{TransEta} & Ratio of output power to input power & \(\eta_{N}\) & N/A \\
\hline & \multicolumn{2}{|l|}{TransGearCmd} & Commanded gear & \(N_{\text {cmd }}\) & N/A \\
\hline & \multicolumn{2}{|l|}{TransGear} & Engaged gear & \(N\) & N/A \\
\hline \multirow[t]{2}{*}{PwrInfo} & \multirow[t]{2}{*}{PwrTrnsfrd} & PwrEng & Engine power & \(P_{\text {eng }}\) & W \\
\hline & & PwrDiffrntl & Differential power & \(P_{\text {diff }}\) & W \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ Signal } & Description & \begin{tabular}{l} 
Variab \\
le
\end{tabular} & Units \\
\hline \multirow{4}{|c|}{} & PwrNotTrnsfrd & PwrEffLoss & \begin{tabular}{l} 
Mechanical \\
power loss
\end{tabular} & \(P_{\text {effloss }}\) & W \\
\cline { 3 - 5 } & & PwrDampLoss & \begin{tabular}{l} 
Mechanical \\
damping loss
\end{tabular} & \(P_{\text {damploss }}\) & W \\
\cline { 3 - 6 } & PwrStored & PwrStoredTrans & \begin{tabular}{l} 
Rate change in \\
rotational \\
kinetic energy
\end{tabular} & \(P_{\text {str }}\) & W \\
\hline
\end{tabular}

\section*{EngSpd - Angular speed}
scalar
Applied drive shaft angular speed input, \(\omega_{i}\), in rad/s.

\section*{DiffSpd - Angular speed}
scalar
Drive shaft angular speed output, \(\omega_{0}\), in rad/s.

\section*{Parameters}

\section*{Efficiency factors - Specify efficiency calculation}

Gear only (default)|Gear, input torque, input speed, and temperature
To specify the block efficiency calculation, for Efficiency factors, select either of these options.
\begin{tabular}{|l|l|}
\hline Setting & Block Implementation \\
\hline Gear only & \begin{tabular}{l} 
Efficiency determined from a 1D lookup table that is a \\
function of the gear.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Setting & Block Implementation \\
\hline Gear, input torque, input speed, and temperature & \begin{tabular}{l}
Efficiency determined from a 4D lookup table that is a function of: \\
- Gear \\
- Input torque \\
- Input speed \\
- Oil temperature
\end{tabular} \\
\hline
\end{tabular}

\section*{Dependencies}
\begin{tabular}{|l|l|}
\hline Setting Parameter To & Enables \\
\hline Gear only & Efficiency vector, eta \\
\hline \begin{tabular}{l} 
Gear, input torque, \\
input speed, and \\
temperature
\end{tabular} & Efficiency torque breakpoints, Trq_bpts \\
& Efficiency speed breakpoints, omega_bpts \\
& Efficiency temperature breakpoints, Temp_bpts \\
& Efficiency lookup table, eta_tbl \\
\hline
\end{tabular}

\section*{Gear property interpolation method - Interpolation \\ Nearest (default)|Linear|Flat|Cubic spline}

Method that the block uses to switch the gear ratio during gear shifting.

\section*{Transmission}

\section*{Gear number vector, G - Specify number of transmission speeds} vector

Vector of integer gear commands used to specify the number of transmission speeds. Neutral gear is 0 . For example, you can set these parameter values.
\begin{tabular}{|l|l|}
\hline To Specify & Set Gear number, G To \\
\hline \begin{tabular}{l} 
Four transmission speeds, \\
including neutral
\end{tabular} & {\([0,1,2,3,4]\)} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline To Specify & Set Gear number, G To \\
\hline \begin{tabular}{l} 
Three transmission speeds, \\
including neutral and reverse
\end{tabular} & {\([-1,0,1,2,3]\)} \\
\hline \begin{tabular}{l} 
Five transmission speeds, \\
including neutral and reverse
\end{tabular} & {\([-1,0,1,2,3,4,5]\)} \\
\hline
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Inertia vector, Damping vector, and Efficiency vector parameters must be equal.

Efficiency torque breakpoints, Trq_bpts - Breakpoints
vector
Torque breakpoints for efficiency table.

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear, input torque, input speed, and temperature.

Efficiency speed breakpoints, omega_bpts - Breakpoints vector

Speed breakpoints for efficiency table.

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear, input torque, input speed, and temperature.

Efficiency temperature breakpoints, Temp_bpts - Breakpoints vector

Temperature breakpoints for efficiency table.

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear, input torque, input speed, and temperature.

Gear ratio vector, \(N\) - Ratio of input speed to output speed vector

Vector of gear ratios (that is, input speed to output speed) with indices corresponding to the ratios specified in Gear number, G. For neutral, set the gear ratio to 1. For example, you can set these parameter values.
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
To Specify Gear Ratios \\
For
\end{tabular} & \begin{tabular}{l} 
Set Gear number, G \\
To
\end{tabular} & Set Gear ratio, N To \\
\hline \begin{tabular}{l} 
Four transmission speeds, \\
including neutral
\end{tabular} & {\([0,1,2,3,4]\)} & {\([1,4.47,2.47,1.47,1]\)} \\
\hline \begin{tabular}{l} 
Five transmission speeds, \\
including neutral and \\
reverse
\end{tabular} & {\([-1,0,1,2,3,4,5]\)} & \begin{tabular}{l}
{\([-4.47,1,4.47,2.47\),} \\
\(1.47,1,0.8]\)
\end{tabular} \\
\hline
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Inertia vector, Damping vector, and Efficiency vector parameters must be equal.

\section*{Inertia vector, Jout - Gear rotational inertia \\ vector}

Vector of gear rotational inertias, \(J_{N}\), with indices corresponding to the inertias specified in Gear number, G, in \(\mathrm{kg}^{*} \mathrm{~m}^{\wedge} 2\). For example, you can set these parameter values.
\begin{tabular}{|l|l|l|}
\hline To Specify Inertia For & \begin{tabular}{l} 
Set Gear number, G \\
To
\end{tabular} & Set Inertia, J To \\
\hline \begin{tabular}{l} 
Four gears, including \\
neutral
\end{tabular} & {\([0,1,2,3,4]\)} & \begin{tabular}{l}
{\([0.01,2.28,2.04\),} \\
\(0.32,0.028]\)
\end{tabular} \\
\hline \begin{tabular}{l} 
Inertia for five gears, \\
including reverse and \\
neutral
\end{tabular} & {\([-1,0,1,2,3,4,5]\)} & \begin{tabular}{l}
{\([2.28,0.01,2.28\),} \\
\(2.04,0.32,0.028,0.01]\)
\end{tabular} \\
\hline
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Inertia vector, Damping vector, and Efficiency vector parameters must be equal.

\section*{Damping vector, bout - Gear viscous damping coefficient} vector

Vector of gear viscous damping coefficients, \(b_{N}\), with indices corresponding to the coefficients specified in Gear number, \(\mathbf{G}\), in \(\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}\). For example, you can set these parameter values.
\begin{tabular}{|l|l|l|}
\hline To Specify Damping For & \begin{tabular}{l} 
Set Gear number, G \\
To
\end{tabular} & Set Damping, b To \\
\hline \begin{tabular}{l} 
Four gears, including \\
neutral
\end{tabular} & {\([0,1,2,3,4]\)} & \begin{tabular}{l}
{\([0.001,0.003\),} \\
\(0.0025,0.002,0.001]\)
\end{tabular} \\
\hline \begin{tabular}{l} 
Five gears, including \\
reverse and neutral
\end{tabular} & {\([-1,0,1,2,3,4,5]\)} & \begin{tabular}{l}
{\([0.003,0.001,0.003,0.0025\),} \\
\(0.002,0.001,0.001]\)
\end{tabular} \\
\hline
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Inertia vector, Damping vector, and Efficiency vector parameters must be equal.

Efficiency vector, eta - Gear efficiency vector

Vector of gear mechanical efficiency, \(\eta_{N}\), with indices corresponding to the efficiencies specified in Gear number, G. For example, you can set these parameter values.
\begin{tabular}{|l|l|l|}
\hline To Specify Efficiency For & \begin{tabular}{l} 
Set Gear number, G \\
To
\end{tabular} & Set Efficiency, eta To \\
\hline \begin{tabular}{l} 
Four gears, including \\
neutral
\end{tabular} & {\([0,1,2,3,4]\)} & {\([0.9,0.9,0.9,0.9,0.95]\)} \\
\hline \begin{tabular}{l} 
Five gears, including \\
reverse and neutral
\end{tabular} & {\([-1,0,1,2,3,4,5]\)} & \begin{tabular}{l}
{\([0.9,0.9,0.9\),} \\
\(0.9,0.9,0.95,0.95]\)
\end{tabular} \\
\hline
\end{tabular}

Vector dimensions for the Gear number vector, Gear ratio vector, Inertia vector, Damping vector, and Efficiency vector parameters must be equal.

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear only.

\section*{Efficiency lookup table, eta_tbl - Gear efficiency array}

Table of gear mechanical efficiency, \(\eta_{N}\) as a function of gear, input torque, input speed, and temperature.

\section*{Dependencies}

To enable this parameter, set Efficiency factors to Gear, input torque, input speed, and temperature.

Initial gear number, G_o - Gear scalar

Initial gear number, \(G_{o}\), dimensionless.

\section*{Initial input velocity, omega_o - Input speed} scalar

Transmission initial input rotational velocity, \(\omega_{o}\), in rad/s.
Initial neutral input velocity, omegainN_o - Neutral gear input speed scalar

Initial neutral gear input rotational velocity, \(\omega_{\text {No }}\), in rad/s.
Shift time constant, tau_s - Time scalar

Shift time constant, \(\tau_{s}\), in s .

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).

\author{
See Also \\ Automated Manual Transmission | Continuously Variable Transmission | Dual Clutch Transmission \\ \section*{Introduced in R2017a}
}

\section*{Torque Converter}

Three-part torque converter consisting of an impeller, turbine, and stator Library: Powertrain Blockset / Transmission / Torque Converters


\section*{Description}

The Torque Converter block implements a three-part torque converter consisting of an impeller, turbine, and stator with an optional clutch lock-up capability. The block can simulate driving (power flowing from impeller to turbine) and coasting (power flowing from turbine to impeller).

You can specify torque converter characteristics:
- Speed ratio - Ratio of turbine angular speed to impeller angular speed
- Torque ratio - Ratio of turbine torque to impeller torque
- Capacity factor parameterization - Function of input speed or input torque

Optional clutch lock-up configurations include:
- No lock-up - Model fluid-coupling only
- Lock-up - Model automatic clutch engagement
- External lock-up - Model clutch pressure as input from an external signal


\section*{Dynamics}

\section*{Clutch Lock-Up Condition and Clutch Friction}

Based on the clutch lock-up condition, the block implements these friction models.
\begin{tabular}{|c|c|c|}
\hline If & Clutch Condition & Friction Model \\
\hline \[
\begin{aligned}
& \omega_{i} \neq \omega_{t} \\
& \text { or } \\
& T_{S}<\left\lvert\, \frac{J_{t}}{\left(J_{i}+J_{t}\right)}\left[T_{i}+T_{f}-\omega_{i}\left(b_{t}\right.\right.\right.
\end{aligned}
\] & Unlocked
\[
\left.\left.\mid+b_{i}\right)\right]
\] & \begin{tabular}{l}
\[
T_{f}=T_{k}
\] \\
where:
\[
\begin{aligned}
& T_{k}=F_{c} R_{e f f} m_{k} \tanh \left[4\left(\omega_{i}-\omega_{t}\right)\right] \\
& T_{s}=F_{c} R_{e f f} m_{s} \\
& R_{e f f}=\frac{2\left(R_{o} 3-R_{i} 3\right)}{3\left(R_{0}{ }^{2}-R_{i}{ }^{2}\right)}
\end{aligned}
\]
\end{tabular} \\
\hline \[
\begin{aligned}
& \omega_{i}=\omega_{t} \\
& \text { and } \\
& T_{S} \geq \left\lvert\, \frac{J_{t}}{\left(J_{i}+J_{t}\right)}\left[T_{i}+T_{f}-w_{t}\left(b_{t}\right.\right.\right.
\end{aligned}
\] & Locked
\[
\left.\left.t+b_{i}\right)+w_{t} b_{t}\right]
\] & \(T_{f}=T_{s}\) \\
\hline
\end{tabular}

\section*{Locked Rotational Dynamics}

To model the rotational dynamics if the clutch is locked, the block implements equations.
\[
\begin{aligned}
& \dot{\omega}\left(J_{i}+J_{t}\right)=T_{i}-\omega\left(b_{i}+b_{t}\right)+T_{e x t} \\
& \omega=\omega_{i}=\omega_{t}
\end{aligned}
\]

The rotational velocity represents both the impeller and turbine rotational velocities.

\section*{Unlocked Rotational Dynamics}

To model the rotational dynamics if the clutch is unlocked, the block implements equations.
\[
\begin{aligned}
& \dot{\omega}_{i} J_{i}=\mathrm{T}_{i}-\omega_{i} b_{i}-T_{f}-T_{p} \\
& \dot{\omega}_{t} J_{t}=\mathrm{T}_{e x t}-\omega_{t} b_{t}+T_{f}+T_{t} \\
& T_{p}=\omega_{i}^{2} \psi(\phi) \\
& T_{t}=T_{p} \zeta(\phi)
\end{aligned}
\]

To approximate the torque multiplication lag between the impeller and turbine, you can specify the parameter Fluid torque response time constant (set to 0 to disable), tauc [s].

\section*{Power Accounting}

For the power accounting, the block implements these equations.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Bus Signal} & Descriptio & Variabl & Equations \\
\hline \multirow[t]{2}{*}{PwrI nfo} & \multirow[t]{2}{*}{\begin{tabular}{l}
PwrTrnsfrd - Power transferred between blocks \\
- Positive signals indicate flow into block \\
- Negative signals indicate flow out of block
\end{tabular}} & \begin{tabular}{l}
PwrIm \\
p
\end{tabular} & Applied impeller power & \(P_{\text {imp }}\) & \(\omega_{i} T_{i}\) \\
\hline & & PwrTu
rb & Applied turbine output power & \(P_{\text {turb }}\) & \(\omega_{t} T_{t}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Bus Signal} & Descriptio & Variabl & Equations \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
PwrNotTrnsfrd - Power crossing the block boundary, but not transferred \\
- Positive signals indicate an input \\
- Negative signals indicate a loss
\end{tabular}} & PwrDa mpLos S & Mechanical damping loss & \(P_{\text {damploss }}\) & \(-b_{t} \omega_{t}^{2}-b_{i} \omega_{i}^{2}\) \\
\hline & PwrFl uidCp lingL oss & Heat loss to transmissio n fluid & \(P_{\text {flloss }}\) & \(-\left(T_{p} \omega_{i}-T_{\text {hyd }} \omega_{t}\right)\) \\
\hline & \begin{tabular}{l}
PwrCl \\
tchLo \\
SS
\end{tabular} & Clutch slip power loss & \(P_{\text {cltloss }}\) & \(-T_{k}\left(\omega_{i}-\omega_{t}\right)\) \\
\hline \begin{tabular}{l}
PwrStored - Stored energy rate of change \\
- Positive signals indicate an increase
\end{tabular} & PwrSt oredI mp & Rate change in impeller rotational kinetic energy & \(P_{\text {strimp }}\) & \(\dot{\omega}_{i} \omega_{i} J_{i}\) \\
\hline - Negative signals indicate a decrease & PwrSt oredT urb & Rate change in turbine rotational kinetic energy & \(P_{\text {strturb }}\) & \(\dot{\omega}_{t} \omega_{t} J_{t}\) \\
\hline
\end{tabular}

The block implements equations that use these variables.
\begin{tabular}{ll}
\(T_{f}\) & Frictional torque \\
\(T_{k}\) & Kinetic frictional torque \\
\(T_{s}\) & Static frictional torque \\
\(T_{i}\) & Applied input torque \\
\(T_{p}\) & Impeller reaction torque \\
\(T_{e x t}\) & Externally applied turbine torque \\
\(\psi(\phi)\) & Torque conversion capacity factor \\
\(\zeta(\phi)\) & Torque ratio \\
\(\omega_{i}\) & Impeller rotational shaft speed
\end{tabular}
\begin{tabular}{ll}
\(\omega_{t}\) & Turbine rotational shaft speed \\
\(J_{i}\) & Impeller rotational inertia \\
\(J_{t}\) & Turbine rotational inertia \\
\(b_{i}\) & Impeller rotational viscous damping \\
\(b_{t}\) & Turbine rotational viscous damping \\
\(R_{e f f}\) & Effective clutch radius \\
\(R_{o}\) & Annular disk outer radius \\
\(R_{i}\) & Annular disk inner radius
\end{tabular}

\section*{Ports}

\section*{Inputs}

\section*{ImpTrq - Applied impeller torque}
scalar
Applied input torque, typically from the engine crankshaft or dual mass flywheel, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{TurbTrq - Applied turbine torque \\ scalar}

Applied turbine torque, typically from the transmission, in \(\mathrm{N} \cdot \mathrm{m}\).

\section*{Clutch Force - Applied clutch force \\ scalar}

Applied clutch force, typically from a hydraulic actuator, in N .

\section*{Dependencies}

To create this port, select External lock-up input for the Lock-up clutch configuration parameter.

\section*{Output}

\section*{Info - Bus signal}
bus

Bus signal containing these block calculations.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Signal} & Description & Units \\
\hline \multirow[t]{2}{*}{Imp} & \multicolumn{2}{|l|}{ImpTrq} & Applied input torque & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline & \multicolumn{2}{|l|}{ImpSpd} & Impeller rotational shaft speed & rad/s \\
\hline \multirow[t]{2}{*}{Turb} & \multicolumn{2}{|l|}{TurbTrq} & Applied turbine torque & \(\mathrm{N} \cdot \mathrm{m}\) \\
\hline & \multicolumn{2}{|l|}{TurbSpd} & Turbine rotational shaft speed & rad/s \\
\hline \multirow[t]{2}{*}{Cltch} & \multicolumn{2}{|l|}{CltchForce} & Applied clutch force & N \\
\hline & \multicolumn{2}{|l|}{CltchLocked} & Clutch locked or unlocked state & N/A \\
\hline \multirow[t]{2}{*}{TrqConv} & \multicolumn{2}{|l|}{TrqConvSpdRatio} & Turbine to impeller speed ratio & N/A \\
\hline & \multicolumn{2}{|l|}{TrqConvEta} & Torque conversion efficiency & N/A \\
\hline \multirow[t]{7}{*}{PwrInfo} & \multirow[t]{2}{*}{PwrTrnsfrd} & PwrImp & Applied impeller power & W \\
\hline & & PwrTurb & Applied turbine output power & W \\
\hline & \multirow[t]{3}{*}{PwrNotTrns frd} & PwrDampLoss & Mechanical damping loss & W \\
\hline & & PwrFluidCplingLo ss & Heat loss to transmission fluid & W \\
\hline & & PwrCltchLoss & Clutch slip power loss & W \\
\hline & \multirow[t]{2}{*}{PwrStored} & PwrStoredImp & Rate change in impeller rotational kinetic energy & W \\
\hline & & PwrStoredTurb & Rate change in turbine rotational kinetic energy & W \\
\hline
\end{tabular}

\section*{ImpSpd - Impeller speed}
scalar

Impeller rotational shaft speed, \(\omega_{i}\), in rad/s.

\section*{TrbSpd - Turbine speed} scalar

Turbine rotational shaft speed, \(\omega_{t}\), in rad/s.

\section*{Parameters}

\section*{Configuration}

Lock-up clutch configuration - Select lock-up clutch configuration Lock-up (default)|No lock-up | External lock-up input
\begin{tabular}{|l|l|}
\hline To Model & Select \\
\hline Fluid-coupling only & No lock-up \\
\hline Automatic clutch engagement & Lock-up \\
\hline \begin{tabular}{l} 
Clutch pressure as input from an \\
external signal
\end{tabular} & External lock-up input \\
\hline
\end{tabular}

\section*{Dependencies}

To enable the Clutch parameters, select Lock-up or External lock-up input for the Lock-up clutch configuration parameter.

Torque Converter
```

Impeller shaft inertia, Ji - Inertia

```
scalar

Impeller shaft inertia, in \(\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2\).

\section*{Impeller shaft viscous damping, bi - Viscous damping coefficient scalar}

Impeller shaft viscous damping, in \(\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}\).

\section*{Turbine shaft inertia, Jt - Inertia scalar}

Turbine shaft inertia, in \(\mathrm{kg} \cdot \mathrm{m} \wedge 2\).

\section*{Turbine shaft viscous damping, bi - Viscous damping coefficient scalar}

Turbine shaft viscous damping, in \(\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}\).

\section*{Initial impeller shaft velocity, omegaio - Angular velocity scalar}

Initial impeller shaft velocity, in rad/s.

\section*{Initial turbine shaft velocity, omegato - Angular velocity scalar}

Initial turbine shaft velocity, in rad/s.

\section*{Speed ratio vector, phi - Ratio} vector

Vector of turbine speed to impeller speed ratios. Breakpoints for the capacity and torque multiplication vectors.

Capacity factor parameterization - Select factor ratio type
Input speed / sqrt(input torque) (default)|Absorbed torque / input speed^2
\begin{tabular}{|l|l|}
\hline To Set Factor Ratio to & Select \\
\hline \begin{tabular}{l} 
Impeller angular velocity to square \\
root impeller torque
\end{tabular} & Input speed / sqrt (input torque) \\
\hline \begin{tabular}{l} 
Impeller absorbed torque to square of \\
impeller angular velocity
\end{tabular} & Absorbed torque / input speed^22 \\
\hline
\end{tabular}

Capacity vector, psi - Vector vector
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Capacity factor parameterization \\
Setting
\end{tabular} & Capacity Vector Units \\
\hline \begin{tabular}{l} 
Input speed / sqrt (input \\
torque)
\end{tabular} & \((\mathrm{rad} / \mathrm{s}) /(\mathrm{N} \cdot \mathrm{m})^{\wedge} 0.5\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Capacity factor parameterization \\
Setting
\end{tabular} & Capacity Vector Units \\
\hline \begin{tabular}{l} 
Absorbed torque / input \\
speed^2
\end{tabular} & \(\mathrm{N} \cdot \mathrm{m} /(\mathrm{rad} / \mathrm{s})^{\wedge} 2\) \\
\hline
\end{tabular}

\section*{Torque ratio vector, zeta - Vector}
vector
Vector of turbine torque to impeller speed ratios.

\section*{Fluid torque response time constant (set to 0 to disable), tauTC Time constant}
scalar
To account for the delay in torque calculations due to changing input torque, specify the fluid torque transfer time constant, in s.

\section*{Interpolation method - Select interpolation method Linear (default) | Flat | Nearest}

Interpolates the torque ratio and capacity factor functions between the discrete relative velocity values.

\section*{Clutch}

\section*{Clutch force equivalent net radius, Reff - Effective radius scalar}

The effective radius, \(R_{e f f}\), used with the applied clutch friction force to determine the friction force, in m . The effective radius is defined as:
\[
R_{e f f}=\frac{2\left(R_{O} 3-R_{i} 3\right)}{3\left(R_{O}^{2}-R_{i}^{2}\right)}
\]

The equation uses these variables.
\(R_{O} \quad\) Annular disk outer radius
\(R_{i} \quad\) Annular disk inner radius

\section*{Dependencies}

To enable the Clutch parameters, select Lock-up or External lock-up input for the Lock-up clutch configuration parameter.

\section*{Static friction coefficient, mus - Coefficient scalar}

Dimensionless clutch disc coefficient of static friction.

\section*{Dependencies}

To enable the Clutch parameters, select Lock-up or External lock-up input for the Lock-up clutch configuration parameter.

\section*{Kinetic friction coefficient, muk - Coefficient scalar}

Dimensionless clutch disc coefficient of kinetic friction.
To enable the Clutch parameters, select Lock-up or External lock-up input for the Lock-up clutch configuration parameter.

\section*{Initially lock clutch - Select to initially lock clutch off (default)}

\section*{Dependencies}

To enable this parameter, select Lock-up or External lock-up input for the Lockup clutch configuration parameter.

Lock-up speed ratio threshold, philu - Threshold
scalar
Set speed ratio threshold that engages clutch lock-up.

\section*{Dependencies}

To enable this parameter, select Lock-up for the Lock-up clutch configuration parameter.
```

Minimum lock-up engagement speed, omegalmin - Angular velocity
scalar

```

Set the minimum impeller speed that engages clutch lock-up, in rad/s.

\section*{Dependencies}

To enable this parameter, select Lock-up for the Lock-up clutch configuration parameter.

Lock-up disengagement speed, omegau - Angular velocity scalar

Set the minimum impeller speed that disengages clutch lock-up, in rad/s.

\section*{Dependencies}

To enable this parameter, select Lock-up for the Lock-up clutch configuration parameter.

Lock-up clutch force gain, Kclutch - Gain scalar

Open loop clutch lock-up force gain, in N .

\section*{Dependencies}

To enable this parameter, select Lock-up for the Lock-up clutch configuration parameter.

Lock-up clutch time constant, taulu - Time constant scalar

Open loop clutch lock-up time constant, in s.

\section*{Dependencies}

To enable this parameter, select Lock-up for the Lock-up clutch configuration parameter.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\author{
See Also \\ CI Core Engine | SI Core Engine \\ Introduced in R2017a
}

Functions

\section*{mdf}

Access information contained in MDF-file

\section*{Syntax}
```

mdfObj = mdf(mdfFileName)

```

\section*{Description}
mdf0bj \(=\mathrm{mdf}(m d f F i l e N a m e)\) identifies a measurement data format (MDF) file and returns an MDF-file object, which you can use to access information and data contained in the file. You can specify a full or partial path to the file.

Note This function is supported only on 64 -bit Windows \({ }^{\circledR}\) operating systems.

\section*{Examples}

\section*{Create MDF-File Object for Specified MDF-File}

Create an MDF object for a given file, and view the object display.
```

mdfObj = mdf('MDFFile.mf4')
MDF with properties:
File Details
Name: 'MDFFile.mf4'
Path: 'c:\temp\MDFFile.mf4'
Author: 'HOK'
Department: 'Research'
Project: 'MDF'
Subject: 'CAN bus'
Comment: 'This file contains CAN messages'
Version: '4.10'

```
```

    DataSize: 32100
    InitialTimestamp: 2016-02-27 12:09:02
    Creator Details
ProgramIdentifier: 'mmddff.04'
Creator: [1×1 struct]
File Contents
Attachment: [1\times1 struct]
ChannelNames: {6\times1 cell}
ChannelGroup: [1\times6 struct]

```

\section*{Input Arguments}

\section*{mdfFileName - MDF-file name}
char vector \(\mid\) string
MDF-file name, specified as a character vector or string, including the necessary full or relative path.
Example: 'MDFFile.mf4'
Data Types: char|string

\section*{Output Arguments}

\section*{mdfObj - MDF-file}

MDF-file object
MDF-file, returned as an MDF-file object. The object provides access to the MDF-file information contained in the following properties.
\begin{tabular}{|l|l|}
\hline Property & Description \\
\hline Name & Name of the MDF-file, including extension \\
\hline Path & Full path to the MDF-file, including file name \\
\hline Author & Author who originated the MDF-file \\
\hline Department & Department that originated the MDF-file \\
\hline Project & Project that originated the MDF-file \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Property & Description \\
\hline Subject & Subject matter in the MDF-file \\
\hline Comment & Open comment field from the MDF-file \\
\hline Version & MDF standard version of the file \\
\hline DataSize & Total size of the data in the MDF-file, in bytes \\
\hline InitialTimestamp & Time when file data acquisition began in UTC or local time \\
\hline ProgramIdentifier & Originating program of the MDF-file \\
\hline Creator & \begin{tabular}{l} 
Structure containing details about creator of the MDF-file, with \\
these fields: VendorName, ToolName, ToolVersion, \\
UserName, and Comment
\end{tabular} \\
\hline Attachment & \begin{tabular}{l} 
Structure of information about attachments contained within the \\
MDF-file, with these fields: Name, Path, Comment, Type, \\
MIMEType, Size, EmbeddedSize, and MD5CheckSum
\end{tabular} \\
\hline ChannelNames & Cell array of the channel names in each channel group \\
\hline ChannelGroup & \begin{tabular}{l} 
Structure of information about channel groups contained within \\
the MDF-file, with these fields: AcquisitionName, Comment, \\
NumSamples, DataSize, Sorted, and Channel
\end{tabular} \\
\hline
\end{tabular}

\section*{See Also}

\section*{Functions}
read | saveAttachment
Introduced in R2016b

\section*{read}

Read channel data from MDF-file

\section*{Syntax}
```

data = read(mdf0bj)
data = read(mdfObj,chanGroupIndex,chanName)
data = read(mdf0bj,chanGroupIndex,chanName,startPosition)
data = read(mdf0bj,chanGroupIndex,chanName,startPosition,
endPosition)
data = read(mdf0bj,chanGroupIndex,chanName,startPosition,
endPosition,'OutputFormat',fmtType)
[data,time] = read(mdfObj,chanGroupIndex,chanName,startPosition,
endPosition,'OutputFormat','Vector')

```

\section*{Description}
data \(=\) read \((m d f 0 b j)\) reads all data for all channels from the MDF-file identified by the MDF-file object mdfObj, and assigns the output to data. If the file data is one channel group, the output is a timetable; multiple channel groups are returned as a cell array of timetables, where the cell array index corresponds to the channel group number.

Note This function is supported only on 64-bit Windows operating systems.
data \(=\) read \((m d f 0 b j\), chanGroupIndex, chanName) reads all data for the specified channel from the MDF-file identified by the MDF-file object mdf0bj.
data \(=\) read(mdf0bj,chanGroupIndex,chanName,startPosition) reads data from the position specified by startPosition.
data \(=\) read(mdf0bj,chanGroupIndex, chanName,startPosition, endPosition) reads data for the range specified from startPosition to endPosition.
```

data = read(mdfObj,chanGroupIndex,chanName,startPosition,
endPosition,'OutputFormat',fmtType) returns data with the specified output
format.
[data,time] = read(mdf0bj,chanGroupIndex,chanName,startPosition,
endPosition,'OutputFormat','Vector') returns two vectors of channel data and
corresponding timestamps.

```

\section*{Examples}

\section*{Read All Data from MDF-File}

Read all available data from the MDF-file.
```

mdfObj = mdf('MDFFile.mf4');
data = read(mdfObj);

```

\section*{Read All Data from Multiple Channels}

Read all available data from the MDF-file for specified channels.
```

mdfObj = mdf('MDFFile.mf4');
data = read(mdf0bj,1,{'Channel1','Channel2'});

```

\section*{Read Range of Data from Specified Index Values}

Read a range of data from the MDF-file using indexing for startPosition and endPosition to specify the data range.
```

mdfObj = mdf('MDFFile.mf4');
data = read(mdf0bj,1,{'Channel1','Channel2'},1,10);

```

\section*{Read Range of Data from Specified Time Values}

Read a range of data from the MDF-file using time values for startPosition and endPosition to specify the data range.
```

mdfObj = mdf('MDFFile.mf4');
data = read(mdf0bj,1,{'Channel1','Channel2'},seconds(5.5),seconds(7.3));

```

\section*{Read All Data in Vector Format}

Read all available data from the MDF-file, returning data and time vectors.
```

mdfObj = mdf('MDFFile.mf4');
[data,time] = read(mdf0bj,1,'Channel1','OutputFormat','Vector');

```

\section*{Read All Data in Time Series Format}

Read all available data from the MDF-file, returning time series data.
```

mdfObj = mdf('MDFFile.mf4');
data = read(mdf0bj,1,'Channel1','OutputFormat','TimeSeries');

```

\section*{Read Data from Channel List Entry}

Read data from a channel identified by the channelList function.
Get list of channels and display their names and group numbers.
```

mdf0bj = mdf('File05.mf4');
chlist = channelList(mdfObj);
chlist(:,1:2)
4*2 table

```

Read data from the first channel in the list.
```

data = read(mdfObj,chlist{1,2},chlist{1,1});
data(1:5,:)

```
```

5x1 timetable

```
\(0.03 \mathrm{sec} \quad 5.3\)
\(0.04 \mathrm{sec} \quad 5.4\)

\section*{Input Arguments}

\section*{mdf0bj - MDF-file}

MDF-file object
MDF-file, specified as an MDF-file object.
Example: mdf('MDFFile.mf4')

\section*{chanGroupIndex - Index of the channel group}
numeric value
Index of channel group, specified as a numeric value that identifies the channel group from which to read.

\section*{Example: 1}

Data Types: single | double |int8|int16|int32|int64|uint8|uint16| uint32|uint64

\section*{chanName - Name of channel}
char vector | string
Name of channel, specified as a character vector, string, or array. chanName identifies the name of a channel in the channel group. Use a cell array of character vectors or array of string to identify multiple channels.

\section*{Example: 'Channel1'}

Data Types: char|string|cell

\section*{startPosition - First position of channel data}
numeric value | duration

First position of channel data, specified as a numeric value or duration. The startPosition option specifies the first position from which to read channel data. Provide a numeric value to specify an index position; use a duration to specify a time position. If only startPosition is provided without the endPosition option, the data value at that location is returned. When used with endPosition to specify a range, the function returns data from the startPosition (inclusive) to the endPosition (noninclusive).

Example: 1
Data Types: single|double |int8|int16|int32|int64|uint8|uint16| uint32 |uint64|duration

\section*{endPosition - Last position of channel data range}
numeric value | duration
Last position of channel data range, specified as a numeric value or duration. The endPosition option specifies the last position for reading a range of channel data. Provide both the startPosition and endPosition to specify retrieval of a range of data. The function returns up to but not including endPosition when reading a range. Provide a numeric value to specify an index position; use a duration to specify a time position.

\section*{Example: 1000}

Data Types: single|double|int8|int16|int32|int64|uint8|uint16| uint32|uint64 | duration

\section*{fmtType - Format for output data}
'Timetable' (default)| 'Vector'|'TimeSeries'
Format for output data, specified as a character vector or string. This option formats the output according to the following table.
\begin{tabular}{|l|l|}
\hline OutputFormat & Description \\
\hline 'Timetable' & \begin{tabular}{l} 
Return a timetable from one or more channels into one output \\
variable. This is the only format allowed when reading from \\
multiple channels at the same time. (Default.)
\end{tabular} \\
\begin{tabular}{l} 
Note: The timetable format includes columns for the MDF \\
channels. Because the column titles must be valid MATLAB \\
identifiers, they might not be exactly the same as those values in \\
the MDF object ChannelNames property. The column headers are \\
derived from the property using the function \\
mat lab. lang. makeValidName. The original channel names are \\
available in the VariableDescriptions property of the \\
timetable object.
\end{tabular} \\
\hline 'Vector' & \begin{tabular}{l} 
Return a vector of numeric data values, and optionally a vector of \\
time values from one channel. Use one output variable to return \\
only data, or two output variables to return both data and time \\
vectors.
\end{tabular} \\
\hline 'TimeSeries ' & \begin{tabular}{l} 
Return a time series of data from one channel.
\end{tabular} \\
\hline
\end{tabular}

Example: 'Vector'
Data Types: char|string

\section*{Output Arguments}

\section*{data - Channel data}
timetable (default) | double | time series | cell array
Channel data, returned as vector of doubles, a time series, a timetable, or cell array of timetables, according to the 'OutputFormat ' option setting and the number of channel groups.

\section*{time - Channel data times}
double
Channel data times, returned as a vector of double elements. The time vector is returned only when the 'OutputFormat' is set to 'Vector'.

\section*{See Also}

\section*{Functions}
mdf | saveAttachment

\section*{Topics}
"Time Series" (MATLAB)
"Represent Dates and Times in MATLAB" (MATLAB) "Tables" (MATLAB)

\section*{Introduced in R2016b}

\title{
saveAttachment
}

Save attachment from MDF-file

\section*{Syntax}
```

saveAttachment(mdf0bj,AttachmentName)
saveAttachment(mdf0bj,AttachmentName,DestFile)

```

\section*{Description}
saveAttachment (mdf0bj, AttachmentName) saves the specified attachment from the MDF-file to the current MATLAB working folder. The attachment is saved with its existing name.

Note This function is supported only on 64-bit Windows operating systems.
saveAttachment(mdfObj,AttachmentName, DestFile) saves the specified attachment from the MDF-file to the given destination. You can specify relative or absolute paths to place the attachment in a specific folder.

\section*{Examples}

\section*{Save Attachment with Original Name}

Save an MDF-file attachment with its original name in the current folder.
```

mdfObj = mdf('MDFFile.mf4');
saveAttachment(mdf0bj,'AttachmentName.ext')

```

\section*{Save Attachment with New Name}

Save an MDF-file attachment with a new name in the current folder.
```

mdfObj = mdf('MDFFile.mf4');
saveAttachment(mdf0bj,'AttachmentName.ext','MyFile.ext')

```

\section*{Save Attachment in Parent Folder}

Save an MDF-file attachment in a folder specified with a relative path name, in this case in the parent of the current folder.
```

mdfObj = mdf('MDFFile.mf4');
saveAttachment(mdfObj,'AttachmentName.ext','..\MyFile.ext')

```

\section*{Save Attachment in Specified Folder}

This example saves an MDF-file attachment using an absolute path name.
```

mdfObj = mdf('MDFFile.mf4');
saveAttachment(mdf0bj,'AttachmentName.ext','C:\MyDir\MyFile.ext')

```

\section*{Input Arguments}

\section*{mdf0bj - MDF-file}

MDF-file object
MDF-file, specified as an MDF-file object.
Example: mdf('MDFFile.mf4')

\section*{AttachmentName - MDF-file attachment name}
char vector | string
MDF-file attachment name, specified as a character vector or string. The name of the attachment is available in the Name field of the MDF-file object Attachment property.

Example: 'file1.dbc'
Data Types: char|string

\section*{DestFile - Destination file name for the saved attachment}
existing attachment name (default) | char vector | string
Destination file name for the saved attachment, specified as a character vector or string. The specified destination can include an absolute or relative path, otherwise the attachment is saved in the current folder.

Example: 'MyFile.ext'
Data Types: char|string

\section*{See Also}

\section*{Functions}
mdf | read

Introduced in R2016b

\section*{mdfDatastore}

Datastore for collection of MDF-files

\section*{Description}

Use the MDF datastore object to access data from a collection of MDF-files.

\section*{Creation}

\section*{Syntax}
```

mdfds = mdfDatastore(location)
mdfds = mdfDatastore(__,'Name1',Value1,'Name2',Value2,...)

```

\section*{Description}
mdfds = mdfDatastore(location) creates an MDFDatastore based on an MDF-file or a collection of files in the folder specified by location. All files in the folder with extensions .mdf, .dat, or .mf4 are included.
mdfds = mdfDatastore(_, 'Name1',Value1,'Name2',Value2,....) specifies function options and properties of mdfds using optional name-value pairs.

Note This function is supported only on 64-bit Windows operating systems.

\section*{Input Arguments}

\section*{location - Location of MDF datastore files \\ character vector | cell array | DsFileSet object}

Location of MDF datastore files, specified as a character vector, cell array of character vectors, or matlab.io.datastore.DsFileSet object identifying either files or folders.

The path can be relative or absolute, and can contain the wildcard character *. If location specifies a folder, by default the datastore includes all files in that folder with the extensions .mdf, .dat, or .mf4.

Example: 'CANape.MF4'
Data Types: char|cell|DsFileSet

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name,Value arguments to set file information or object "Properties" on page 8-16. Allowed options are IncludeSubfolders, FileExtensions, and the properties ReadSize, SelectedChannelGroupNumber, and SelectedChannelNames.

Example: 'SelectedChannelNames', 'Counter_B4'

\section*{IncludeSubfolders - Include files in subfolders false (default) | true}

Include files in subfolders, specified as a logical. Specify true to include files in each folder and recursively in subfolders.

\section*{Example: 'IncludeSubfolders', true}

Data Types: logical
FileExtensions - Custom extensions for filenames to include in MDF datastore \{'.mdf','.dat','.mf4'\} (default)|char| cell

Custom extensions for filenames to include in the MDF datastore, specified as a character vector or cell array of character vectors. By default, the supported extensions include .mdf, .dat, and .mf4. If your files have custom or nonstandard extensions, use this Name-Value setting to include files with those extensions.
Example: 'FileExtensions', \{'.myformat1','.myformat2'\}
Data Types: char | cell

\section*{Properties}

\section*{ChannelGroups - All channel groups present in first MDF-file (read-only) table}

All channel groups present in first MDF-file, returned as a table.

\section*{Data Types: table}

\section*{Channels - All channels present in first MDF-file (read-only) table}

All channels present in first MDF-file, returned as a table.
Those channels targeted for reading must have the same name and belong to the same channel group in each file of the MDF datastore

Data Types: table

\section*{Files - Files included in datastore}
char | string | cell
Files included in the datastore, specified as a character vector, string, or cell array.
Example: \{'file1.mf4','file2.mf4'\}
Data Types: char|string|cell

\section*{ReadSize - Size of data returned by read}
'file' (default)| numeric | duration
Size of data returned by the read function, specified as 'file', a numeric value, or a duration. A character vector value of ' file' causes the entire file to be read; a numeric double value specifies the number of records to read; and a duration value specifies a time range to read.

If you later change the ReadSize property value type, the datastore resets.

\section*{Example: 50}

Data Types: double|char|duration

\section*{SelectedChannelGroupNumber - Channel group to read numeric scalar}

Channel group to read, specified as a numeric scalar value.
Example: 1
Data Types: single | double |int8|int16|int32|int64|uint8|uint16| uint32 | uint64

\section*{SelectedChannelNames - Names of channels to read char | string | cell}

Names of channels to read, specified as a character vector, string, or cell array.
Those channels targeted for reading must have the same name and belong to the same channel group in each file of the MDF datastore.

\section*{Example: 'Counter_B4}

Data Types: char|string|cell

\section*{Object Functions}
read
readall
preview
reset
hasdata partition numpartitions combine (MATLAB) transform (MATLAB)

Read data in MDF datastore Read all data in MDF datastore Subset of data from MDF datastore Reset MDF datastore to initial state Determine if data is available to read from MDF datastore Partition MDF datastore Number of partitions for MDF datastore
Combine data from multiple datastores
Transform datastore

\section*{Examples}

\section*{Create an MDF Datastore}

Create an MDF datastore from the sample file CANape.MF4, and read it into a timetable.
```

mdfds = mdfDatastore(fullfile(matlabroot,'examples','vnt','CANape.MF4'));
while hasdata(mdfds)
m = read(mdfds);
end

```

\section*{See Also}

Introduced in R2017b

\section*{hasdata (MDFDatastore)}

Determine if data is available to read from MDF datastore

\section*{Syntax}
\(t f=\) hasdata(mdfds)

\section*{Description}
tf \(=\) hasdata(mdfds) returns logical 1 (true) if there is data available to read from the MDF datastore specified by mdfds. Otherwise, it returns logical 0 (false).

\section*{Examples}

\section*{Check MDF Datastore for Readable Data}

Use hasdata in a loop to control read iterations.
```

mdfds = mdfDatastore(fullfile(matlabroot,'examples','vnt','CANape.MF4'));
while hasdata(mdfds)
m = read(mdfds);
end

```

\section*{Input Arguments}

\section*{mdfds - MDF datastore}

MDF datastore object
MDF datastore, specified as an MDF datastore object.
Example: mdfds = mdfDatastore('CANape.MF4')

\section*{Output Arguments}
tf - Indicator of data to read
\(1 \mid 0\)
Indicator of data to read, returned as a logical 1 (true) or 0 (false).

\section*{See Also}

\author{
Functions \\ mdfDatastore|read|readall|reset \\ Introduced in R2017b
}

\section*{numpartitions (MDFDatastore)}

Number of partitions for MDF datastore

\section*{Syntax}
\(N\) = numpartitions(mdfds)
\(\mathrm{N}=\) numpartitions(mdfds,pool)

\section*{Description}
\(N\) = numpartitions(mdfds) returns the recommended number of partitions for the MDF datastore mdfds. Use the result as an input to the partition function.
\(\mathrm{N}=\) numpartitions(mdfds, pool) returns a reasonable number of partitions to parallelize mdfds over the parallel pool, pool, based on the number of files in the datastore and the number of workers in the pool.

\section*{Examples}

\section*{Find Recommended Number of Partitions for MDF Datastore}

Determine the number of partitions you should use for your MDF datastore.
```

mdfds = mdfDatastore(fullfile(matlabroot,'examples','vnt','CANape.MF4'));
N = numpartitions(mdfds);

```

\section*{Input Arguments}

\section*{mdfds - MDF datastore}

MDF datastore object
MDF datastore, specified as an MDF datastore object.

\section*{Example: mdfds = mdfDatastore('CANape.MF4')}

\section*{pool - Parallel pool}
parallel pool object
Parallel pool specified as a parallel pool object.
Example: gcp

\section*{Output Arguments}

\section*{N - Number of partitions}
double
Number of partitions, returned as a double. This number is the calculated recommendation for the number of partitions for your MDF datastore. Use this when partitioning your datastore with the partition function.

\section*{See Also}

\section*{Functions}
mdfDatastore | partition| read|reset

Introduced in R2017b

\section*{partition (MDFDatastore)}

\author{
Partition MDF datastore
}

\section*{Syntax}
```

subds = partition(mdfds,N,index)
subds = partition(mdfds,'Files',index)
subds = partition(mdfds,'Files',filename)

```

\section*{Description}
subds = partition(mdfds, \(N\),index) partitions the MDF datastore mdfds into the number of parts specified by \(N\), and returns the partition corresponding to the index index.
subds = partition(mdfds,'Files',index) partitions the MDF datastore by files and returns the partition corresponding to the file of index index in the Files property.
subds = partition(mdfds, 'Files', filename) partitions the datastore by files and returns the partition corresponding to the specified filename.

\section*{Examples}

\section*{Partition an MDF Datastore into Default Parts}

Partition an MDF datastore from the sample file CANape.MF4, and return the first part.
```

mdfds = mdfDatastore(fullfile(matlabroot,'examples','vnt','CANape.MF4'));
N = numpartitions(mdfds);
subds1 = partition(mdfds,N,1);

```

\section*{Partition an MDF Datastore by Its Files}

Partition an MDF datastore according to its files, and return partitions by index and file name.
```

cd c:\temp
mdfds = mdfDatastore({'CANape1.MF4','CANape2.MF4','CANape3.MF4'});
mdfds.Files
ans =
3\times1 cell array
'c:\temp\CANape1.MF4'
'c:\temp\CANape2.MF4'
'c:\temp\CANape3.MF4'
subds2 = partition(mdfds,'files',2)
subds3 = partition(mdfds,'files','c:\temp\CANape3.MF4');

```

\section*{Input Arguments}

\section*{mdfds - MDF datastore}

MDF datastore object
MDF datastore, specified as an MDF datastore object.
Example: mdfds = mdfDatastore('CANape.MF4')

\section*{N - Number of partitions}
positive integer
Number of partitions, specified as a double of positive integer value. Use the numpartitions function for the recommended number or partitions.

\section*{Example: numpartitions(mdfds)}

Data Types: double

\section*{index - Index}
positive integer
Index, specified as a double of positive integer value. When using the 'files ' partition scheme, this value corresponds to the index of the MDF datastore object Files property.

Example: 1

\section*{Data Types: double}

\section*{filename - File name \\ character vector}

File name, specified as a character vector. The argument can specify a relative or absolute path.

Example: 'CANape.MF4'
Data Types: char

\section*{Output Arguments}

\section*{subds - MDF datastore partition}

MDF datastore object
MDF datastore partition, returned as an MDF datastore object. This output datastore is of the same type as the input datastore mdfds.

\section*{See Also}

\section*{Functions}
mdfDatastore|numpartitions|read|reset

Introduced in R2017b

\section*{preview (MDFDatastore)}

Subset of data from MDF datastore

\section*{Syntax}
```

data = preview(mdfds)

```

\section*{Description}
data \(=\) preview (mdfds) returns a subset of data from MDF datastore mdfds without changing the current position in the datastore.

\section*{Examples}

\section*{Examine Preview of MDF Datastore}
```

mdfds = mdfDatastore(fullfile(matlabroot,'examples','vnt','CANape.MF4'));
data = preview(mdfds)
data2 =
10\times74 timetable
Time Counter_B4 Counter_B5 Counter_B6 Counter_B7 PWM

| 0.00082554 sec | 0 | 0 | 1 | 0 | 100 |
| ---: | :--- | :--- | :--- | :--- | :--- |
| 0.010826 sec | 0 | 0 | 1 | 0 | 100 |
| 0.020826 sec | 0 | 0 | 1 | 0 | 100 |
| 0.030826 sec | 0 | 0 | 1 | 0 | 100 |
| 0.040826 sec | 0 | 0 | 1 | 0 | 100 |
| 0.050826 sec | 0 | 0 | 1 | 0 | 100 |

```
\(0.060826 \mathrm{sec} \quad 0\)
0.070826 sec 0
0
\({ }^{0}\)
100
0
1
100

\section*{Input Arguments}

\section*{mdfds - MDF datastore}

MDF datastore object
MDF datastore, specified as an MDF datastore object.
Example: mdfds = mdfDatastore('CANape.MF4')

\section*{Output Arguments}

\section*{data - Subset of data}
timetable
Subset of data, returned as a timetable of MDF records.

\section*{See Also}

\section*{Functions}
hasdata|mdfDatastore|read

Introduced in R2017b

\section*{read (MDFDatastore)}

Read data in MDF datastore

\section*{Syntax}
```

data = read(mdfds)
[data,info] = read(mdfds)

```

\section*{Description}
data \(=\) read \((m d f d s)\) returns data from the MDF datastore mdfds into the timetable data.

The read function returns a subset of data from the datastore. The size of the subset is determined by the ReadSize property of the datastore object. On the first call, read starts reading from the beginning of the datastore, and subsequent calls continue reading from the endpoint of the previous call. Use reset to read from the beginning again.
[data,info] = read(mdfds) also returns to the output argument info information, including metadata, about the extracted data.

\section*{Examples}

\section*{Read Datastore by Files}

Read data from an MDF datastore one file at a time.
```

mdfds = mdfDatastore({'CANape1.MF4','CANape2.MF4','CANape3.MF4'});
mdfds.ReadSize = 'file';
data = read(mdfds);

```

Read the second file and view information about the data.
```

[data2,info2] = read(mdfds);
info2

```
```

struct with fields:

```
    Filename: 'CANape2.MF4'
    FileSize: 57592
    MDFFileProperties: [1×1 struct]

\section*{Input Arguments}

\section*{mdfds - MDF datastore}

MDF datastore object
MDF datastore, specified as an MDF datastore object.
Example: mdfds = mdfDatastore('CANape.MF4')

\section*{Output Arguments}

\section*{data - Output data}
timetable
Output data, returned as a timetable of MDF records.

\section*{info - Information about data}
structure array
Information about data, returned as a structure array with the following fields:
Filename
FileSize
MDFFileProperties

\section*{See Also}
```

Functions
hasdata|mdfDatastore|preview|readall|reset

```

Introduced in R2017b

\section*{readall (MDFDatastore)}

Read all data in MDF datastore

\section*{Syntax}
data \(=\) readall(mdfds)

\section*{Description}
data \(=\) readall (mdfds) reads all the data in the datastore specified by mdfds and returns it to timetable data.

After the readall function returns all the data, it resets mdfds to point to the beginning of the datastore.

If all the data in the datastore does not fit in memory, then readall returns an error.

\section*{Examples}

\section*{Read All Data in Datastore}

Read all the data from a multiple file MDF datastore into a timetable.
```

mdfds = mdfDatastore({'CANape1.MF4','CANape2.MF4','CANape3.MF4'});
data = readall(mdfds);

```

\section*{Input Arguments}

\section*{mdfds - MDF datastore}

MDF datastore object
MDF datastore, specified as an MDF datastore object.
Example: mdfds = mdfDatastore('CANape.MF4')

\section*{Output Arguments}
data - Output data
timetable
Output data, returned as a timetable of MDF records.

\section*{See Also}

\author{
Functions \\ hasdata|mdfDatastore|preview| read|reset \\ Introduced in R2017b
}

\section*{reset (MDFDatastore)}

Reset MDF datastore to initial state

\section*{Syntax}
```

reset(mdfds)

```

\section*{Description}
reset (mdfds) resets the MDF datastore specified by mdfds to its initial read state, where no data has been read from it. Resetting allows your to reread from the same datastore.

\section*{Examples}

\section*{Reset MDF Datastore}

Reset an MDF datastore so that you can read from it again.
```

mdfds = mdfDatastore(fullfile(matlabroot,'examples','vnt','CANape.MF4'));
data = read(mdfds);
reset(mdfds);
data = read(mdfds);

```

\section*{Input Arguments}

\section*{mdfds - MDF datastore}

MDF datastore object
MDF datastore, specified as an MDF datastore object.
Example: mdfds = mdfDatastore('CANape.MF4')

\section*{See Also}

\author{
Functions \\ hasdata|mdfDatastore|read \\ Introduced in R2017b
}

\section*{channelList}

Information on available MDF groups and channels

\section*{Syntax}
```

chans = channelList(mdfobj)
channelList(mdfObj,chanName)
channelList(mdf0bj,chanName,'ExactMatch',true)

```

\section*{Description}
chans \(=\) channelList(mdfobj) returns a table of information about channels and groups in the specified MDF-file.
channelList (mdf0bj, chanName) searches the MDF-file to generate a list of channels matching the specified channel name. The search by default is case-insensitive and identifies partial matches. A table is returned containing information about the matched channels and the containing channel groups. If no matches are found, an empty table is returned.
channelList(mdf0bj, chanName, 'ExactMatch',true) searches the channels for an exact match, including case sensitivity. This is useful if a channel name is a substring of other channel names.

Note This function is supported only on 64-bit Windows operating systems.

\section*{Examples}

\section*{View Available MDF Channels}

View all available MDF channels.
```

mdfObj = mdf('File01.mf4');
chans = channelList(mdfObj)
chans =
4\times9 table

```

ChannelName

\section*{"Float_32_LE_Offset_64"}
"Float 64 LE Master Offset 0"
"Sigend_Int1̄̄_LE_Offset_32"
"Unsigend_UInt̄32_LE_Master_0ffset_0"

ChannelGroupNumber

\section*{2}

1

ChannelGroupNumSamples

10000
10000
10000
10000

\section*{View Specific MDF Channels}

Filter on channel names.
```

chans = channelList(mdfObj,'Float')
chans =
2\times9 table

```
                                    ChannelNameChannelGroupNumberChannelGroupNumSamples
"Float_32_LE_0ffset_64" ..... 2
10000
"Float 64 LE Master Offset 0" 2 ..... 10000
chans = channelList(mdf0bj,'Float','ExactMatch',true)
chans =\(0 \times 9\) empty table
Input Arguments
mdf0bj - MDF-fileMDF-file objectMDF-file, specified as an MDF-file object.
Example: mdf('File01.mf4')

\section*{chanName - Name of channel}
char vector | string
Name of channel, specified as a character vector or string. By default, case-insensitive and partial matches are returned.

\section*{Example: 'Channel1}

Data Types: char|string

\section*{Output Arguments}

\section*{chans - Information on available MDF channels \\ table}

Information on available MDF channels, returned as a table. To access specific elements, you can index into the table.

\section*{See Also}

\section*{Functions}
mdf

Introduced in R2018b

\section*{mdfVisualize}

View channel data from MDF-file

\section*{Syntax}
```

mdfVisualize(mdfFileName)

```

\section*{Description}
mdfVisualize(mdfFileName) opens an MDF-file in the Simulation Data Inspector for viewing and interacting with channel data. mdfFileName is the name of the MDF-file, specified as a full or partial path.

Note This function is supported only on 64-bit Windows operating systems.

\section*{Examples}

\section*{View MDF Data}

View the data from a specified MDF-file in the Simulation Data Inspector.
```

mdfVisualize('File01.mf4')

```

\section*{Input Arguments}

\section*{mdfFileName - MDF-file name}
char vector | string
MDF-file name, specified as a character vector or string, including the necessary full or relative path.

Example: 'MDFFile.mf4'

\section*{Data Types: char | string}

\section*{See Also}

\section*{Functions \\ mdf | read}

\section*{Topics}
"View and Analyze Simulation Results" (Simulink)

Introduced in R2019a

\section*{autoblks.pwr.PlantInfo}

Analyze powertrain power and energy

\section*{Description}

To assess powertrain efficiencies, use the autoblks.pwr. PlantInfo object to evaluate and report power and energy for component-level blocks and system-level reference applications.

\section*{Creation}

\section*{Syntax}

VehPwrAnalysis \(=\) autoblks.pwr.PlantInfo(SysName)

\section*{Description}

MATLAB creates an autoblks.pwr. PlantInfo object for the system that you specify. VehPwrAnalysis = autoblks.pwr.PlantInfo(SysName) where SysName is the name of the model or subsystem that you want to analyze.

\section*{Input Arguments}

\section*{SysName - Model name}
character vector
Model that you want to analyze.
Example: 'SiCiPtReferenceApplication'
Data Types: char

\section*{Properties}

\section*{AvgEff - Average efficiency double}

This property is read-only.
Average efficiency, dimensionless.

\section*{Eff - Time series of efficiency}

\section*{time series}

This property is read-only.
Efficiency, \(\eta\), dimensionless. To calculate the efficiency, the Eff property implements this equation.
\[
\eta=\left|\frac{\sum P_{\text {output }}-\sum P_{\text {store }}\left(P_{\text {store }}>0\right)}{\sum P_{\text {input }}-\sum P_{\text {store }}\left(P_{\text {store }}<0\right)}\right|
\]

The equation uses these variables.
\[
\begin{array}{ll}
P_{\text {store }} & \text { Stored power } \\
P_{\text {input }}, P_{\text {output }} & \text { Input and output power logged by Power Accounting } \\
& \text { Bus Creator block }
\end{array}
\]

\section*{EnrgyBalanceAbsTol - Energy balance absolute tolerance}
0.0100 (default)

Energy balance absolute tolerance, EnrgyBal AbsTol .
To determine if the system conserves energy, the isEnrgyBalanced method checks the energy conservation at each time step.
\[
E_{E r r}=\sum E_{\text {trans }}+\sum E_{\text {nottrans }}-\sum E_{\text {store }}
\]

Blocks change the input energy plus released stored energy to output energy plus stored energy. For example, a mapped engine block uses fuel (not transferred energy) to produce
torque (transferred energy) and heat loss (not transferred energy). The total modified energy represents the average between the input fuel energy and the energy exiting the system (torque and heat loss). To calculate the total energy modified by the block, the method uses the integral of the average transferred, not transferred, and stored power.
\[
E_{\text {total }}=\frac{1}{2}\left(\int_{0}^{t_{\text {end }}}\left(\sum\left|P_{\text {trans }}\right|+\sum\left|P_{\text {nottrans }}\right|+\sum\left|P_{\text {store }}\right|\right) d t \|_{t=t_{\text {end }}}\right.
\]

If the energy conservation error is within an error tolerance, the method returns true. Specifically, if either condition is met, the method returns true.

\section*{Condition}
\begin{tabular}{|l|l|l|}
\(\frac{\left|E_{\text {Err }}\right|}{E_{\text {total }}}<\) EnrgyBal \(_{\text {RelTol }}\) & or & \(E_{\text {total }}<\) EnrgyBal \(_{\text {AbsTol }}\) \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(E_{\text {Err }}\) & Energy conservation error \\
\(E_{\text {total }}\) & Total energy modified by block \\
EnrgyBal \(_{\text {RelTol }}\), EnrgyBal \(_{\text {AbsTol }}\) & Energy balance relative and absolute tolerance, \\
& respectively \\
\(P_{\text {trans }}, E_{\text {trans }}\) & Transferred power and energy, respectively \\
\(P_{\text {nottrans }}, E_{\text {nottrans }}\) & Not transferred power and energy, respectively \\
\(P_{\text {store }}, E_{\text {store }}\) & Stored power and energy, respectively \\
\(P_{\text {input }}, P_{\text {output }}\) & Input and output power logged by Power Accounting \\
& Bus Creator block
\end{tabular}

\section*{Data Types: double}

\section*{EnrgyBalanceRelTol - Energy balance relative tolerance}
0.0100 (default)

Energy balance relative tolerance, EnrgyBal ReITol -
To determine if the system conserves energy, the isEnrgyBalanced method checks the energy conservation at each time step.
\[
E_{E r r}=\sum E_{\text {trans }}+\sum E_{\text {nottrans }}-\sum E_{\text {store }}
\]

Blocks change the input energy plus released stored energy to output energy plus stored energy. For example, a mapped engine block uses fuel (not transferred energy) to produce torque (transferred energy) and heat loss (not transferred energy). The total modified energy represents the average between the input fuel energy and the energy exiting the system (torque and heat loss). To calculate the total energy modified by the block, the method uses the integral of the average transferred, not transferred, and stored power.
\[
E_{\text {total }}=\frac{1}{2}\left(\int_{0}^{t_{\text {end }}}\left(\sum\left|P_{\text {trans }}\right|+\sum\left|P_{\text {nottrans }}\right|+\sum\left|P_{\text {store }}\right|\right) d t \|_{t=t_{e n d}}\right.
\]

If the energy conservation error is within an error tolerance, the method returns true. Specifically, if either condition is met, the method returns true.
\begin{tabular}{|c|l|l|}
\hline \multicolumn{4}{|l|}{ Condition } \\
\hline\(\frac{\left|E_{\text {Err }}\right|}{E_{\text {total }}}<\) EnrgyBal \(_{\text {RelTol }}\) & or & \(E_{\text {total }}<\) EnrgyBal \(_{\text {AbsTol }}\) \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(E_{\text {Err }}\) & Energy conservation error \\
\(E_{\text {total }}\) & Total energy modified by block \\
EnrgyBal \(_{\text {RelTol }}\), EnrgyBal \(_{\text {AbsTol }}\) & \begin{tabular}{l} 
Energy balance relative and absolute tolerance, \\
respectively
\end{tabular} \\
\(P_{\text {trans }}, E_{\text {trans }}\) & Transferred power and energy, respectively \\
\(P_{\text {nottrans }}, E_{\text {nottrans }}\) & Not transferred power and energy, respectively \\
\(P_{\text {store, }}, E_{\text {store }}\) & Stored power and energy, respectively \\
\(P_{\text {input }}, P_{\text {output }}\) & Input and output power logged by Power Accounting \\
& Bus Creator block
\end{tabular}

\section*{Data Types: double}

\section*{EnrgyUnits - Energy units}

\section*{MJ (default) | J}

Energy units.
Example: VehPwrAnalysis.EnrgyUnits = 'MJ';
Data Types: char

\section*{PwrUnits - Power units}
kW (default) | W
Power units.
Example: VehPwrAnalysis.PwrUnits = 'kW';
Data Types: char

\section*{Object Methods}
addLoggedData
Add logged data
dispSignalSummary Display powertrain subsystem energy analysis
dispSysSummary
Display powertrain system efficiency
findChildSys
histogramEff
isEnrgyBalanced Powertrain subsystem energy analysis
Display powertrain subsystem efficiency histogram
loggingOff
Logical flag for energy conservation
loggingOn
Turn signal logging off
run
sdiSummary
Turn signal logging on
Run powertrain energy and power analysis
Display Simulation Data Inspector plots of powertrain energy and power
xlsSysSummary Write powertrain energy analysis to spreadsheet

\section*{Examples}

\section*{Create PlantInfo Object for Powertrain Energy Analysis}

Analyze the power and energy in the conventional vehicle reference application. To create a PlantInfo object, see "step 2" on page 8-44.

1 Open the conventional vehicle reference application. By default, the application has a mapped 1.5 L spark-ignition (SI) engine and a dual clutch transmission. Project files open in a writable location.
autoblkConVehStart
2 Set the system name to SiCiPtReferenceApplication.
Create the autoblks.pwr.PlantInfo object.
Use the PwrUnits and EnrgyUnits properties to specify the units.
SysName = 'SiCiPtReferenceApplication';
VehPwrAnalysis = autoblks.pwr.PlantInfo(SysName);
VehPwrAnalysis.PwrUnits = 'kW';
VehPwrAnalysis.EnrgyUnits = 'MJ';
3 Use the run method to turn on logging, run simulation, and add logged data to the object.
run(VehPwrAnalysis);
4 Use the dispSysSummary method to display the results.
dispSysSummary(VehPwrAnalysis);
5 Use the xlsSysSummary method to write the results to a spreadsheet.
xlsSysSummary(VehPwrAnalysis,'EnergySummary.xlsx');
6 Use the findChildSys method to retrieve the autoblks.pwr. PlantInfo object for the Engine subsystem.

To display the results, use the dispSignalSummary method.
Use the histogramEff method to display a histogram of the time spent at each engine plant efficiency.
```

EngSysName = 'SiCiPtReferenceApplication/Passenger Car/Engine';
EngPwrAnalysis = findChildSys(VehPwrAnalysis,EngSysName);
dispSignalSummary(EngPwrAnalysis);
histogramEff(EngPwrAnalysis);

```

7 Use the findChildSys method to retrieve the autoblks.pwr. PlantInfo object for the Drivetrain subsystem.

To display the results, use the dispSignalSummary method.
DrvtrnSysName = 'SiCiPtReferenceApplication/Passenger Car/Drivetrain'; DrvtrnPwrAnalysis = findChildSys(VehPwrAnalysis,DrvtrnSysName); dispSignalSummary(DrvtrnPwrAnalysis);
8 To plot the results, use the sdiSummary method. sdiSummary (VehPwrAnalysis, \{EngSysName, DrvtrnSysName\})

\author{
See Also \\ Power Accounting Bus Creator \\ \section*{Topics} \\ "Conventional Vehicle Powertrain Efficiency" \\ "Analyze Power and Energy" \\ \section*{Introduced in R2019a}
}

\section*{dispSignalSummary}

Display powertrain subsystem energy analysis

\section*{Syntax}
dispSignalSummary(SubSystem)

\section*{Description}

The dispSignalSummary(SubSystem) method displays the subsystem energy for the autoblks.pwr.PlantInfo object. Use the autoblks.pwr.PlantInfo object to evaluate and report power an energy for component-level blocks and system-level models.

After you use the findChildSys method to retrieve the autoblks.pwr. PlantInfo object for the subsystem that you want to analyze, use the dispSignalSummary (SubSystem) method to display the results.

\section*{Examples}

\section*{Use dispSignalSummary Method to Display Subsystem Results}

Analyze the power and energy in the conventional vehicle reference application. To use the dispSignalSummary method to display the engine and drivetrain subsystem results, see "step 6" on page 8-47 and "step 7" on page 8-47.

1 Open the conventional vehicle reference application. By default, the application has a mapped 1.5 L spark-ignition (SI) engine and a dual clutch transmission. Project files open in a writable location.
autoblkConVehStart
2 Set the system name to SiCiPtReferenceApplication.
Create the autoblks.pwr.PlantInfo object.

Use the PwrUnits and EnrgyUnits properties to specify the units.
```

SysName = 'SiCiPtReferenceApplication';
VehPwrAnalysis = autoblks.pwr.PlantInfo(SysName);
VehPwrAnalysis.PwrUnits = 'kW';
VehPwrAnalysis.EnrgyUnits = 'MJ';

```

3 Use the run method to turn on logging, run simulation, and add logged data to the object.
run(VehPwrAnalysis);
4 Use the dispSysSummary method to display the results.
dispSysSummary(VehPwrAnalysis);
5 Use the xlsSysSummary method to write the results to a spreadsheet.
xlsSysSummary(VehPwrAnalysis,'EnergySummary.xlsx');
6 Use the findChildSys method to retrieve the autoblks.pwr.PlantInfo object for the Engine subsystem.

To display the results, use the dispSignalSummary method.
Use the histogramEff method to display a histogram of the time spent at each engine plant efficiency.
```

EngSysName = 'SiCiPtReferenceApplication/Passenger Car/Engine';
EngPwrAnalysis = findChildSys(VehPwrAnalysis,EngSysName);
dispSignalSummary(EngPwrAnalysis);
histogramEff(EngPwrAnalysis);

```

7 Use the findChildSys method to retrieve the autoblks.pwr.PlantInfo object for the Drivetrain subsystem.

To display the results, use the dispSignalSummary method.
DrvtrnSysName = 'SiCiPtReferenceApplication/Passenger Car/Drivetrain'; DrvtrnPwrAnalysis = findChildSys(VehPwrAnalysis,DrvtrnSysName); dispSignalSummary(DrvtrnPwrAnalysis);
8 To plot the results, use the sdiSummary method.
sdiSummary (VehPwrAnalysis,\{EngSysName,DrvtrnSysName\})

\section*{Input Arguments}

\section*{SubSystem - Subsystem name}
character vector
Subsystem that you want to analyze.

\title{
Example: 'SiCiPtReferenceApplication/Passenger Car/Engine' \\ Example: 'SiCiPtReferenceApplication/Passenger Car/Drivetrain' \\ Data Types: char
}

\section*{See Also}
autoblks.pwr.PlantInfo

\section*{Topics}
"Analyze Power and Energy"

Introduced in R2019a

\section*{dispSysSummary}

Display powertrain system efficiency

\section*{Syntax}
dispSysSummary(PlantInfoObj)

\section*{Description}

After you use the run method to analyze the powertrain power and energy, use the dispSysSummary (PlantInfoObj) method to display the system efficiency for the autoblks.pwr.PlantInfo object.

Use instances of the autoblks.pwr.PlantInfo object to evaluate and report power an energy for component-level blocks and system-level models.

\section*{Examples}

\section*{Use dispSysSummary Method to Display Energy Analysis Results}

Analyze the power and energy in the conventional vehicle reference application. To use the dispSysSummary method to display the results, see "step 4" on page 8-50.

1 Open the conventional vehicle reference application. By default, the application has a mapped 1.5 L spark-ignition (SI) engine and a dual clutch transmission. Project files open in a writable location.
autoblkConVehStart
2 Set the system name to SiCiPtReferenceApplication.
Create the autoblks.pwr.PlantInfo object.
Use the PwrUnits and EnrgyUnits properties to specify the units.
```

SysName = 'SiCiPtReferenceApplication';
VehPwrAnalysis = autoblks.pwr.PlantInfo(SysName);
VehPwrAnalysis.PwrUnits = 'kW';
VehPwrAnalysis.EnrgyUnits = 'MJ';

```

3 Use the run method to turn on logging, run simulation, and add logged data to the object.
run(VehPwrAnalysis);
4 Use the dispSysSummary method to display the results.
dispSysSummary(VehPwrAnalysis);
5 Use the xlsSysSummary method to write the results to a spreadsheet.
xlsSysSummary(VehPwrAnalysis,'EnergySummary.xlsx');
6 Use the findChildSys method to retrieve the autoblks.pwr. PlantInfo object for the Engine subsystem.

To display the results, use the dispSignalSummary method.
Use the histogramEff method to display a histogram of the time spent at each engine plant efficiency.

EngSysName = 'SiCiPtReferenceApplication/Passenger Car/Engine'; EngPwrAnalysis = findChildSys(VehPwrAnalysis,EngSysName); dispSignalSummary(EngPwrAnalysis); histogramEff(EngPwrAnalysis);
7 Use the findChildSys method to retrieve the autoblks.pwr. PlantInfo object for the Drivetrain subsystem.

To display the results, use the dispSignalSummary method.
DrvtrnSysName = 'SiCiPtReferenceApplication/Passenger Car/Drivetrain'; DrvtrnPwrAnalysis = findChildSys(VehPwrAnalysis,DrvtrnSysName); dispSignalSummary(DrvtrnPwrAnalysis);
8 To plot the results, use the sdiSummary method.
sdiSummary(VehPwrAnalysis, \{EngSysName, DrvtrnSysName\})

\section*{Input Arguments}

\section*{PlantInfoObj - Instance of PlantInfo object}
autoblks.pwr.PlantInfo object
autoblks.pwr.PlantInfo object for the system that you want to analyze.
See Also
autoblks.pwr.PlantInfo
Topics"Analyze Power and Energy"
Introduced in R2019a

\section*{findChildSys}

Powertrain subsystem energy analysis

\section*{Syntax}
findChildSys(PlantInfoObj, SubSystem)

\section*{Description}

The findChildSys(PlantInfoObj, SubSystem) method finds and returns an autoblks.pwr.PlantInfo object for the subsystem. Use the autoblks.pwr. PlantInfo object to evaluate and report power an energy for component-level blocks and system-level reference applications.

After you use the run method to analyze the powertrain power and energy, use the findChildSys method to evaluate specific subsystems.

\section*{Examples}

\section*{Use findChildSys Method to Analyze Subsystems}

Analyze the power and energy in the conventional vehicle reference application. To use the findChildSys method to analyze the engine and drivetrain subsystems, see "step 6 " on page \(8-53\) and "step 7 " on page 8-53.

1 Open the conventional vehicle reference application. By default, the application has a mapped 1.5 L spark-ignition (SI) engine and a dual clutch transmission. Project files open in a writable location.
autoblkConVehStart
2 Set the system name to SiCiPtReferenceApplication.
Create the autoblks.pwr.PlantInfo object.

Use the PwrUnits and EnrgyUnits properties to specify the units.
```

SysName = 'SiCiPtReferenceApplication';
VehPwrAnalysis = autoblks.pwr.PlantInfo(SysName);
VehPwrAnalysis.PwrUnits = 'kW';
VehPwrAnalysis.EnrgyUnits = 'MJ';

```

3 Use the run method to turn on logging, run simulation, and add logged data to the object.
run(VehPwrAnalysis);
4 Use the dispSysSummary method to display the results.
dispSysSummary(VehPwrAnalysis);
5 Use the xlsSysSummary method to write the results to a spreadsheet.
xlsSysSummary(VehPwrAnalysis,'EnergySummary.xlsx');
6 Use the findChildSys method to retrieve the autoblks.pwr. PlantInfo object for the Engine subsystem.

To display the results, use the dispSignalSummary method.
Use the histogramEff method to display a histogram of the time spent at each engine plant efficiency.
```

EngSysName = 'SiCiPtReferenceApplication/Passenger Car/Engine';
EngPwrAnalysis = findChildSys(VehPwrAnalysis,EngSysName);
dispSignalSummary(EngPwrAnalysis);
histogramEff(EngPwrAnalysis);

```

7 Use the findChildSys method to retrieve the autoblks.pwr.PlantInfo object for the Drivetrain subsystem.

To display the results, use the dispSignalSummary method.
DrvtrnSysName = 'SiCiPtReferenceApplication/Passenger Car/Drivetrain'; DrvtrnPwrAnalysis = findChildSys(VehPwrAnalysis,DrvtrnSysName); dispSignalSummary(DrvtrnPwrAnalysis);
8 To plot the results, use the sdiSummary method.
sdiSummary (VehPwrAnalysis,\{EngSysName,DrvtrnSysName\})

\section*{Input Arguments}

\section*{PlantInfoObj - Instance of PlantInfo object}
autoblks.pwr.PlantInfo object
autoblks.pwr.PlantInfo object for the system that you want to analyze.

\section*{SubSystem - Subsystem name}
character vector
Subsystem that you want to analyze.
Example: 'SiCiPtReferenceApplication/Passenger Car/Engine'
Example: 'SiCiPtReferenceApplication/Passenger Car/Drivetrain'
Data Types: char

\section*{See Also}

\author{
autoblks.pwr.PlantInfo
}

\section*{Topics}
"Analyze Power and Energy"

Introduced in R2019a

\section*{histogramEff}

Display powertrain subsystem efficiency histogram

\section*{Syntax}
histogramEff(SubSystem)

\section*{Description}

The histogramEff(SubSystem) method displays a histogram of the powertrain subsystem efficiency for the autoblks.pwr.PlantInfo object. Use instances of the autoblks.pwr. PlantInfo object to evaluate and report power an energy for component-level blocks and system-level models.

After you use the findChildSys method to analyze the powertrain subsystem power and energy, use the histogramEff method to display a histogram of the efficiency.

\section*{Examples}

\section*{Use histogramEff Method to Display Results}

Analyze the power and energy in the conventional vehicle reference application. To use the histogramEff method to display a histogram of the time spent at each engine plant efficiency, see "step 6" on page 8-56.

1 Open the conventional vehicle reference application. By default, the application has a mapped 1.5 L spark-ignition (SI) engine and a dual clutch transmission. Project files open in a writable location.
autoblkConVehStart
2 Set the system name to SiCiPtReferenceApplication.
Create the autoblks.pwr.PlantInfo object.

Use the PwrUnits and EnrgyUnits properties to specify the units.
```

SysName = 'SiCiPtReferenceApplication';
VehPwrAnalysis = autoblks.pwr.PlantInfo(SysName);
VehPwrAnalysis.PwrUnits = 'kW';
VehPwrAnalysis.EnrgyUnits = 'MJ';

```

3 Use the run method to turn on logging, run simulation, and add logged data to the object.
run(VehPwrAnalysis);
4 Use the dispSysSummary method to display the results.
dispSysSummary(VehPwrAnalysis);
5 Use the xlsSysSummary method to write the results to a spreadsheet.
xlsSysSummary(VehPwrAnalysis,'EnergySummary.xlsx');
6 Use the findChildSys method to retrieve the autoblks.pwr.PlantInfo object for the Engine subsystem.

To display the results, use the dispSignalSummary method.
Use the histogramEff method to display a histogram of the time spent at each engine plant efficiency.
```

EngSysName = 'SiCiPtReferenceApplication/Passenger Car/Engine';
EngPwrAnalysis = findChildSys(VehPwrAnalysis,EngSysName);
dispSignalSummary(EngPwrAnalysis);
histogramEff(EngPwrAnalysis);

```

7 Use the findChildSys method to retrieve the autoblks.pwr.PlantInfo object for the Drivetrain subsystem.

To display the results, use the dispSignalSummary method.
DrvtrnSysName = 'SiCiPtReferenceApplication/Passenger Car/Drivetrain'; DrvtrnPwrAnalysis = findChildSys(VehPwrAnalysis,DrvtrnSysName); dispSignalSummary(DrvtrnPwrAnalysis);
8 To plot the results, use the sdiSummary method.
sdiSummary (VehPwrAnalysis, \{EngSysName, DrvtrnSysName\})

\section*{Input Arguments}

\section*{SubSystem - Subsystem name}
character vector
Subsystem that you want to analyze.

\title{
Example: 'SiCiPtReferenceApplication/Passenger Car/Engine' \\ Example: 'SiCiPtReferenceApplication/Passenger Car/Drivetrain' \\ Data Types: char
}

\section*{See Also}
autoblks.pwr.PlantInfo

\section*{Topics}
"Analyze Power and Energy"

Introduced in R2019a

\section*{run}

Run powertrain energy and power analysis

\section*{Syntax}
```

run(PlantInfoObj)

```

\section*{Description}

Use the run (PlantInfoObj) method to turn signal logging on, run a powertrain energy and power analysis, and add data to the autoblks.pwr.PlantInfo object. Use instances of the autoblks.pwr.PlantInfo object to evaluate and report power an energy for component-level blocks and system-level models.

\section*{Examples}

\section*{Use run Method for Powertrain Energy Analysis}

Analyze the power and energy in the conventional vehicle reference application. To use the run method for the analysis, see "step 3" on page 8-59.

1 Open the conventional vehicle reference application. By default, the application has a mapped 1.5 L spark-ignition (SI) engine and a dual clutch transmission. Project files open in a writable location.
autoblkConVehStart
2 Set the system name to SiCiPtReferenceApplication.
Create the autoblks.pwr.PlantInfo object.
Use the PwrUnits and EnrgyUnits properties to specify the units.
SysName = 'SiCiPtReferenceApplication';
VehPwrAnalysis = autoblks.pwr.PlantInfo(SysName);
```

VehPwrAnalysis.PwrUnits = 'kW';
VehPwrAnalysis.EnrgyUnits = 'MJ';

```

3 Use the run method to turn on logging, run simulation, and add logged data to the object.
run(VehPwrAnalysis);
4 Use the dispSysSummary method to display the results.
dispSysSummary(VehPwrAnalysis);
5 Use the xlsSysSummary method to write the results to a spreadsheet.
xlsSysSummary(VehPwrAnalysis,'EnergySummary.xlsx');
6 Use the findChildSys method to retrieve the autoblks.pwr.PlantInfo object for the Engine subsystem.

To display the results, use the dispSignalSummary method.
Use the histogramEff method to display a histogram of the time spent at each engine plant efficiency.

EngSysName = 'SiCiPtReferenceApplication/Passenger Car/Engine';
EngPwrAnalysis = findChildSys(VehPwrAnalysis,EngSysName);
dispSignalSummary(EngPwrAnalysis); histogramEff(EngPwrAnalysis);
7 Use the findChildSys method to retrieve the autoblks.pwr.PlantInfo object for the Drivetrain subsystem.

To display the results, use the dispSignalSummary method.
DrvtrnSysName = 'SiCiPtReferenceApplication/Passenger Car/Drivetrain'; DrvtrnPwrAnalysis = findChildSys(VehPwrAnalysis,DrvtrnSysName); dispSignalSummary(DrvtrnPwrAnalysis);
8 To plot the results, use the sdiSummary method.
sdiSummary (VehPwrAnalysis, \{EngSysName, DrvtrnSysName\})

\section*{Input Arguments}

PlantInfoObj - Instance of PlantInfo object
autoblks.pwr.PlantInfo object
autoblks.pwr.PlantInfo object for the system that you want to analyze.

\author{
See Also \\ autoblks.pwr.PlantInfo \\ \section*{Topics} \\ "Analyze Power and Energy" \\ Introduced in R2019a
}

\section*{sdiSummary}

Display Simulation Data Inspector plots of powertrain energy and power

\section*{Syntax}
sdiSummary(PlantInfoObj,blocknames)

\section*{Description}

The sdiSummary(PlantInfoObj, blocknames) method plots the powertrain energy and power analysis results for the autoblks.pwr. PlantInfo object.

Use instances of the autoblks.pwr.PlantInfo object to evaluate and report power an energy for component-level blocks and system-level models.

\section*{Examples}

\section*{Use sdiSummary Method to Plot Results}

Analyze the power and energy in the conventional vehicle reference application. To use the sdiSummary method to display the Simulation Data Inspector plots of the engine and drivetrain results, see "step 8" on page 8-62.

1 Open the conventional vehicle reference application. By default, the application has a mapped 1.5 L spark-ignition (SI) engine and a dual clutch transmission. Project files open in a writable location.
autoblkConVehStart
2 Set the system name to SiCiPtReferenceApplication.
Create the autoblks.pwr.PlantInfo object.
Use the PwrUnits and EnrgyUnits properties to specify the units.
```

SysName = 'SiCiPtReferenceApplication';
VehPwrAnalysis = autoblks.pwr.PlantInfo(SysName);
VehPwrAnalysis.PwrUnits = 'kW';
VehPwrAnalysis.EnrgyUnits = 'MJ';

```

3 Use the run method to turn on logging, run simulation, and add logged data to the object.
run(VehPwrAnalysis);
4 Use the dispSysSummary method to display the results.
dispSysSummary(VehPwrAnalysis);
5 Use the xlsSysSummary method to write the results to a spreadsheet.
xlsSysSummary(VehPwrAnalysis,'EnergySummary.xlsx');
6 Use the findChildSys method to retrieve the autoblks.pwr. PlantInfo object for the Engine subsystem.

To display the results, use the dispSignalSummary method.
Use the histogramEff method to display a histogram of the time spent at each engine plant efficiency.

EngSysName = 'SiCiPtReferenceApplication/Passenger Car/Engine'; EngPwrAnalysis = findChildSys(VehPwrAnalysis,EngSysName); dispSignalSummary(EngPwrAnalysis); histogramEff(EngPwrAnalysis);
7 Use the findChildSys method to retrieve the autoblks.pwr. PlantInfo object for the Drivetrain subsystem.

To display the results, use the dispSignalSummary method.
DrvtrnSysName = 'SiCiPtReferenceApplication/Passenger Car/Drivetrain'; DrvtrnPwrAnalysis = findChildSys(VehPwrAnalysis,DrvtrnSysName); dispSignalSummary(DrvtrnPwrAnalysis);
8 To plot the results, use the sdiSummary method.
sdiSummary(VehPwrAnalysis, \{EngSysName, DrvtrnSysName\})

\section*{Input Arguments}

\section*{PlantInfoObj - Instance of PlantInfo object}
autoblks.pwr.PlantInfo object
autoblks.pwr.PlantInfo object for the system that you want to analyze.

\section*{blocknames - Block or name}
character vector | string | 'all'
Block or subsystem names, specified as a character vector or a string, separated by a comma.

Example: 'SiCiPtReferenceApplication/Passenger Car/Engine'
Example: 'SiCiPtReferenceApplication/Passenger Car/ Engine','SiCiPtReferenceApplication/Passenger Car/Drivetrain'

Data Types: char|string

\section*{See Also}
autoblks.pwr.PlantInfo

\section*{Topics}
"Analyze Power and Energy"
Simulation Data Inspector

Introduced in R2019a

\section*{xlsSysSummary}

Write powertrain energy analysis to spreadsheet

\section*{Syntax}
xlsSysSummary(PlantInfo0bj,filename, sheet)

\section*{Description}

The xlsSysSummary (PlantInfoObj,filename, sheet) method exports the system energy and efficiency for the autoblks.pwr.PlantInfo object. Use the autoblks.pwr.PlantInfo object to evaluate and report power an energy for component-level blocks and system-level models.

After you use the run method to analyze the powertrain power and energy, use the xlsSysSummary method to write the results to a spreadsheet.

\section*{Examples}

\section*{Use xlsSysSummary Method to Write Results to Spreadsheet}

Analyze the power and energy in the conventional vehicle reference application. To use the xlsSysSummary method to write the results to a spreadsheet, see "step 5 " on page 865.

1 Open the conventional vehicle reference application. By default, the application has a mapped 1.5 L spark-ignition (SI) engine and a dual clutch transmission. Project files open in a writable location.
autoblkConVehStart
2 Set the system name to SiCiPtReferenceApplication.
Create the autoblks.pwr.PlantInfo object.

Use the PwrUnits and EnrgyUnits properties to specify the units.
SysName = 'SiCiPtReferenceApplication';
VehPwrAnalysis = autoblks.pwr.PlantInfo(SysName);
VehPwrAnalysis.PwrUnits = 'kW';
VehPwrAnalysis.EnrgyUnits = 'MJ';
3 Use the run method to turn on logging, run simulation, and add logged data to the object.
run(VehPwrAnalysis);
4 Use the dispSysSummary method to display the results.
dispSysSummary(VehPwrAnalysis);
5 Use the xlsSysSummary method to write the results to a spreadsheet.
xlsSysSummary(VehPwrAnalysis,'EnergySummary.xlsx');
6 Use the findChildSys method to retrieve the autoblks.pwr. PlantInfo object for the Engine subsystem.

To display the results, use the dispSignalSummary method.
Use the histogramEff method to display a histogram of the time spent at each engine plant efficiency.
```

EngSysName = 'SiCiPtReferenceApplication/Passenger Car/Engine';
EngPwrAnalysis = findChildSys(VehPwrAnalysis,EngSysName);
dispSignalSummary(EngPwrAnalysis);
histogramEff(EngPwrAnalysis);

```

7 Use the findChildSys method to retrieve the autoblks.pwr. PlantInfo object for the Drivetrain subsystem.

To display the results, use the dispSignalSummary method.
DrvtrnSysName = 'SiCiPtReferenceApplication/Passenger Car/Drivetrain'; DrvtrnPwrAnalysis = findChildSys(VehPwrAnalysis,DrvtrnSysName); dispSignalSummary(DrvtrnPwrAnalysis);
8 To plot the results, use the sdiSummary method.
sdiSummary (VehPwrAnalysis, \{EngSysName, DrvtrnSysName\})

\section*{Input Arguments}

\section*{PlantInfoObj - Instance of PlantInfo object}
autoblks.pwr.PlantInfo object
autoblks.pwr.PlantInfo object for the system that you want to analyze.

\section*{filename - File name}
character vector | string
File name, specified as a character vector or a string.
If filename does not exist, xlsSysSummary creates a file, determining the format based on the specified extension. To create a file compatible with Excel \({ }^{\circledR} 97-2003\) software, specify an extension of .xls. To create files in Excel 2007 formats, specify an extension of . \(x\) lsx, . \(x\) lsb, or . \(x l\) sm. If you do not specify an extension, \(x l s S y s S u m m a r y\) uses the default, .xls.

Example: 'myFile.xlsx' or "myFile.xlsx"
Example: 'C:\myFolder\myFile.xlsx'
Example: 'myFile.csv'
Data Types: char|string

\section*{sheet - Worksheet name}
character vector \(\mid\) string | positive integer
Worksheet name, specified as one of the following:
- Character vector or string that contains the worksheet name. The name cannot contain a colon (: ). To determine the names of the sheets in a spreadsheet file, use xlsfinfo.
- Positive integer that indicates the worksheet index.

If sheet does not exist, \(x\) lswrite adds a sheet at the end of the worksheet collection. If sheet is an index larger than the number of worksheets, \(x\) lswrite appends empty sheets until the number of worksheets in the workbook equals sheet. In either case, xlswrite generates a warning indicating that it has added a worksheet.
Data Types: char |string| single | double | int8|int16|int32|int64|uint8| uint16|uint32|uint64

\section*{See Also}
autoblks.pwr.PlantInfo|xlswrite

\section*{Topics}
"Analyze Power and Energy"

\section*{Introduced in R2019a}

\section*{addLoggedData}

\author{
Add logged data
}

\section*{Syntax}
```

addLoggedData(PlantInfo0bj,logsout)

```

\section*{Description}
addLoggedData(PlantInfoObj, logsout) adds logged signal data to the autoblks.pwr. PlantInfo object specified by the
Simulink. SimulationData. Dataset signal data object.
If the data logged for the system does not conserve energy, the method returns a warning.
If the Simulink. SimulationData. Dataset object does not include data for the Power Accounting Bus Creator blocks in the system, the method returns an error.

\section*{Input Arguments}

\section*{PlantInfoObj - Instance of PlantInfo object}
autoblks.pwr.PlantInfo object
autoblks.pwr.PlantInfo object for the system that you want to analyze.

\section*{logsout - Dataset object for signals}

Simulink.SimulationData. Dataset object
Simulink. SimulationData. Dataset object for signals that you want to log.

\section*{See Also}

Power Accounting Bus Creator | autoblks.pwr.PlantInfo

\section*{Topics}
"Analyze Power and Energy"

Introduced in R2019a

\section*{isEnrgyBalanced}

Logical flag for energy conservation

\section*{Syntax}
```

flag=isEnrgyBalanced(PlantInfoObj)

```

\section*{Description}
flag=isEnrgyBalanced (PlantInfoObj) returns logical 1 (true) if the system conserves energy. Otherwise, it returns logical 0 (false).

\section*{Input Arguments}

PlantInfoObj - Instance of PlantInfo object
autoblks.pwr.PlantInfo object
autoblks.pwr.PlantInfo object for the system that you want to analyze.

\section*{Output Arguments}

\section*{flag - Indicator of energy conservation}

1 (true)| 0 (false)
Indicator of energy conservation, returned as a logical 1 (true) or 0 (false).
Data Types: logical

\section*{Algorithms}

To determine if the system conserves energy, the isEnrgyBalanced method checks the energy conservation at each time step.
\[
E_{E r r}=\sum E_{\text {trans }}+\sum E_{\text {nottrans }}-\sum E_{\text {store }}
\]

Blocks change the input energy plus released stored energy to output energy plus stored energy. For example, a mapped engine block uses fuel (not transferred energy) to produce torque (transferred energy) and heat loss (not transferred energy). The total modified energy represents the average between the input fuel energy and the energy exiting the system (torque and heat loss). To calculate the total energy modified by the block, the method uses the integral of the average transferred, not transferred, and stored power.
\[
E_{\text {total }}=\frac{1}{2}\left(\int_{0}^{t_{\text {end }}}\left(\sum\left|P_{\text {trans }}\right|+\sum\left|P_{\text {nottrans }}\right|+\sum\left|P_{\text {store }}\right|\right) d t \|_{t=t_{e n d}}\right.
\]

If the energy conservation error is within an error tolerance, the method returns true. Specifically, if either condition is met, the method returns true.
\begin{tabular}{|c|l|l|}
\hline \multicolumn{4}{|l|}{ Condition } \\
\hline\(\frac{\left|E_{\text {Err }}\right|}{E_{\text {total }}}<\) EnrgyBal \(_{\text {RelTol }}\) & or & \(E_{\text {total }}<\) EnrgyBal \(_{\text {AbsTol }}\) \\
\hline
\end{tabular}

The equations use these variables.
\begin{tabular}{ll}
\(E_{\text {Err }}\) & Energy conservation error \\
\(E_{\text {total }}\) & Total energy modified by block \\
EnrgyBal \(_{\text {RelTol }}\), EnrgyBal \(_{\text {AbsTol }}\) & \begin{tabular}{l} 
Energy balance relative and absolute tolerance, \\
respectively
\end{tabular} \\
\(P_{\text {trans }}, E_{\text {trans }}\) & Transferred power and energy, respectively \\
\(P_{\text {nottrans }}, E_{\text {nottrans }}\) & Not transferred power and energy, respectively \\
\(P_{\text {store }}, E_{\text {store }}\) & Stored power and energy, respectively \\
\(P_{\text {input }}, P_{\text {output }}\) & Input and output power logged by Power Accounting \\
& Bus Creator block
\end{tabular}
See AlsoPower Accounting Bus Creator | autoblks.pwr.PlantInfo
Topics"Analyze Power and Energy"
Introduced in R2019a

\section*{loggingOff}

Turn signal logging off

\section*{Syntax}
logging0ff(PlantInfoObj)

\section*{Description}
loggingOff(PlantInfoObj) turns signal logging off for all Power Accounting Bus Creator blocks in the autoblks. pwr.PlantInfo system object.

\section*{Input Arguments}

\author{
PlantInfoObj - Instance of PlantInfo object \\ autoblks.pwr.PlantInfo object
}
autoblks.pwr. PlantInfo object for the system that you want to analyze.

\author{
See Also
}

Power Accounting Bus Creator | autoblks.pwr.PlantInfo

\section*{Topics}
"Analyze Power and Energy"

\section*{Introduced in R2019a}

\section*{loggingOn}

Turn signal logging on

\section*{Syntax}
logging0n(PlantInfoObj)

\section*{Description}
logging0n(PlantInfoObj) turns signal logging on for all Power Accounting Bus Creator blocks in the autoblks.pwr. PlantInfo system object.

\section*{Input Arguments}

\title{
PlantInfoObj - Instance of PlantInfo object
}
autoblks.pwr.PlantInfo object
autoblks.pwr. PlantInfo object for the system that you want to analyze.

\section*{See Also}

Power Accounting Bus Creator | autoblks.pwr.PlantInfo

\section*{Topics}
"Analyze Power and Energy"
Introduced in R2019a```

